Географические информационные системы

Источники данных в геоинформатике и их типы. Возможности ГИСов и решаемые с помощью ГИС задачи. История развития ГИС- технологий. Основные виды карт. Области применения ГИС. Работа с ГИС-приложением Arcview. Классификация программных средств ГИС.

Рубрика География и экономическая география
Вид курс лекций
Язык русский
Дата добавления 10.01.2012
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Не имея возможности подробно описать картографические источники, вкратце охарактеризуем их основные блоки. Организация таких блоков может основываться на имеющейся системе классификации карт, в связи с чем необходимо дать ее краткое описание.

В геоинформатике карты служат для двух целей: 1)получения информации об указанных объектах местности и 2)их привязки.

2. Основные виды карт

Общегеографические

Топографические (масштаб 1:200 000 и крупнее),

- обзорно-топографические (мельче 1 : 200 000 до 1 000 000 включительно)

- обзорные (мельче 1 : 1 000 000).

Карты содержат разнообразные сведения о рельефе, гидрографии, почвенно-растительном покрове, населенных пунктах, хозяйственных объектах, путях сообщения, линиях коммуникации, границах.

К этой же группе источников можно отнести фотокарты и космофотокарты - полиграфические оттиски с фотопланов, составленных по результатам аэро- или космической съемки, с нанесенными на них горизонталями и другой картографической нагрузкой, обычной для общегеографических карт.

Применение фотокарт в качестве источников данных открывает возможности непосредственного использования для этой цели цифровых моделей местности, создаваемых в процессе фотограмметрической обработки дистанционных изображений.

Карты природы

Это наиболее разнообразная по тематике группа карт, включающая:

- карты геологического строения и ресурсов недр (карты земной коры, тектонические, полезные ископаемые),

- геофизические ( карты магнитного поля, сейсмических явлений),

- рельефа земной поверхности и дна океанов ( углы наклонов местности),

- метеорологические и климатические (карты ветрового режима, термического и увлажнения, атмосферных явлений),

- гидрологические и океанографические (водного режима, гидрологических явлений- половодий, паводков),

- карты почв и земельных ресурсов (почвенная карта, растительный покров),

- карты животного мира,

- геоботанические,

- медико-географические,

- ландшафтные и общие физико-географические, охраны природы.

Карты народонаселения

Для характеристик народонаселения применяют способы картографического изображения, локализующие явления по пунктам или на площадях, причем большинство аспектов выражает объект картографирования в количественной форме, за исключением этнографических особенностей населения.

Среди карт народонаселения выделяют следующие основные сюжеты:

размещение населения по территории и расселение (характеристика численности населения в пунктах и по районам, плотность сельского населения, равномерность размещения населенных пунктов, типы расселения и т.д.);

этнографическая и антропологическая характеристика народонаселения (характеристика населения по национальности, образу жизни, культуре и др.);

демографическая характеристика (отображение половозрастной структуры, естественного и механического движения населения);

социально-экономическая характеристика (отображение социально-классовой структуры общества и развернутая характеристика трудовых ресурсов) .

Карты экономики

- карты промышленности с подразделением на добывающую и обрабатывающую или более детально по каждой отрасли промышленности (нефтяная, угольная, пищевая, кожевенная, текстильная, деревообрабатывающая, металлообрабатывающая, химическая и др.).

- карты сельского хозяйства( с подразделением на отраслевые : животноводство, растениеводство).

- Карты лесного хозяйства характеризуют распространение и использование лесных ресурсов.

- Карты транспорта (автомобильного, железнодорожного и т.д.), а также дают их общую комплексную характеристику.

- карты средств связи.

- карты строительства

- Реже встречаются специальные карты торговли и финансов.

- Логическим завершением блока экономики являются общеэкономические карты.

Карты науки, подготовки кадров, обслуживания населения

Данный класс карт связан с картами народонаселения и экономики. Поэтому некоторые виды карт иногда характеризуются в двух предыдущих разделах (карты торговли, связи и т.д.), а иногда их выделяют в качестве самостоятельных групп в пределах карт науки, подготовки кадров и обслуживания населения.

Однозначной классификации в данном случае нет. В связи с этим укажем лишь один из возможных вариантов, когда выделяют карты образования, науки, культуры, здравоохранения, физкультуры и спорта, бытового и коммунального обслуживания, туризма и т.д.

Политические административные и исторические карты, комплексные атласы серийные карты и комплексные атласы, где сведения приводят в единообразной, систематизированной, взаимно согласованной форме: по проекции, масштабу, степени генерализации, современности, достоверности и другим параметрам. Такие наборы карт особенно удобны для создания тематических баз данных.

3. Данные дистанционного зондирования

Одним из основных источников данных для ГИС служат материалы дистанционного зондирования. Они объединяют все типы данных, получаемых с носителей космического (пилотируемые орбитальные станции, корабли многоразового использования "Шаттл", автономные спутниковые съемочные системы и т.п.) и авиационного базирования (самолеты, вертолеты и микроавиационные радиоуправляемые аппараты), и составляют значительную часть дистанционных данных как антонима контактных (прежде всего наземных) видов съемок, способов получения данных измерительными системами в условиях физического контакта с объектом съемки.

К неконтактным (дистанционным) методам съемки помимо аэрокосмических относят разнообразные измерительные системы морского (наводного) и наземного базирования, включая, например, фототеодолитную съемку, сейсмо-, электро- магниторазведку и иные методы геофизического зондирования недр, гидроакустические съемки рельефа морского дна с помощью гидролокаторов бокового обзора, иные способы, основанные на регистрации собственного или отраженного сигнала волновой природы.

Виды космических материалов также очень разнообразны. Существуют две технологии космических съемок: съемки с фотографических и со сканерных систем.

Дистанционное зондирование осуществляют специальными приборами датчиками. Датчики могут быть пассивными и активными, причем пассивные датчики улавливают отраженное или испускаемое естественное излучение, а активные способны сами излучать необходимый сигнал и фиксировать его отражение от объекта.

К пассивным датчикам относят оптические и сканирующие устройства, действующие в диапазоне отраженного солнечного излучения, включая ультрафиолетовый, видимый и ближний инфракрасный диапазоны.

