Проектирование и строительство двух воздушных линии электропередачи (500 кВ)
Проведение инженерно-геологических изысканий для обеспечения информацией, необходимой для строительства трассы ВЛ 500 кВ. Геолого-геоморфологическая характеристика района строительства. Буровые работы, изучение геологического разреза, отбор проб грунта.
Рубрика | Геология, гидрология и геодезия |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 08.12.2010 |
Размер файла | 4,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Значение коэффициента пористости, соответствующие принятым ступеням нагрузки, вычисляют по следующей формуле:
где Дh - деформация образца при данной ступени нагрузки, мм; d - поправочный коэффициент на тарировку прибора; - приведенная высота образца, рассчитываемая по формуле:
где - коэффициент пористости грунта в естественном состоянии ; h - высота кольца прибора.
Окончательная формула для расчета коэффициента пористости будет иметь вид:
Тарирование прибора проводится аналогично компрессионным испытаниям с той разницей что в прибор помещают стальную болванку. На основании полученных данных строят тарировочную кривую, которая используется для введения поправочного коэффициента.
Рассчитав для каждой ступени нагрузки пористость грунта с учетом поправочного коэффициента, строят кривую зависимости пористости от нагрузки , которая используется для расчета сжимаемости грунта и вычисления модуля общей деформации.
где E0 - модуль общей деформации , Мпа; е1 - коэффициент пористости при нагрузке Р1; а - коэффициент сжимаемости в интервале нагрузки Р2 - Р1, Па-1; в -переходный коэффициент , учитывающий отличие условий производства опыта без возможности бокового расширения от действительной работы грунта в естественных условиях, величина которого рассчитывается по коэффициенту поперечной деформации (коэффициент Пуассона)
Значение µ принимаются равными : для крупнообломочных грунтов - 0.27; для песков и супесей - 0.30; для суглинков - 0.35 и для глин - 0.42.
Определение сопротивления грунта сдвигу по фиксированной поверхности:
Параметры сопротивления сдвигу Ц (фи; угол естественного откоса) и С (сила сцепления между частицами), определенные по идентичным образцам, отобранным из одного монолита могут быть различными в зависимости от методики лабораторных исследований. В этой связи выбирать схему проведения опыта необходимо, исходя из условий работы грунта в основании сооружений.
Существует много схем проведения опытных исследований по определению сопротивления сдвигу, которые условно можно объединить в четыре группы:
1) Исследования нормально уплотненных образцов в условиях завершенной консолидации;
2) Исследование переуплотненных образцов в условиях завершенной консолидации;
3) Исследования недоуплотненных образцов;
4) Исследование оптимально уплотненных образцов.
Нагрузки на образец грунта передаются по ступеням, с соответствующими им значениями вертикальных уплотняющих нагрузок.
Зависимость вертикальных нагрузок при срезе от уплотняющих нагрузок:
Табл.21
Давление при срезе Р, Мпа. |
Величина уплотняющего давления, Мпа. |
||||||
0.100 |
0.150 |
0.200 |
0.250 |
0.300 |
0.500 |
||
Р1 Р2 Р3 Р4 |
0.050 0.075 0.100 0.125 |
0.150 0.100 0.250 0.200 |
0.100 0.150 0.200 0.250 |
0.150 0.200 0.250 0.300 |
0.100 0.200 0.300 0.400 |
0.100 0.300 0.500 0.700 |
По производительности различают быстрый, ускоренный и медленный сдвиги.
Зависимость продолжительности и скорости сдвига от вида грунта:
Табл.22
Наименование грунта |
Тип сдвига |
|||
быстрый |
ускоренный |
мелденный |
||
Ил супесчаный Ил суглинистый Ил глинистый Песок Супесь Суглинок Глина |
Примечание: В числителе указана продолжительность сдвига, мин; в знаменателе - скорость сдвига , мм/мин; меньшие значения характеризуют структурно слабые грунты.
При проведении испытании на сдвиг будет использоваться быстрый сдвиг недоуплотнённого образца в условиях завершенной консолидации (согласно ГОСТ 12248 - 96).
При быстром сдвиге приложение сдвигающих усилии производится непрерывно, не ожидая условной стабилизации горизонтальной деформации. Время от приложения первой ступени сдвигающего усилия до момента сдвига различно и может составлять от 20 до 60 - 80 секунд.
Испытания будут проводится на приборе ВСВ - 25.
Для этого из очищенного от парафина монолита отбираются четыре образца путем вреза в специальные кольца. С торцов каждого образца отбираются пробы на определение влажности. Грунт в кольце зачищается от вровень с торцами и взвешивается на технических весах с точностью до 0.01г.
Далее образец переносится в срезной прибор, в котором на грунт передается уплотняющее давление , при котором происходит уплотнение образца в один прием , оно выдерживается для песчаных грунтов не менее 5 минут, для супесей - 15 минут и для суглинков и глин - 30 минут.
По истечении указанного времени начинают передавать сдвигающее усилие ступенями, величина которых принимается равной 5% уплотняющей нагрузки. При непрерывно возрастающей нагрузке скорость сдвига должна быть равной 0.01 мм/мин. Испытание считается законченным, когда верхняя каретка прибора переместится относительно нижней на 5 мм или когда приложение очередной ступени нагрузки вызывает незатухающую деформацию. В конце испытания в кольце определяются плотность грунта и его влажность.
Сдвигающее напряжение вычисляется по формуле:
где ф - сдвигающее напряжение, Мпа; Q - вес на рычаге, Н; F - площадь среза, см2.