К активным датчикам относят радарные устройства, сканирующие лазеры, микроволновые радиометры и др. В настоящее время в области разработки оперативных космических электронных систем дистанционного зондирования наметилась тенденция к комбинированному использованию различных многоканальных, многоцелевых датчиков с высоким разрешением, включая всепогодное оборудование. Наряду с этим по-прежнему применяют неоперативные космические системы с панхроматическим фотооборудованием и многоспектральными фотокамерами, обеспечивающими высокое разрешение и геометрическую точность.

Лекция 7: Классификация программных средств ГИС

2 часа

1. Классификация программных средств ГИС

2. Критерии оценки инструментальных средств ГИС

1. Классификация программных средств ГИС

Представленные сегодня на рынке программные средства (ПС) ГИС можно условно подразделять на несколько категорий:

Таблица - Категории программных средств ГИС

Категория ГИС

Функции

Ввод аттриб. данных

Ввод простр. данных

Создание баз
данных

Запросы

Простр. анализ и моделир.

Инструментальные ГИС

Да

Да

Да

Да

Да

ГИС-вьюеры

Ограничен

Ограничен

Нет

Да

Ограничен

Справочные картографические системы

Ограничен

Ограничен

Ограничено

Да

Нет

Векторизаторы картографических изображений

Ограничен

Да

Ограничено

Нет

Нет

Средства пространственного моделирования

Да

Нет

Ограничено

Да

Да

Средства обработки данных зондирований

Ограничен

Да

Ограничено

Да

Ограничен

1. Инструментальные ГИС - системы с наиболее широкими возможностями, включающими ввод, хранение, сложные запросы, пространственный анализ, вывод твердых копий.

2. Многие крупные инструментальные ГИС сопровождаются ГИС- вьюерами. Они предназначены для просмотра введенной ранее и структурированной по правам доступа информации, позволяя при этом выполнять информационные запросы из сформированых с помощью инструментальных ГИС баз данных. Большинство их позволяет организовать вывод оформленного картографического планшета на твердый носитель.

3. Векторизаторы растровых картографических изображений. Предназначены для реализации процедур ввода пространственной информации со сканера, включают автоматические или полуавтоматические средства преобразования растровых изображений в векторную информацию.

4. Справочные картографические системы. По функциональным возможностям приближены к ГИС-вьюерам, однако предназначены для работы только со встроенной базой данных, имея минимальные средства для ее обновления или пополнения.

5. Специализированные средства пространственного моделирования. К этому классу относятся системы, оперирующие с пространственной информацией, но ориентированные в первую очередь на частные задачи; моделирование процесса распространения загрязнений, геологических явлений, анализа рельефа.

6. Средства обработки и дешифрирования данных дистанционного зондирования. Этот класс программных средств предназначен для обработки цифровых изображений земной поверхности, полученной с борта самолетов и искусственных спутников.

2. Критерии оценки инструментальных средств ГИС

1. Поддержка моделей пространственных данных

Очень важная характеристика системы - набор поддерживаемых ею моделей представления пространственных данных. По составу поддерживаемых моделей данных можно судить о потенциальных возможностях и характере функций пространственного анализа в ПС ГИС. Моделью представления информации называют систему концепций и правил, используемую для описания типов объектов и взаимоотношений между их экземплярами. При этом одна группа аналитических функций может быть реализована на нескольких, другая - только на конкретной модели. Кроме того, реализация одних и тех же функций на разных моделях данных может иметь свои особенности. Модель пространственной информации определяет характер практически всех последующих операций и методов анализа, способ ввода данных и особенности получаемых результатов. Переход между разными моделями данных хотя и возможен, но сложен, требует значительных дополнительных затрат труда и может приводить к безвозвратным потерям информации. В общем случае очень сложно говорить о возможностях перехода от одной конкретной модели к другой. Наиболее распространенными моделями являются векторная топологическая, векторная нетопологическая и растровая. Выделяют также изображения, имеющие пространственную привязку (различия между растровой моделью и изображением состоит в том, что ячейка первого хранит фактически код явления, а второго - величину яркости). Для анализа рельефа используют нерегулярные триангуляционные сети. В некоторых приложениях может быть применена модель данных САПР.

2. Функции пространственного анализа

Практически все современные развитые ГИС содержат исчерпывающий набор запросных функций. Это относится как к инструментальным ГИС, так и к ГИС-вьюерам. Запросы позволяют формировать множество различных объектов (в том числе - пространственных) на основе заданных критериев, которые можно формулировать на языке пространственных взаимоотношений. Самой простой формой пространственных запросов являются получение характеристик объекта по указанию его курсором на экране и отображение объектов с заданными значениями атрибутов (обратная операция). В более развитых системах можно отбирать объекты, например, по признаку их удаленности от других объектов, соседства, совпадения и др. Классические функции пространственного анализа включают полигональный оверлей, анализ близости, буферизацию, алгебру карт, построение и анализ моделей рельефа, моделирование сетей. Операция буферизации обеспечивает такие возможности как, например, построение карт зон зашумленности, доступности, распространения загрязнения по территории. При помощи оверлеев можно рассчитывать статистику и строить карты совместной встречаемости явлений. Результатом анализа сетей могут стать, например, карты транспортной доступности, распространения загрязнений по речной сети. Многие из этих операций требуют очень серьезных вычислительных затрат. Дополнительно ГИС предоставляют такие функции, как измерение длин, площадей, углов и проч.