На основании экспериментальных данных строится график зависимости горизонтальных деформации от сдвигающего усилия, который служит основой для выбора момента сдвига. Момент сдвига определяется в месте пересечения касательных, проведенных в точках, соответствующих начальной деформации. Сдвигающее усилие , соответствующее данному моменту сдвига, принимается за исходное при построении графика зависимости горизонтальных напряжении от вертикальной нагрузки. Примеры графиков испытании на сдвиг приведены в графическом приложении № 1.
Параметры сопротивления сдвигу - угол внутреннего трения и удельное сцепление рассчитываются по формулам:
ф = fP+С и ф = РtgЦ+С
где ф - предельное сдвигающее напряжение, Мпа; Р - нормальное давление , Мпа; f - коэффициент внутреннего трения материала (песка). Коэффициент f численно равен тангенсу угла внутреннего трения грунта. С- сила сцепления между частицами.
5.2.5.2 Лабораторные испытания несвязных грунтов:
Для полного определения физико - механических свойств несвязных грунтов необходимо определить следующие их параметры:
- Объемный вес грунта (плотность)
-Гранулометрический состав
-Влажность
Метод определения плотности несвязных грунтов:
Плотность несвязных (песчаных и крупнообломочных) грунтов определяется в лабораторных и полевых условиях. В лабораторных условиях она определяется в рыхлом и плотном их сложении: в этом случае получают её минимальное и максимальное значение.
При определении плотности песков в рыхлом сложении средняя проба (400 - 500 г просеянного через сито, с диаметром ячейки 5 мм, и высушенного до воздушно сухого состояния грунта) взвешивается на технических весах. В наклонный цилиндр с насадкой через воронку засыпается песок при постепенном выравнивании цилиндра. Медленным вращением рыхлитель извлекается из цилиндра. При этом песок проходит через отверстия рыхлителя. После извлечения рыхлителя цилиндр осторожно устанавливают на подставку из оргстекла или лист чистой бумаги и снимают насадку. Поверхность песка разравнивается металлической линейкой до уровня края цилиндра. Цилиндр с песком взвешивается на технических весах с точностью до 0.01 г. Для мелкозернистых и пылеватых песков производится определение гигроскопической влажности и при расчете плотности песков отнимают ее величину. Для средне- и крупнозернистых песков этой величиной обычно пренебрегают. Опыт повторяется трижды, и плотность принимается как среднее из двух меньших значении. Данные опыта записываются в журнал.
При определении плотности песков в плотном сложении проба высушенного грунта засыпается в предварительно взвешенный цилиндр небольшими порциями при постоянном уплотнении деревянной трамбовкой. После того, как песок достигнет края стакана, насадку снимают и избыток песка удаляют металлической линейкой, поставленной на ребро. Заполненный таким образом стакан взвешивается и рассчитывается плотность грунта плотного сложения. Опыт повторяется трижды, и расчет ведется по двум наибольшим показателям.
Определение плотности крупнообломочных грунтов в лабораторных условиях производится следующим образом. Определяют гранулометрический состав ситовым или комбинированным методом , плотность обломков различного петрографического состава и мелкозема (заполнителя).
Определив плотность обломков различного петрографического состава методом парафинирования, рассчитывают величину средневзвешенной плотности крупнообломочного материала по формуле:
где А1, А2,…Аn-процентное содержание обломков различного петрографического состава; , … - плотность обломков различного петрографического состава , г/см3.
Для определения плотности мелкозема методом парафинирования в поле отбирается специальная проба. Обычно в этой пробе содержатся обломки крупнее 2 мм, поэтому необходимо, отобрав отдельные обломки различных петрографических типов, высушить их до постоянной массы и рассчитать процентное содержание.
Расчет средневзвешенной плотности обломков в специальной пробе производится по формуле:
где а1, а2…аn - процентное содержание частиц крупнее 2 мм различного петрографического состава в специальной пробе; , … - плотность обломков различного петрографического состава в специальной пробе, г/см3.
Определив плотность специальной пробы (сс) и плотность частиц крупнее 2 мм в этой пробе , рассчитывают содержание мелкозема в слое грунта по формуле
,
где В - содержание частиц крупнее 2 мм в специальной пробе , равное А1+А2+…+Аn, %; - плотность специальной пробы , г/см3; - средневзвешенное значение плотности крупнообломочного материала в специальной пробе, г/см3.
По содержанию в породе крупных обломков и мелкозема рассчитывается плотность крупнообломочного материала с заполнителем в изучаемом слое грунта по формуле
где - средневзвешенное значение плотности крупнообломочного материала в массиве (слое) грунта, г/см3; - плотность мелкозема в массиве (слое) грунта , г/см3; В - содержание в породе частиц более 2 мм (по данным ситового анализа).
В полевых условиях плотность песчаных , крупнообломочных и вечномерзлых грунтов устанавливается путем непосредственного определения массы и объема. Для этого используют специальные деревянные или металлические шаблоны объемом не менее 8000 см3, задавливаемые в грунт. Чаще применяют т.н. метод шурфика (лунки). Для этой цели на поверхности земли или в дне шурфа выкапывается небольшой шурф объемом не меньше вышеуказанного. Весь грунт, извлеченный из шурфика, взвешивается и определяется его влажность . Объем грунта в условиях естественного залегания может быть определен несколькими способами. Применяя мягкую резиновую пленку , наполняют шурфик водой и по количеству воды в этой оболочке определяют объем. Возможно также использование сухого песка, который насыпается мерными цилиндрами до полного заполнения шурфика. Лучшие результаты дает применение калиброванного гравия, так как в случае его применения погрешность уменьшается за счет уплотнения при засыпке.