Приведем далее краткий перечень основных функций пространственного анализа:

Полигональные операции
Наложение полигонов.
Определение принадлежности точки полигону.
Определение принадлежности линии полигону.
Снятие границы и слияние полигонов.
Анализ близости
Построение буферных зон: на множестве точек, относительно кривых, на множестве полигонов, возможность взвешивания.
Генерация полигонов Тиссена.
Анализ сетей
Поиск кратчайшего пути.
Суммирование значений атрибутов по элементам сети.
Размещение центров и распределение ресурсов сети.
Поиск пространственной смежности.
Поиск ближайшего соседа.
Поиск по адресам.
Функции картографической алгебры
Перекодирование и переклассификация.
Средние, максимальные и минимальные значения ячейки по множеству слоев.
Логические комбинации слоев.
Сложение/вычитание, умножение/деление слоев карт.
Возведение в степень, дифференцирование.
Операции анализа в режиме скользящего «окна».
Группировка или идентификация неразрывных зон равных значений.
Характеристики формы (вытянутость, фрагментированность).
Цифровое моделирование рельефа
Вычисление углов наклона.
Определение экспозиций склонов.
Интерполяция высот.
Определение границ зон видимости для точечных объектов.
Определение зон видимости для линейных объектов и полигонов.
Генерация горизонталей с задаваемым пользователем сечением.
Расчет дренажной сети и оптимального пути по поверхности.
Генерация профилей поперечных сечений.
Вычисление объемов относительно заданной плоскости.
Прочие функции
Логические операции с множеством карт.
Генерация случайной пространственной сети опробования.
Работа с базами атрибутивной информации.
В качестве средств работы с атрибутивной информацией ГИС могут использовать внутренние или внешние СУБД.
Как правило, внутренние СУБД обладают более узким набором возможностей.
Для мощных систем характерно наличие «живых» связок с мощными серверами реляционных баз данных.

3. Средства ввода/вывода пространственной информации

Функционирование аналитических процедур обеспечивается наличием в ГИС средств ввода/вывода информации. Такие средства могут включать модули работы с дигитайзерами, сканерами, электронными геодезическими приборами, обеспечивать автоматическую или ручную векторизацию растровых изображений. Необходимо поддерживать средства геометрической коррекции, преобразования картографических проекций и контроля качества баз пространственной информации. Обязательный элемент ГИС - редактор графической информации. В некоторых системах предусматривают алгоритмы геометрической генерализации.

4. Средства преобразования форматов

Необходимым компонентом всех ГИС служат модули преобразования внешних форматов данных, куда должны входить средства импорта/экспорта наиболее распространенных графических векторных и растровых форматов. В наиболее мощных системах начала появляться поддержка различных стандартов обмена пространственными данными и протоколов взаимодействия приложений.

Лекция 8: Технологии ввода и обработки пространственной информации

2 часа

1. Сбор и систематизация данных

2. Подготовка и преобразование данных

3. Обработка и анализ данных при эксплуатации ГИС

1. Сбор и систематизация данных

Основа успешного функционирования любой геоинформационной системы - наличие необходимых достоверных исходных данных. Например, для кадастровых систем основными данными служат кадастровые карты и сопровождающая их семантическая информация. Чрезвычайно высокие темпы изменений в сфере земельных отношений, появление значительного числа собственников земельных наделов, арендаторов в сочетании с неудовлетворительным состоянием законодательной базы (например, вопрос о частной собственности на землю до сих пор не имеет окончательного решения) привели к тому, что в настоящее время достоверные данные о фактическом состоянии земельного фонда и сведения о сложившейся ситуации с земельными наделами носят фрагментарный характер, а зачастую отсутствуют (особенно это относится к картографическим данным).

Таким образом, в настоящее время наиболее актуальна задача получения достоверной информации для дальнейшего использования в геоинформационной системе. В качестве такой информации выступают:

результаты наземных топографо-геодезических измерений;

данные наземной съемки с применением GPS оборудования;

результаты аэрофотосъемки;

существующие (устаревшие) картографические материалы;

данные, полученные в ходе предыдущих этапов земельной реформы;

данные государственной статистической отчетности;

информация, получаемая в результате работы с участниками земельных отношений.

Этот этап геоинформационной технологии наиболее трудоемок и требует наибольших финансовых затрат.

Для ГИС, используемых в кадастровой технологии, принципиально важно установить перечень видов входных данных, их объем и способ представления. Последний фактор во многом определяет требования к составу аппаратуры, необходимой на следующем этапе подготовки (преобразования) данных.

2. Подготовка и преобразование данных

Этот технологический модуль является входным для геоинформационной технологии, использующей цифровые (компьютерные) методы обработки данных. На его выходе формируется размещенный на машиночитаемых носителях набор цифровых данных, имеющих корректную топологическую и логическую структуру и обладающих требуемой точностью и достоверностью.

При дальнейшем изложении будем рассматривать традиционную организацию данных: раздельное представление графической и аналитической (семантической) информации при наличии связей между графическими объектами и записями в аналитической базе данных. В последнее время появились ГИС, совмещающие позиционные (графические) и непозиционные данные, что представляется достаточно перспективным, однако возможность их практического применения, особенно в производственном режиме, требует проверки.

Размещено на http://www.allbest.ru/

Подавляющее большинство ГИС оперирует с графическими материалами, представленными в векторном виде, поэтому процесс получения векторных карт наиболее отработан с производственной точки зрения. Существует, правда, один вопрос, не имеющий однозначного решения: какая технология векторизации предпочтительнее - векторизация по растровой подложке с использованием программных средств автоматизации этого процесса (рис. 1) или ручная оцифровка с применением планшетных дигитайзеров, полярных планиметров и т.п.

По мнению большинства авторов, первая технология более перспективна и позволяет получать качественные материалы при относительно невысокой квалификации операторов, однако наличие высококвалифицированного персонала и необходимости цифровать специальные карты с высокой тематической нагрузкой делают ручную оцифровку предпочтительнее. Так или иначе, в каждой конкретной ситуации нужно принимать решение о выборе подходящей методики.

В целом способы и организация векторизации существующих карт достаточно широко освещены в литературе, для очень многих прикладных задач крайне важной представляется проблема соответствия ситуации, изображенной на цифровой карте, фактическому состоянию территории. Это приводит к необходимости динамичного обновления цифровых карт, которое должно осуществляться непрерывно. Отсюда возникает вопрос: а стоит ли вообще цифровать старые карты, которые затем будут обновляться. Ответ на этот вопрос может быть сформулирован скорее всего исходя из экономических соображений.

Для решения задач обновления карт ГИС должна располагать функциями обработки исходных материалов для получения актуальной на данный момент карты. При этом вовсе не обязательно использовать весь возможный набор входной информации. Целесообразно включить в состав ГИС средства обработки данных, поступающих от основных источников информации. Например, при проведении массовых полевых работ с использованием GPS оборудования необходимо наличие в составе программного обеспечения ГИС соответствующих интерфейсных модулей, позволяющих считывать данные и преобразовывать их в формат, пригодный для дальнейшей обработки, а также программ обработки информации, осуществляющих формирование соответствующих графических объектов и размещение их в цифровой карте.

В ряде случаев, например для обработки результатов аэрофотосъемки, требуется организация специальных геоинформационных технологий с соответствующим программно-аппаратным составом ГИС.

Ввод аналитических данных, необходимых для функционирования прикладных систем, может быть организован в виде самостоятельного технологического процесса либо совмещен с процессом формирования картографических данных.

Принципиальным является наличие классификатора объектов карты и программных средств контроля корректности вводимых данных. При этом система контроля должна быть спроектирована с учетом возможности использования неполных данных, что присуще реальной информации и людям, ее собирающим.

В настоящее время в ГИС, как правило, применяют коммерческие базы данных реляционного типа с достаточно развитыми механизмами управления данными, однако процедура их настройки с учетом требований конкретных систем и необходимостью функционирования совместно с графической базой данных требует наличия в составе программного обеспечения ГИС специального интерфейсного модуля.

С технической точки зрения ввод информации в реляционные таблицы осуществляют, как правило, путем ручного набора с клавиатуры. Реже применяют автоматизированный способ, включающий сканирование исходных бумажных носителей с последующим применением программного обеспечения для распознавания текстов. При включении в состав программного обеспечения модуля конвертации полученного текстового файла во внутренний формат, применяемый в базе данных, можно говорить о создании автоматизированной технологии, схожей по функциям с векторизатором картографической информации.

Если необходимые данные существуют в цифровом виде, например при приеме информации из других автоматизированных систем, возникает чисто техническая задача конвертации, которая решается достаточно просто, если используются стандартные форматы. Более сложной представляется проблема согласования структуры данных, но и она находит свое решение в выборочном занесении информации путем формирования шаблонов, масок или расширения исходной схемы данных. Наиболее серьезные трудности могут возникнуть вследствие несовпадения базовых классификаторов, используемых в различных информационных системах.

В процессе формирования баз данных следует стремиться к обеспечению потокового режима работы, ориентированного на сокращение времени подготовительного этапа, каким, как правило, является этап наполнения баз данных.

Объединение (привязка) графических и семантических данных может осуществляться на этапе формирования каждой из баз данных или быть выделено в самостоятельную операцию. В последнем случае целесообразно совместить ее с проведением контроля введенных данных.

Рис. 2. Макет картоориентированной информационно-справочной системы для энергетиков

ГИС обеспечивает базовые функции анализа и моделирования, позволяет осуществлять контроль введенных данных.

Операция контроля достаточно важна для большинства прикладных систем (рис. 2). Если контроль топологической и метрической корректности графического материала возможно осуществлять программными средствами ГИС (проверка отсутствия пересечений, висящих линий, примыкание полигонов и т.д.), то проблема контроля семантических данных, особенно тех, которые не могут быть описаны словарями (имена собственные, даты оформления документов, порядковые номера и т.п.), остается пока нерешенной.

3. Обработка и анализ данных при эксплуатации ГИС

Главными требованиями к программно-аппаратным средствам ГИС в данном модуле является работа в реальном времени в производственном режиме, вследствие чего допускается применение только коммерческих программных средств, прошедших исчерпывающее тестирование и имеющих соответствующую эксплуатационную поддержку.

В качестве примера рассмотрим кадастровые системы. В практической работе производят непрерывную коррекцию картографических и аналитических данных. Для земельно-кадастровых систем это редактирование границ землевладений и землепользований, внесение изменений в сведения о владельцах, арендаторах и т.д. Отсюда следуют требования к функциональным возможностям редактирования графических объектов и связанных с ними записей в базе данных:

ввод дополнительных (изменение формы существующих) объектов по координатам, полученным в ходе полевых измерений;

формирование объектов по результатам решения геодезических задач (программы координатной геометрии);

обеспечение обработки данных GPS измерений;

возможность быстрого обновления общей топологии при изменении метрики одного/группы объектов;

поддержка обновления аналитических данных при изменениях в картографическом материале;

обеспечение целостности информации и сохранение истории изменений;

ведение контрольного журнала работы оператора;

возможность установления приоритетов и уровней доступа к информации.

Необходимо сказать несколько слов об организации интерфейса пользователя в ГИС, используемых в производственном режиме. Основным критерием в данном случае должна служить простота работы оператора, что позволит добиться наивысшей производительности и требуемого качества конечного продукта. Поэтому, по мнению авторов, общее число одновременно доступных пунктов меню (инструментов) не должно превышать 7, а число уровней выпадающих меню - 2-х (желательно сокращение до одного). Сложившийся стиль оформления меню - пиктографическое представление функции, - как правило, не требует перевода, однако наличие подсказок на русском языке обязательно. Необходимо также наличие функций аварийного возврата в основное меню, выполняемое единообразно (например, нажатием клавиши Esc или одной из функциональных клавиш) и не приводящее к потере или искажению данных. Эти требования могут быть выполнены, если программное обеспечение ГИС содержит инструмент формирования производственного набора функций путем выбора и подключения только необходимых для данного технологического этапа.

К необходимым функциям анализа и моделирования могут быть отнесены:

выполнение измерительных операций (вычисление длин, площадей);

переход к другим координатным системам;

составление электронных отчетов (экспликация площадей, статистический анализ, справки по запросам);

реализация простейших пространственных запросов (определение соседей, выбор участков, попадающих в определенную зону и т.д.).

Решение более сложных задач пространственного моделирования желательно, но определение конкретных функций, включаемых в состав кадастровой системы, целесообразно производить в процессе опытной эксплуатации, анализируя поступающие запросы.

Можно отметить одну задачу - получение информации о пространственном совмещении или соседстве данного объекта с заданным объектом другого типа (например, наличие трасс электрокабеля или трубы водопровода). Возможен также запрос типа "указать все участки, через которые проходит та или иная подземная коммуникация".