Определение гранулометрического состава ситовым методом:
Определение гранулометрического состава заключается в разделении грунта на фракции и установлении в пробе их процентного содержания. Анализ ситовым способом относится к прямым методам определения грансостава и является основным при его определении для несвязных грунтов. Сущность метода заключается в разделении грунта на фракции при помощи набора специальных сит.
В настоящее время для определения гранулометрического состава песчаных и гравелистых грунтов наиболее часто применяют стандартный набор сит размером 10, 7, 5, 3, 1.0, 0.5, 0.25, 0.1 мм. Сита с размером круглых отверстий 10, 7, 5, 3 и 1 мм обычно штампованные. При использовании сит с круглыми отверстиями производится пересчет на равноценные размеры квадратных отверстии путем деления диаметра на 1.25.
Для определения гранулометрического состава крупнообломочных грунтов используется способ грохочения на ситах. При этом способе фракции более 200 мм выделяются путем замера обломков измерительным калибром, а более мелкие - просеиванием через сита 200, 100, 70, 50, 20, 10 мм.
Сита размером 0.5, 0.25, 0.1 мм - сетчатые. Сетка латунная квадратного плетения.
Для испытания берут среднюю пробу воздушно - сухого грунта массой:
для мелкозернистых и среднезернистых песков…………………….100г;
для крупнозернистых песков………………………………………….500г;
для грунтов, содержащих гравий и гальку до 10%....................1000г;
от 10% до 30%................................................................................2000г;
более 30%..........................................................................................3000г;
для крупнообломочных пород…………….……………….от 5 до 50 кг и более.
Данные испытаний заносятся в журнал. Существует два вида ситового анализа с промывкой водой и без нее. Анализ с промывкой выполняют в том случае когда в образце содержится большое количество глинистых и пылеватых частиц. Для этого среднюю пробу воздушно - сухого грунта замачивают водой в фарфоровой чашке с добавлением 5 мл 5% - ного раствора аммиака. Через 10 - 15 минут пробу растирают резиновым пестиком и доливают слоем воды 30 - 40 мм. Суспензию вымучивают и дают настояться 10 - 15 сек, после чего сливают через сито с отверстием 0.1 мм. Операцию повторяют до полного осветления стекающей с сита воды. Частицы оставшиеся на сите помещают обратно в чашку, а промытую пробу высушивают в термостате.
Высушенный после промывки грунт просеивают через вышеуказанный набор сит. Остатки на каждом сите взвешиваются с точностью до 0.1 г. Процентное содержание на данном сите Х вычисляют до одного десятичного знака по формуле:
Х=100
где - масса остатка на сите, г; m - первоначальный вес навески, г.
Для контроля выполненного исследования необходимо суммировать массу частиц и сравнить из с начальной массой. Расхождения не должны превышать 1 % от первоначальной массы пробы. Потеря грунта разносится по фракциям пропорционально их массам.
Содержание частиц мельче 0.1 мм определяют по разности между общей массой навески и суммой масс более крупных фракций. В случае, если содержание фракции мельче 0.1 мм превышает 10 % , то разделение этой фракции на более мелкие производится одним из седиментометрических методов (пипеточный, Сабанина, ареометрический и др.).
При определении гранулометрического состава песчаных и гравелистых грунтов с малым содержанием пылеватых и глинистых частиц используют ситовой метод без промывки водой.
В указанных выше количествах берется средняя проба воздушно - сухого грунта, помещается в ступку и растирается резиновым пестиком.
Грунт в сухом состоянии просеивают, взвешивают остатки на ситах и рассчитывают содержание каждой фракции. Оформление результатов и расчет фракции производят как указано выше.
Определение гранулометрического состава крупнообломочных грунтов выполняется преимущественно в полевых условиях. При содержании в пробе более 10% глинистых и мелкопесчаных частиц и отсутствии воды для промывки пробы транспортируются к месту расположения лаборатории. Фракции мельче 20 мм определяются преимущественно в лабораторных условиях, независимо от количества глинистых частиц. При отсутствии в пробе грунта глинистых или агрегированных песчано-пылеватых частиц рассеивание выполняют всухую, через указанный набор сит при встряхивании или же на вибростоле.
При большом объеме пробы допускается ее просеивание (грохочение) по частям.
При содержании в породе глинистых или песчано - пылеватых частиц определение гранулометрического состава производят с промывкой водой. Промывку ведут до полного осветления воды. Массу частиц меньше 0.5 мм устанавливают по разности между первоначальной массой, и суммой масс всех фракции крупнее 0.5 мм оставшихся на ситах.
Определение гранулометрического состава частиц мельче 0.5 мм выполняют по одному из методов изложенных выше.
5.2.6 Топогеодезические работы
Инженерно-геодезические изыскания должны выполняться в порядке установленном действующим законодательными и нормативными актами Российской Федерации в соответствии с требованиями СниП 11-02-96 и СП 11-104-97.
Инженерно-геодезические изыскания для разработки рабочей документации, согласно СП 11-104-97 п. 8.5 должны обеспечивать получение дополнительных топографо-геодезических материалов и данных для доработки генерального плана, уточнения и детализации проектных решений.