Лекция 9: Обзор некоторых ГИС

2 часа

1. Программные продукты ESRI

2. Модули расширения системы ARC/INFO

3. GeoGraph/GeoDraw для Windows

4. MapInfo

1. Программные продукты ESRI

ARC/INFO, ведущий программный продукт ESRI - высокоуровневая ГИС-система с полным набором средств геообработки, включая сбор данных (растровый и векторный формат), их интеграцию, хранение, автоматическую обработку, редактирование, создание и поддержку топологии, пространственный анализ, работу с регулярной и нерегулярной моделями, связь с SQL DBMS, прямое взаимодействие с SDE, визуализацию и создание твердых копий любой картографической информации. Работает на UNIX рабочих станциях и на PC c Windows NT. К базовому пакету системы ARC/INFO можно дополнительно приобрести ряд модулей расширения, предоставляющих пользователям много новых возможностей работы с геоданными. Описание модулей расширения системы дано ниже.

ArcCAD - продукт, расширяющий возможности AutoCAD до работы с моделью данных ARC/INFO. Это полнофункциональная ГИС, действующая в среде AutoCAD (версии 12, 13). Возможности примерно соответствуют PC ARC/INFO. Работает на PC c MS DOS и под Windows.

ArcView - наиболее быстро развивающийся, простой в обучении и работе продукт, предоставляющий конечному пользователю средства выбора и просмотра наборов разнообразных геоданных, их редактирования, создания макетов карт с легендами, графиками и диаграммами, связывания объектов карты с атрибутивной информацией в режиме hot links, адресного геокодирования, использования растровых изображений, распечатки картографических материалов. Напрямую работает с базами данных ARC/INFO, ArcCAD, PC ARC/INFO, SDE, базами dBASE III и dBASE IV, имеет доступ к SQL DBMS (Oracle, Ingres, Sybase, Informix), читает файлы форматов DXF, DWG, IMG, DGN. Включает функции вызова удаленных процедур RPC, связи с другими приложениями через стандартные протоколы DDE for Windows и Apple Events for Macintosh, динамической линковки библиотек DLL, возможность подключения Visual Basic. Имеет одинаковые функции при работе с Windows 3.1/3.11/95/NT, UNIX, Macintosh/Power Macintosh, открытый формат файлов shapefiles. В состав ArcView входит Avenue. Создан ряд приложений к ArcView для инженерных изысканий, взаимодействия с GPS системами и т.д. Текущая версия 3.0 имеет масштабируемую архитектуру. В ее составе базовое ядро с добавленными (по сравнению с версией 2.1) функцией цифрования на дигитайзере и внутренними модулями расширения и два внешних модуля расширения с развитыми средствами геоанализа: Spatial Analyst (работа с регулярной моделью рельефа, растровое моделирование) и Network Analyst (решение задач анализа пространственных сетей, например дорог, нефтепроводов и т.п.). Внешние модули работают под Windows 95/NT и под UNIX.

Avenue - включенный в состав пакета ArcView объектно-ориентированный язык программирования и среда разработчика. С его помощью вы, при необходимости, можете приспособить пользовательский интерфейс под свои задачи, создать, убрать или скрыть кнопки меню. Под каждой кнопкой можно задать выполнение имеющихся или новых, в том числе и написанных вами на Avenue, макрокоманд (скриптов). В комплект поставки включено около 100 примеров полезных скриптов. Используя Avenue, можно создать и собственные приложения. По сути, ArcView также является приложением, разработанным средствами Avenue.

Spatial Database Engine (SDE) - это не просто новый программный продукт, а новая технология управления большими базами пространственных данных, включающими информацию по сотням тысяч или миллионам объектов, например земельных участков. Работать с ней можно как в среде ГИС, так и в других информационных технологиях в режиме клиент-сервер в пределах локальной или глобальной сети. В SDE можно выделить две основных составляющих: высокоскоростной пространственный сервер, использующий технологию реляционных баз данных и отвечающий за поиск и пересылку данных, и программный прикладной интерфейс API со средствами пространственного запроса (клиент). Работать с базой (проводить запросы, выборку по критериям, пространственный анализ) одновременно могут много (до нескольких сотен) клиентов, в том числе и не пользователи ГИС. SDE работает очень быстро, все обратившиеся с запросом получают ответ в течение нескольких секунд. При этом время доступа и получения ответа на запрос практически не зависит от числа пользователей и размера базы данных. В качестве базы данных можно использовать стандартные DBMS, но их средства применяются пользователем или разработчиком не напрямую, а на уровне интерфейса SDE, что значительно упрощает работу. Согласно договору между ESRI и корпорацией Oracle, заключенному в сентябре 1995 г., проведена интеграция технологии SDE и продукта Oracle7 Spatial Data Option. Пакет ArcView версии 3 будет иметь прямой доступ к базам данных Oracle7 Spatial Option. Прямое взаимодействие с базами Oracle через SDE будет одной из новых функций ARC/INFO версии 8. В дальнейшем планируется объединить SDE с модулем расширения ArcStorm системы ARC/INFO.

Digital Chart of the World (DCW) - это цифровая карта мира (суши) в формате ARC/INFO, созданная на основе тактических навигационных карт Министерства обороны США. Исходный масштаб 1:1 000 000, объем данных 1,7 Гигабайт, носитель - четыре диска CD-ROM с книгой описания данных. Карта разбита на 2094 листа размером 5 на 5 градусов. Число тематических слоев на лист: от 3 до 27 (для России в среднем 17 слоев). Существуют версии DCW для UNIX рабочих станций и для PC. Для просмотра и работы с картой можно использовать любые ГИС ESRI.

The ArcData Publishing Program - это программа поддержки и распространения по всему миру коммерческих цифровых баз геоданных, картографических материалов и изображений, подготовленных с помощью программных продуктов ESRI или переведенных в форматы, читаемые этими продуктами. Их может с успехом использовать в своей работе любой обладатель ГИС-пакетов серии ARC/INFO, но особенно они полезны пользователям ArcView. Таких баз разнообразной тематики, разного масштаба и назначения предлагаются сотни. Одним из продуктов, подготовленных ESRI, является цифровая карта мира DCW. Кроме того, существуют базы данных на весь мир, такие как ArcWorld масштаба 1: 25 млн. и 1:3 млн., базы на ряд стран, регионов и городов. Недавно ESRI совместно с СП Дата+ подготовили цифровой атлас мира “ArcAtlas: Our Earth”, включающий множество различных карт, описательной информации и изображений на весь мир, континенты и отдельные регионы.

2. Модули расширения системы ARC/INFO

ARC NETWORK предназначен для моделирования и анализа топологически связанных объектов в виде пространственных сетей, оценки и управления ресурсами, распределенными по сетям, и процессами в таких сетях. Используется для поиска оптимальных маршрутов движения транпортных средств, для анализа и планирования транспортных нагрузок, развития и содержания дорожной сети, городского планирования, операций с недвижимостью, оптимизации перевозок или почтовых отправлений, выбора наилучшего местоположения новых центров обслуживания и других объектов с учетом потребностей жителей и клиентов, при поиске объектов по их адресам, маркетинговых исследованиях, управлении коммуникационными сетями (электросетями, водопроводом, сточной и ливневой канализацией и т.п.), в работе городского транспорта, милиции, пожарных, службы скорой помощи.

ARC TIN предназначен для моделирования в среде ARC/INFO топографических поверхностей, например рельефа местности, или физических поверхностей, таких как плотность населения, электромагнитные поля, уровень шума. Модель TIN (нерегулярная триангуляционная сеть) - удобный и эффективный способ представления поверхностей в трехмерном пространстве в виде триангуляционной сети или регулярной матрицы точек. По построенным поверхностям можно выполнять разнообразные операции: вычислять объемы между поверхностями, проектировать на них векторные карты ARC/INFO и растровые карты модуля GRID, аэрофото- и космоснимки. Можно строить изолинии, рассчитывать объемы выемок и насыпей, уклоны, экспозиции склонов, определять видимость точек, линий и областей, границы водосборов, тальвеги, проводить инженерный анализ: разрезы, измерение высот и др.

ARC GRID добавляет возможности растрового моделирования в модель данных ARC/INFO и превращает ее в интегрированную векторно-растровую ГИС. Имеет мощный набор средств управления и анализа непрерывно распределенными числовыми и качественными признаками, представляемыми в виде регулярных моделей, моделирования сложных процессов. Особенно эффективен для гидрологического и гидрогеологического моделирования, геологического прогнозирования, планирования землепользования, маркетинговых исследований, многомерного статистического анализа пространственных данных, оптимизации выбора трассы с использованием стоимостной поверхности.

ARC COGO осуществляет поддержку координатной геометрии (набора средств и функций для работы с геодезическими данными), ее интеграцию с ARC/INFO. На входе можно использовать данные первичной геодезии (полевых журналов), в том числе с электронных тахеометров, и данные GPS (глобальной спутниковой системы привязки). Кроме того, для ввода можно использовать ASCII файлы, файлы САПР по более чем 20 форматам, включая DXF, IGES, IGDS. Атрибутивные данные можно хранить и во внешних базах данных типа Oracle, Informix, Ingres, Sybase. Расчеты теодолитных ходов поддерживают точность исходных данных съемки, координаты двойной точности по неограниченному числу пунктов съемки. Средства конструирования дают полный набор интерактивных функций для записи планов съемок и расположения объектов и сооружений. Имеются средства подготовки табличных форм отчетности, включая настройку под ваши требования. COGO широко используется для создания и управления земельными кадастрами, оценки собственности и операций с недвижимостью, создания базовых карт для кадастров, службами содержания коммунальных сетей, для инженерно-строительных целей, контроля и управления инфраструктурой муниципалитетов, городов, областей и целых стран.

ArcPress - это программный растеризатор, система, преобразующая векторную, растровую, или смешанную векторно-растровую графику в формат растрового устройства вывода, растр заданного разрешения и размера. Он обеспечивает быструю высококачественную распечатку карт и изображений на растровых устройствах вывода, таких как струйные и электростатические плоттеры. К выводу на векторные (перьевые) плоттеры ArcPress отношения не имеет. В качестве входных он может использовать как графические метафайлы в стандартах ESRI, так и файлы других систем в форматах CGM, PostScript (Level 1, Level 2). На выходе ArcPress могут быть получены растровые форматы не только для направления прямо на устройство вывода, но и многие форматы, применяемые для обмена (TIFF, PBM, PCX BW, BMP, BIT). ArcPress выполняет программную растеризацию прямо на рабочей станции, используя мощные ресурсы ее памяти и скорость счета. Это позволяет обойтись без неизбежного добавления памяти в плоттер стандартной конфигурации (особенно при выводе на большие форматы), значительно увеличить скорость печати, улучшить качество твердых копий, одновременно распечатывать один файл и растеризовать другие, исключить ограничения на размер файла для устройства вывода. При использовании ArcPress вы сэкономите средства и сможете оптимизировать количество и качество устройств вывода. Существуют версии для UNIX рабочих станций и для Windows NT.

ArcExpress кардинально повышает скорость визуализации изображений на дисплее и оперативность работы с наборами данных на рабочих станциях в среде X-Windows. Обеспечивает возможность быстрого многократного добавления и удаления покрытий. В целом повышает эффективность работы с входящими в состав ARC/INFO подсистемами ARCPLOT и ARCEDIT. ArcExpress полезен при работе с большими пространственными базами данных либо в случае, когда требуется в интерактивном режиме работать со сложными составными наборами данных, часто использовать функции масштабирования, панорамирования, перерисовки.

ArcStorm - это новая, разработанная для ARC/INFO (UNIX-версии) технология управления и взаимодействия с геоданными, содержащая эффективные средства оперирования объектами покрытий в пространственных базах данных. С его помощью можно работать не только с целым покрытием, но и с отдельными объектами как с элементами, блокировать пространственные объекты, извлекать и закреплять наборы элементов. К ним относят дуги, узлы, полигоны, надписи, точки, трассы, участки, районы, а также строку в таблице базы данных или запись в информационном файле. ArcStorm сохраняет историю базы данных, позволяет реконструировать ее состояние в прошлом. Блокирование объекта(тов) сохраняется до подтверждения завершения транзакции (редактирования). Поддерживается работа в режиме клиент/сервер, взаимодействие с реляционными базами данных.