При изысканиях необходимо выполнить:
- планово-высотную привязка трассы к пунктам государственной (опорной) геодезической сети;
- перенесение в натуру и привязку инженерно-геологических выработок.
Привязку выполняют относительно ближайших опорных пунктов и триангуляционных сетей. Плановая привязка должна производиться проложением теодолитных ходов. Между исходными пунктами, промерами трёх расстояний к постоянным предметам местности. Расстояние между пунктами не должно превышать 50м, а углы при определённой точке должны быть менее 30°. Высотная привязка выработки должна осуществляться техническим и тригонометрическим нивелированием от реперов. Точность планово-высотной привязки выработок относительно ближайших пунктов 0,5мм в плане и 0,1 по высоте.
По результатам выполненных инженерно-геодезических изысканий в соответствии с требованиями СниП 11-02-96 п. 5.18 должен быть составлен технический отчет и представлены:
- план трассы, включая планы топографической съемки на сложных участках в масштабах 1:500;
- абрисы привязок характерных точек трассы к элементам ситуации;
- ведомость координат и высот закрепительных знаков трассы;
- схемы закрепленной трассы
с определением координат на эллипсоиде WGS-84 и в Балтийской системе высот 1977 года.
5.2.7 Камеральные работы
Камеральные работы должны проводиться в два этапа:
1 этап - текущая обработка,
2 этап - окончательная обработка.
Текущая обработка материалов производится ежедневно на всем протяжении срока проведения полевых работ, в ходе которой уточняют геологическое строение участка, по данным буровых работ составляются геологические колонки, профили и разрезы, составление каталога координат и высот устьев геологических выработок.
По окончании полевых работ проводят окончательную обработку всех материалов. В состав основных камеральных работ входят:
- обработка материалов буровых, горнопроходческих и лабораторных работ;
- составление инженерно-геологических колонок выработок и разрезов;
-составление карты фактического материала.
Результатом проектируемых работ должно быть составление отчета. Состав и содержание выпускаемого технического отчета должны соответствовать требованиям СНиП 11-02-96 .
6. ГЕОФИЗИЧЕСКИЕ РАБОТЫ
Геофизические работы выполняются с целью изучения геоэлектрического разреза толщи грунтов до 10 - 15 м для проектирования заземлений опор ВЛ 500 кВ, выделения многолетнемерзлых пород по трассе и определения направления трещиноватости пород. Для решения поставленной задачи необходимо выполнить вертикальное электрическое зондирование и круговое вертикальное электрическое зондирование по двум азимутам четырехэлектродной симметричной установкой Шлюмберже (AMNB). Вертикальное электрическое зондирование отличается простотой проведения измерений и интерпретации, поэтому наиболее широко применяется для решения поставленной задачи. В процессе работы расстояние между питающими электродами и приемными линиями (разнос) постепенно увеличивается, тем самым увеличивается и глубина исследования. В результате зондирования построены кривые, которые характеризуют изменение удельных электрических сопротивлений (УЭС) с глубиной и полярные диаграммы КВЭЗ для трех полуразносов питающей линии. Значения длин питающей линии АВ/2 были приняты следующие: 1.5, 2.5, 3.0, 5.0, 6.0, 7.0, 10, 12, 15, 20, 25, 30, 40, 50, 60, 75. Приемная линия MN имела три фиксированных положения: M1N1 = 1.0 м, M2N2 = 10 м, M3N3 = 40 м. Переход с одной приемной линии на другую («ворота») были сделаны на разносах 12-15 м, 50-60 м. Такие размеры установки позволяют уверенно исследовать разрез на глубину 10-15 м.
При работе методом ВЭЗ для изучения верхней части разреза использовалась нестандартная сетка разносов АВ/2, заданная из условия 9 отчетов на один десятичный модуль. Подобный шаг плотнее, чем шаг рекомендуемый «Инструкцией по электроразведке». Однако в этом случае такая плотность измерений позволила повысить надежность получаемых материалов, и при этом появилась возможность корректировки кривых ВЭЗ, осложненными геоэлектрическими неоднородностями.
Питающие и приемные линии монтировались из провода ГСП эффективным сечением 0.5 мм2. В качестве питающих электродов применялись стальные электроды «штыри» длиной 1,2 м и диаметром 12 мм. В качестве приемных электродов использовались латунные электроды «шпильки» длиной 10-20 см и диаметром 10-15 мм.
В соответствии с Инструктивными требованиями выполнялись контрольные измерения (5% от общего объема ВЭЗ и составил 1 физ. наблюдение) в виде повторных измерений на ранее отработанной точке ВЭЗ-6, спустя двое суток. Достоверность результатов определялась по величине средней относительной погрешности, рассчитанной по формуле:
;
где сОСН. и сКОНТР. - основное и контрольное измерение.
Относительная погрешность наблюдений составила 4,3% при допустимой 5%.
Для устранения методических ошибок (кривизны размотки питающей линии, ошибок в длине (метке) разноса) и получения качественных результатов, расчет кажущегося сопротивления и построение кривой на билогарифмическом бланке с модулем 6,25 см производились параллельно с измерениями.
Кажущееся сопротивление рассчитывалось по стандартной формуле в полевых условиях:
k= K*U / I,
где U - разность потенциалов между приемными электродами MN, мВ;
I - ток в питающей линии АВ, мА;
К - коэффициент, зависящий от геометрии установки.
В качестве измерительных приборов использовался: автоэлектронный компенсатор АЭ-72.
Геофизические работы выполняются в соответствии с требованиями нормативных документов: РСН 64-87 Республиканские строительные нормы. Технические требования к производству геофизических работ. Электроразведка. Инструкция по электроразведке, изд. «Недра», 1984. ГОСТ 9.602-2005. Сооружения подземные. Общие требования к защите от коррозии, СП 11-105-97 Инженерно-геологические изыскания для строительства Часть VI Правила производства геофизических работ.
Методика обработки и интерпретации данных вертикального электрического зондирования
Обработка полевых данных ВЭЗ производится с помощью пакета программ интерактивной интерпретации данных электрических зондирований IPI2Win, разработанного на кафедре геофизики МГУ. В основу программы положена концепция профильной интерпретации. Таким образом, совокупность данных по профилю рассматриваются, как отражение строения геологического разреза по профилю в целом, а не как набор независимых кривых зондирований.
Первичная обработка полевых материалов включает в себя:
1. пересчет измеренных значений U в k;
2. построение и визуальный просмотр полученных кривых ВЭЗ;
3. сопоставление рядовых и контрольных кривых ВЭЗ с целью оценки погрешности измерений (рисунок 6.1);
Рисунок 6.1. Пример сопоставления рядовой и контрольной кривых ВЭЗ-4 (Уг.13 - Уг.14)
4. приведение сегментов кривых, полученных при различной длине приемной линии;
Редактирование кривых, удаление «ураганных» выбросов проводилось с целью устранения искажений, связанных с различными условиями заземления.
Интерпретация результатов вертикального электрического зондирования заключалась в выделении границ пород различной литологии и их состояния.
Качественная интерпретация
При качественной интерпретации в результате визуального анализа кривых определяется прежде всего число слоев в разрезе. Кривые КС классифицируются по числу слоев и соотношению их УЭС. Качественная интерпретация включает следующие этапы:
1. визуальный анализ разреза кажущегося сопротивления с целью изучения характера изменения электрических свойств разреза вдоль профиля на разных эффективных глубинах;
2. выделение зон с одинаковыми типами кривых;
3. анализ типов кривых зондирования, полученных на каждой точке и сопоставления их с данными, полученными на ближайших точках с целью оценки изменчивости типа геоэлектрического разреза;
4. выявление признаков искажений кривых ВЭЗ.
Одним из наиболее характерных и наиболее часто встречающихся признаков присутствия искажений от поверхностных неоднородностей является изменение уровня кривых зондирования, полученных в непосредственной близости друг от друга при сохранении их формы. Такой эффект наблюдается если неоднородность расположена вблизи приемной линии. В случаях наиболее существенных искажений кривых проводится приведение кривых ск к среднему уровню с нормализацией к базовому сегменту - той части всех кривых, которая наиболее выдержана для обеих кривых.
Количественная интерпретация
Количественная интерпретация кривых ВЭЗ ведется в рамках горизонтально-слоистой модели среды. Интерпретация проводится методом подбора кривой с использованием программы IPI2Win, разработанную кафедрой геофизики Геологического факультета МГУ, использующую принцип минимального числа слоев. В процессе интерпретации устранялись искажения, возникающие вследствие влияния Р- и С-эффектов. При регуляризации использовалась информация о глубине залегания геолого-литологических границ по данным бурения.
Стартовая модель для каждой точки выбирается исходя из видимого числа слоев в соответствии с типом кривых. Далее проводится подбор параметров (УЭС и мощности слоев) заданной модели с целью минимизации невязки полевой и теоретической кривых (рисунок 6.2). В процессе интерпретации, при необходимости, производится добавление или удаление слоев.
Рисунок 6.2. Пример интерпретации кривой ВЭЗ-6 в программе IPI2Win
(Уг.13 - Уг.14) или удаление слоев.
Результаты интерпретации вертикального электрического зондирования
Полученные кривые кажущегося сопротивления на исследуемых участках трассы имеют четырех-, пяти-, шестислойный вид (тип KН, KQ, НK, КНА, НКН, KНKН, НKНА). Смена типа кривых указывает на изменение состава пород как в плане, так и по глубине.
По результатам качественной и количественной интерпретации кривых ВЭЗ, выполненной в программе IPI 2win, построены разрезы: кажущегося сопротивления и геоэлектрические, которые показаны на рисунке 6.3. На представленном рисунке видно, в изучаемом разрезе принимают участие как низкоомные, так и высокоомные грунты (ск от 8 Ом.м до 6983 Ом.м на участке Уг.13 - Уг.14).