Для прямого запроса и просмотра данных в базе можно использовать средства ARC/INFO и ArcView 2.

ArcScan предназначен для ввода картографических данных со сканеров. Включает средства создания векторной базы данных путем сканирования растровых изображений, предварительной обработки растровых изображений, растрово-векторный редактор, интерактивный конвертор из растровой формы в векторную, вывод растровых изображений на периферийные устройства и в форматные файлы.

3. GeoGraph/GeoDraw для Windows

GeoGraph для Windows

GeoGraph для Windows - одно из программных средств геоинформационных систем, разрабатываемых Центром геоинформационных исследований ИГ РАН.

Идеология GeoGraph'а достаточно прозрачна. Имеются карты или атласы, к которым вы можете отнести некоторый набор слоев цифровых карт. Каждый такой слой представляет собой покрытие или слой, созданный программой GeoDraw. Это означает, что каждый слой должен включать только либо точечные объекты, либо дуги (линии), либо полигональные объекты, и для них могут иметься таблицы атрибутивных (тематических) данных.

GeoGraph для Windows дает возможность:

создавать электронные карты или атласы как композиции картографических слоев, выбираемых пользователем (включая векторные и растровые) и связанных с ними таблиц атрибутивных (тематических) данных;

управлять таблицами атрибутивных данных (создавать таблицы, связывать их с цифровыми картами, редактировать, менять структуру таблиц и др.);

управлять масштабированием изображения;

осуществлять поиск или выбор объектов на карте с отображением результатов в таблице атрибутивных данных;

выбирать объекты вручную или на основе задания "запросов по образцу" к атрибутивным таблицам с отображением результатов на карте;

проводить электронное тематическое картографирование;

осуществлять измерения по карте;

находить области, удовлетворяющие задаваемым условиям, для произвольного набора цифровых карт электронного атласа (динамический оверлей слоев);

выводить твердые копии карт на любые печатающие устройства, доступные для Windows.

По сравнению с версией GeoGraph 1.1 версия GeoGraph 1.5 дает дополнительные возможности:

загрузка в карту одновременно множества слоев различных форматов (GeoDraw для DOS, GeoDraw для Windows, в котором число объектов и значения идентификаторов потенциально могут достигать 2 млрд, расширенный спектр форматов растровых изображений - более 30, слои в международном формате для навигационных цифровых карт DX-90, в котором представлено большое число цифровых топографических карт, в формате косметического слоя, создаваемого в среде GeoGraph 1.5 и др.);

возможность создания непосредственно в GeoGraph 1.5 пространственных объектов (точечных, линейных, полигональных) в виде косметических слоев с привязкой к ним таблиц данных, что обеспечивает решение различных задач (например, формирование слоя оперативной обстановки и его передачу в режиме удаленного доступа и др.), включая копирование в косметический слой выбранных из слоев других форматов объектов;

возможность прямой работы с таблицами форматов Paradox .DB и dBase .DBF всех версий, а также (через драйверы ODBC или IDAPI) с таблицами СУБД Oracle, Microsoft Access, Interbase в клиент-серверном режиме;

связывание со слоями цифровых карт, кроме множества таблиц, также и множества форм, создаваемых пользователем для вывода информации об объектах, запросов, макросов, тем, селекций и графиков;

возможность связывания с объектами слоев цифровой видео- и аудио-информации и ее вызова при получении справок по объектам;

вычисления в таблицах значений полей по простым формулам;

количество классов объектов при тематическом картографировании ограничено только ресурсами Windows (возможно разбиение объектов в слое на многие сотни и, если это необходимо, тысячи классов);

значительно расширенные возможности для проектирования заливок, штриховок, точечных условных знаков и линий;

многостраничный вывод твердых копий карт большого размера на устройства меньшего размера (с автоматической разбивкой на листы).

3. GeoDraw для Windows

GeoDraw для Windows - векторный топологический редактор для создания цифровых карт - является одним из программных средств ГИС, разрабатываемых Центром Геоинформационных Исследований ИГРАН. В комплекс этих средств входят также GeoGraph для Windows - ГИС для уровня конечного пользователя, GeoConstructor для Windows - инструментальное средство для разработки ГИС-приложений - и другие специализированные продукты.

Идеология, лежащая в основе GeoDraw, включает следующие положения:

GeoDraw служит инструментом для создания высококачественных цифровых карт, учитывающих требования ведущих мировых ГИС;

создаваемая и редактируемая в GeoDraw структура пространственных данных цифровой карты (включая отношения связности, смежности, соседства, вложенности объектов и др.) гарантирует при соблюдении технологии корректную фиксацию и изменение отношений между пространственными объектами, их связи с базой атрибутивных данных, позволяет преобразовывать созданные в GeoDraw цифровые карты в другие ГИС (как топологические, например, ARC/INFO, так и нетопологические - MapInfo и др.) без дополнительных накладных расходов на редактирование;

мощные средства трансформации создаваемых цифровых карт (преобразования около 40 типов картографических проекций, широкий набор преобразований плоскости и др.) позволяет решать задачи их интеграции (осуществлять “склейку” листов, “посадку” одних карт на другие с образованием многослойной структуры и др.);

GeoDraw - легко осваиваемый программный продукт, отражающий многолетний опыт работы коллектива ЦГИ ИГРАН с ведущими мировыми ГИС, сотнями пользователей GeoDraw, тысячами карт и планов разнообразной тематики и масштабов - от 1:500 до 1:50 000 000.