а)
б)
Рисунок 6.3. Результаты интерпретации по линии
ВЭЗ-5-4-3-2-1-6(Уг.13 - Уг.14)
а) качественной, б) количественной
При проведении количественной интерпретации электроразведочных материалов были использованы данные бурения. На чертеже - Продольный профиль ВЛ 500кВ участок ПК1008 - ПК1039 (Уг.13 - Уг.14) лист 3, 4 представлены результаты количественной интерпретации кривых ВЭЗ (значение удельного электрического сопротивления и глубина залегания слоя). В геоэлектрическом разрезе на изучаемом участке трассы Уг.13 - Уг.14, ПК 1013 - ПК 1040 (Рисунок 6.3) участвуют следующие слои:
- слой с удельным электрическим сопротивлением 15-79 Ом.м и мощностью 0.5-1.0 м характеризует деятельный слой на период изысканий;
- слой с удельным сопротивлением 79-566 Ом.м соответствует ИГЭ-12г, который по данным бурения представлен суглинками мерзлыми. Мощность слоя по результатам зондирования достигает 2,1 м. Физические свойства многолетнемерзлых пород определяются их температурой и другими природными факторами (литология, структура, текстура, пористость, водонасыщенность, минерализация подземных вод), которые оказывают на них существенное влияние. Поэтому удельное сопротивление пород в районах распространения многолетнемерзлых пород характеризуются большой изменчивостью;
- слой с удельным сопротивлением 8 - 34 Ом.м соответствует по данным бурения ИГЭ- 12, 12а, 12в которые представлены суглинками от твердых до текучих;
- слой с удельным сопротивлением 107 Ом.м соответствует ИГЭ-16в по данным бурения представлен супесями гравелистыми в талом состоянии, с удельным сопротивлением 294 Ом.м - мерзлом;
- слой с удельным сопротивлением 172 Ом.м соответствует ИГЭ-21 по данным бурения представлен щебенистыми грунтами с суглинистым заполнителем в талом состоянии и с удельным сопротивлением 172 Ом.м - мерзлом;
Анизотропия пород на участке Уг.13 - Уг.14 оценивается по данным круговых вертикальных электрических зондирований с применением симметричной четырехэлектродной установки. Породы обладают неодинаковой электропроводностью (сопротивлением) в различных направлениях, т.е. могут быть электрически анизотропными. Анизотропия обусловлена особенностями отложений, процессами метаморфизма, трещиноватостью, выветриванием, воздействием внешних физических полей и другими факторами. Анизотропия в той или иной степени проявляется во всех осадочных породах, которые в силу особенности своего образования состоят из чередования пропластков с различным сопротивлением. Такая система лучше проводит электрический ток по напластованию, чем в других направлениях. Даже в практически однородных осадочных отложениях за счет их текстурных особенностей, проявляющихся в преимущественной вытянутости пор по напластованию, наблюдается большая подвижность ионов и как следствие повышенная электропроводность в этом направлении. Трещиноватость является основной причиной, определяющей водопроницаемость пород. От нее зависят прочностные и деформационные свойства. Поэтому при обосновании проектов различных инженерных сооружений, при их строительстве и оценке воздействия на окружающую среду первостепенное значение имеет изучение трещиноватости. Трещиноватые горные породы как в зоне аэрации, так и полного водонасыщения представляют собой среду, в которой токопроводящие каналы ориентированы в плоскости трещин. При отсутствии какой-либо закономерности в распределении трещин (это наблюдается в толщах пород, затронутых выветриванием), нельзя говорить о характерной для них анизотропии (породы считаются изотропными). Анизотропия (а) рассчитывается по формуле:
а= pmax / pmin.
Величина анизотропии определяется коэффициентом анизотропии:
л (ка)=v pmax/pmin
Полярные диаграммы ск представляют собой эллипсы, большие оси которых ориентированы по простиранию господствующей системы трещин. Эта закономерность сохраняется как для проводящих трещин (заполненных глинистым материалом), так и для зияющих. Для трещиноватых пород отмечается временная нестабильность сопротивлений и коэффициентов анизотропии: после выпадения обильных осадков сопротивление понижается, а коэффициент анизотропии возрастает по мере того, как волна влажности перемещается вглубь массива.
По результатам круговых электрических зондирований построены полярные диаграммы (эллипсы анизотропии), которые показаны в приложении 15 и расчет анизотропии и коэффициента анизотропии, представленный в таблице 41.
Таблица 23
№ КВЭЗ |
Длина полуразноса питающей линии АВ/2 |
Значение кажущегося электрического сопротивления, Ом.м |
Анизотропия |
Коэффициент анизотропии |
||
по I направлению |
по I I направлению |
а=pmax/pmin |
л (ка)= v pmax/pmin |
|||
КВЭЗ-1 |
10 |
289,00 |
221,00 |
1,31 |
1,14 |
|
20 |
404,00 |
305,00 |
1,32 |
1,15 |
||
40 |
683,00 |
601,00 |
1,14 |
1,07 |
||
КВЭЗ-2 |
10 |
104,00 |
107,00 |
1,03 |
1,01 |
|
20 |
159,00 |
184,00 |
1,16 |
1,08 |
||
40 |
230,00 |
237,00 |
1,03 |
1,02 |
||
КВЭЗ-5 |
10 |
27,60 |
28,50 |
1,03 |
1,02 |
|
20 |
28,10 |
30,20 |
1,07 |
1,04 |
||
40 |
31,90 |
39,60 |
1,24 |
1,11 |
||
КВЭЗ-6 |
10 |
56,1 |
55,2 |
1,02 |
1,01 |
|
20 |
109,00 |
94,20 |
1,16 |
1,08 |
||
40 |
208,00 |
119,00 |
1,75 |
1,32 |
Из таблицы 23 и приложения 1 полярных диаграмм видно: анизотропия пород слабо, но имеет место на исследуемых участках трассы. Направление трещиноватости пород, на выбранных разносах питающей линии наблюдается: большие оси полярных диаграмм ориентированы по простиранию господствующей системы трещин.
В приложении 1 показаны типичные векторные (полярные) диаграммы ск. Эллиптичность диаграмм слабо возрастает с глубиной, что указывает на практически изотропную среду. Исключение составляет район точки КВЭЗ-1 и КВЭЗ-6. По данным КВЭЗ-6 величина эллиптичности полярных диаграмм (коэффициент анизотропии) возрастает до 1,32. Большая ось эллипса имеет широтное направление, совпадающее с направлением трассы.
В целом УЭС грунтов на изучаемом участке трассы (ниже сезонного слоя и островной мерзлоты) до глубины 5,0 м характеризуется значениями 8-34 Ом.м, что является благоприятным условием для устройства качественных заземлений опор ВЛ.
7. ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ
Охрана окружающей среды - это комплекс мер и мероприятий, направленный на обеспечение стабильного, первозданного состояния геологической среды, в которой протекает жизнедеятельность человека и которая определяет его благополучие и состояние.
Запроектированные виды работ оказывают наибольшее влияние на такой компонент геологической среды, как горные породы (грунты) и почвы. Дополнительными компонентами, прямо или косвенно влияющими на условия эксплуатации сооружений, которые необходимо учитывать при инженерно-геологических изысканиях, являются атмосфера, гидросфера, и растительность.
Необходимость учёта основных и дополнительных компонентов обусловлена общей взаимосвязью элементов экологической системы, когда изменение одного элемента приводит к изменению, порой, прогрессирующему, всей системы.
На проведение инженерно-геологических работ от органа по контролю за охраной природы будет получено специальное разрешение соответствующей формы.
Проектом предусматриваются мероприятия по охране геологической среды, которые будут направлены на охрану и рациональное использование земельной площадки, на сокращение загрязнения воздушной среды и понижение уровня шума.
Контроль за осуществлением этих мероприятий будет выполняться специальным отделом проектной организации. Основными мероприятиями, связанными с повышением мер по охране окружающей среды, являются:
внедрение прогрессивных технологических процессов;
более широкое использование нетрадиционных возобновимых источников энергии;
развитие комбинированного производства, обеспечивающего полное и комплексное использование природных ресурсов, сырья и материалов, исключающие или временно снижающие вредное воздействие на окружающую среду;
повышение действенного государственного контроля за состоянием природной среды и источниками загрязнений.
В данном проекте основными видами работ, оказывающими вредное воздействие на окружающую среду, являются - буровые и горнопроходческие работы. Для предупреждения загрязнения окружающей среды производственными отходами, предусматривается следующий комплекс мероприятий:
постоянный контроль и регулировка на буровой установке двигателя внутреннего сгорания с целью уменьшения загрязнения воздуха и улучшения экологической обстановки;
отработанные масла и прочие ГСМ, а также обтирочный материал собирается в специальные емкости и вывозится для сжигания;
все выработки, проходка которых завершена и которые выполнили своё назначение подлежат обязательной ликвидации, согласно действующим данным.
8. БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ
8.1 Основные неблагоприятные природные факторы условий труда
Участок работ расположен в пределах Ангаро-Ленского плато Средне-Сибирского плоскогорья, в междуречье рек Ангары и Ока. По характеру рельефа оно представляет собой холмистое, холмисто-грядовое густорасчлененное плато. Абсолютные отметки водораздельных пространств достигают 400 - 500м, при относительных превышениях 200 - 300м.
Для территории характерен резко-континентальный климат. Снежный покров устанавливается в ноябре и сходит в апреле, иногда в конце марта, хотя последний сходит в мае, а первый снег выпадает в октябре.
По данным многолетних наблюдений нормативная глубина сезонного промерзания равна 3,0м.
Наиболее высокие температуры приурочены к июлю - самому теплому месяцу, средняя температура которого составляет 18°С, а средняя температура воздуха самого холодного месяца (января) -40°.
Годовая сумма осадков в данном районе составляет 420мм. Твердые осадки выпадают с октября по апрель, жидкие с мая по сентябрь. Суточные максимумы осадков в основном повторяют распределение среднего годового количества осадков. Наибольшее количество осадков за сутки выпадает в летние месяцы. Что касается твердых осадков, то длительная безоттепельная зима способствует полному их сохранению и образованию мощного снежного покрова.
На исследуемой территории имеет распространение тайга, представленная кедровой сосной, елью, осиной, багульником. Животный мир разнообразен: медведи, волки, лисы, кабаны, совы, филины, рябчики, зайцы, лоси, из грызунов встречаются мыши полевки, белки, из пресмыкающихся встречаются гадюки, ужи, лягушки, мелкие ящерицы.
Описываемая территория относится к области с высокой энцефалитной опасностью.
Все намеченные полевые работы планируется проводить в летний период.
8.2 Основные опасные и вредные производственные факторы
Проектом предусматривается проведение следующих видов работ:
ь Сбор анализ и обработка материалов изысканий и исследований прошлых лет.
ь Рекогносцировочное обследование территории.
ь Топогеодезические работы.
ь Геофизические исследования.
ь Буровые и горнопроходческие работы.
ь Опробование.
ь Стационарные наблюдения за температурой грунтов
ь Лабораторные исследования грунтов.
ь Камеральные работы.
Перечень возможных опасных и вредных производственных факторов, для основных видов проектируемых работ, приведен в таблице 24.