GeoDraw для Windows позволяет:

осуществлять перевод карт и планов в цифровую форму посредством векторизации по растровой подложке, при помощи дигитайзера, ввода значений координат объектов по имеющимся данным или по результатам измерений на местности;

вводить и редактировать пространственные объекты типа точки, дуги, полигона при помощи дигитайзера, "мыши", клавиатуры, путем ввода координат или импорта из открытых текстовых форматов;

использовать широкий спектр функций отображения пространственных объектов на экране: изменение масштаба отображения, сдвиг изображения в процессе цифрования текущей дуги, отображение только определенных типов узлов и слоев и т.д.;

подгружать одновременно до 100 слоев, оперативно менять их статус и атрибуты отображения;

осуществлять топологическое согласование объектов и создавать корректную многослойную структуру при помощи широкого набора операций: создания линейно-узловой структуры, цифрования общих границ полигонов один раз и сборки полигонов из дуг, захват произвольных частей объектов из одного слоя в другой и т.д.;

выделять группы объектов в карте или в связанной с ней таблице, удалять, копировать, генерализовать, идентифицировать только выделенные группы;

осуществлять преобразования цифровых карт из различных картографических проекций в географические координаты и обратно (поддерживается свыше 30 типов проекций);

осуществлять аффинные, проективные и полиномиальные (2 и 5 степени) преобразования, поворот оси;

использовать набор функций по идентификации пространственных объектов цифровых карт для связи с базами атрибутивных данных, включая присвоение объектам пользовательских идентификаторов, нахождение объектов, не имеющих таких идентификаторов, или объектов с определенными идентификаторами, генерирование отчета об имеющихся пользовательских идентификаторах и др.;

подгружать в среду редактора таблицы атрибутивных данных, осуществлять проверку идентификации объектов по табличным данным, при необходимости вводить и редактировать записи таблицы для конкретных объектов карты, показывать текущий объект таблицы на карте или объект, выделенный на карте, - в таблице, осуществлять проверку соответствия карты с таблицей;

экспортировать и импортировать данные в широко используемые форматы (GEN PC ARC/INFO, MIF/MID MapInfo, VEC IDRISI, DXF AutoCAD).

4. MapInfo

Геоинформационная система MapInfo была разработана в начале 90-х годов фирмой Mapping Information Systems Corporation (USA). На сегодняшний день этот пакет является одним из наиболее популярных пакетов на рынке настольных геоинформационных систем.

Основные достоинства MapInfo:

Возможность работать на различных платформах: PC, Macintosh, Sun, HP и др.

Возможность создавать приложения, ориентированные на конкретные задачи пользователя и снабженные меню, разработанными специально для этого приложения (наличие встроенного языка программирования MapBasic).

Наличие русифицированной версии.

Легкость в освоении.

Пользователю пакета MapInfo предоставлен понятный и удобный интерфейс, а картографические преобразования, насколько это возможно, скрыты. Операции, поддерживающие общение с базой данных просты и понятны. Достаточно небольшого опыта работы с любой базой данных, чтобы легко освоить настольную картографию.

MapInfo рекомендуется использовать в качестве недорогой ГИС широкого назначения для решения картографических задач, бизнес-задач и во всех других областях, где возможно принимать решения и анализировать данные, используя карту.

Заключение

Геоинформационные системы совсем недавно стали доступными широкому кругу пользователей, но их роль в развитии подходов к построению информационных систем и решении прикладных задач сегодня нельзя недооценивать. В данном курсе лекций раскрыты основные понятия, возможности и области применения географических информационных систем, описаны модели и типы данных используемых в ГИС, а также структура построения ГИС. Хотелось бы надеяться, что материалы, представленные в данном курсе лекций, помогут приобрести начальные навыки по работе с ГИС-приложениями.


Подобные документы

  • Картографическое изображение, географические элементы, обусловленные темой и назначением карты. Общегеографические, экономические, физико-географические, топографические, синтетические карты. Сфера использования карт как средства научного исследования.

    контрольная работа [19,4 K], добавлен 23.04.2010

  • Географические информационные системы (ГИС) как закономерный этап на пути перехода к безбумажной технологии обработки информации. Использование ГИС-технологий в сфере земельных отношений. Классификация современных ГИС-технологий, их характеристика.

    курсовая работа [747,9 K], добавлен 13.06.2015

  • Географические идеи древнего Востока. Зачатки научных знаний в период рабовладельческого строя. Принципы составления географических карт. Письменные памятники древних индусов "Веды". Идеи античных ученых. История изобретения Эратосфена и Гиппарха.

    реферат [36,7 K], добавлен 21.12.2013

  • Понятие географического атласа, история его создания и развития в России и мире, особенности атласной картографии советского времени. Классификация атласов и их виды, сферы применения и оформление. Создание атласа Козельского района Калужской области.

    дипломная работа [258,5 K], добавлен 11.08.2009

  • Особенности карт. Картографическая сетка. Графическое представление масштаба. Элементы основы и условные картографические знаки. Надписи и географические названия на картах. Понятие о карте и особенностях картографического изображения земной поверхности.

    реферат [360,0 K], добавлен 01.06.2010

  • Географическая карта как величайшее творение человечества. Основные свойства географических карт. Виды карт по охвату территории, масштабу и содержанию. Способы изображения компонентов природы, географических объектов и явлений на географической карте.

    презентация [363,8 K], добавлен 08.12.2013

  • Что такое электронное картографирование. Информационные слои как основа современной геоинформационной системы. Понятие геореляционной модели, процедура геокодирования. Сфера применения ГИС, обзор средств разработки, некоторые украинские системы.

    реферат [2,8 M], добавлен 22.09.2010

  • Виды, типы и свойства местности. Приемы и способы чтения топографических карт, измерения и ориентирование по карте и на местности. Использование топографических карт (планов) в оперативно-служебной деятельности ОВД. Ориентирование на местности по карте.

    курс лекций [764,0 K], добавлен 27.06.2014

  • Трудности становления географии как науки, наиболее общие черты развития географии от античных времен и до наших дней. Географические идеи древнего мира, взгляды ученых античности. Великие географические открытия, развитие картографических исследований.

    реферат [26,1 K], добавлен 29.05.2010

  • Исследование способов отображения поверхности Земли на плоскости. Изучение понятия картографической проекции. Анализ особенностей составления и оформления карт. Компьютерная обработка картографических данных. Древнейшие карты. Методы использования карт.

    презентация [3,5 M], добавлен 01.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.