Опасные и вредные производственные факторы
Таблица 24
Опасные и вредные производственные факторы |
Источники, места и причины возникновения опасных и вредных факторов |
Нормируемые показатели и их значения |
Основные средства защиты от вредных и опасных факторов |
|
1 |
2 |
3 |
4 |
|
Физические: |
||||
Оборудование, инструмент, шум, вибрация; |
Буровые работы |
- |
- ограждения; - соблюдения правил безопасности |
|
Повышенная или пониженная температура воздуха рабочей зоны |
Микроклимат помещения лаборатории и камеральной комнаты. |
L=21-23°C |
- вентиляция и очистка воздуха; - кондиционирование воздуха; - отопление; - автоматический контроль и сигнализации; - дезодорация воздуха |
|
Недостаточная освещенность рабочей зоны |
При работе в поле при проведении полевых испытаний. Камеральные работы. |
Е=200 Лк КЕО |
- источники света, осветительные приборы |
|
Химические: |
||||
Пары бензина |
Буровые работы |
ПДК бензина = 300мг/м3 |
защитный комбинезон, верхонки, сапоги кирзовые |
8.3 Организация работ по охране труда
Все вопросы по охране труда на предприятии решает «Отдел охраны труда», который следит за соблюдением условий труда в подразделениях. Сами подразделения уже следят за техникой безопасности при проведении инженерно-геологических изысканий в поле и в камеральной группе. В полевых условиях за технику безопасности отвечает начальник партии, в камеральной группе начальник подразделения.
Все работающие на геологоразведочных предприятиях независимо от их профессии, образования и стажа работы проходят инструктаж и проверку знаний по безопасности труда в установленном порядке.
Проверка знаний правил, норм и инструкций по технике безопасности руководящими работниками и специалистами проводится не реже одного раза в три года, а специалистами полевых сезонных партий и отрядов ежегодно перед выездом на полевые работы.
Основными документами по охране труда в поле являются:
1. План расположения выработок, утвержденный главным инженером и согласованный с местным Госгортехнадзором;
2. Маркшейдерская и геологическая документация;
3. Лицензия на право ведения горных работ;
4. Схема расположения лагеря;
5. Инструкция по ТБ по видам выполняемых работ (для рабочих);
6. Должностная инструкция (для ИТР);
7. Журнал приема / сдачи смены;
8. Журнал регистрации инструктажей на рабочем месте.
К документам по ТБ на буровой установке относятся: буровой журнал, акт приема буровой установки (БУ) в эксплуатацию, акт проверки буровой вышки (составляется 2 раза в месяц).
Эксплуатация электрооборудования производится в соответствии с техническим описанием и инструкцией по эксплуатации данного оборудования, а также действующими «Правилами техники безопасности при эксплуатации электроустановок потребителей».
Начальник отряда организует безопасное ведение работ, содержание рабочих мест, оборудования и помещений в соответствии с требованиями норм БЖД, санитарными и противосанитарными требованиями, соблюдение установленных режимов труда и отдыха для каждой категории работ, трудовой, производственной и технологической дисциплины. Так же он отвечает за правильное складирование и хранение материалов, инструментов и деталей, выдачу заданий с указанием места, состава и порядка проведения работ в строгом соответствии с проектом и контроль за качеством исполнения, соблюдения правил и инструкции по технике безопасности и производственной санитарии.
Полевые подразделения обеспечиваются: а) полевым снаряжением, средствами связи и сигнализации, коллективными и индивидуальными средствами защиты, спасательными средствами и медикаментами согласно перечню, утверждаемому руководителем предприятия, с учетом состава и условий работы; б) топографическими картами и средствами ориентирования на местности.
При проведении работ в районах, где имеются кровососущие насекомые (клещи, комары, мошки и т.д.), работники полевых подразделений должны быть обеспечены соответствующими средствами защиты (спецодежда, репелленты, пологи и др.).
Выезд полевого подразделения на полевые работы допускается только после проверки готовности его к этим работам. Состояние готовности оформляется актом, подписанным начальником партии, представителем профсоюзной организации, инженером по технике безопасности и утвержденным руководителем предприятия.
Все выявленные недостатки устраняются до выезда на полевые работы.
Руководители и специалисты, виновные в нарушении настоящих правил, несут личную ответственность независимо от того, привело или не привело это нарушение к аварии или несчастному случаю. Рабочие, не выполняющие требований по технике безопасности, изложенные в инструкциях по безопасным методам работ по их профессиям, привлекаются к ответственности.
В зависимости от тяжести допущенных нарушений и их последствий нарушители привлекаются к дисциплинарной, административной, материальной или уголовной ответственности в порядке, установленном законодательством.
8.4 Обеспечение работающих средствами индивидуальной защиты
Средствами индивидуальной защиты являются различные предметы снаряжения рабочих, предназначенные для защиты от вредных и опасных производственных факторов. К средствам индивидуальной защиты относятся спецодежда, спецобувь, рукавицы, предохранительные приспособления: каски, очки, чехлы для инструментов и др.
Выдача спецодежды, спецобуви и других средств индивидуальной защиты регламентированы «Отраслевыми нормами выдачи индивидуальных средств защиты»
Спецодежда, спецобувь и предохранительные приспособления рабочим и служащим должны выдаваться бесплатно и закрепляться за каждым работником на срок носки.
Средства индивидуальной защиты, предоставляемые некоторому производственному персоналу приведены в таблице 25:
Таблица 25
Профессия и должность работника |
Средства защиты |
Срок носки |
|
Главный геолог |
Костюм хлопчатобумажный |
1 на 2 года |
|
Плащ непромокаемый |
1 на 3 года |
||
Сапоги кирзовые |
1 пара на 2 года |
||
Главный инженер |
Костюм хлопчатобумажный |
1 на 2 года |
|
Плащ непромокаемый, |
1 на 3 года |
||
Сапоги кирзовые |
1 пара на 2 года |
||
Начальник экспедиции |
Костюм хлопчатобумажный |
1 на 2 года |
|
Плащ непромокаемый, |
1 на 3 года |
||
Сапоги кирзовые |
1 пара на 2 года |
||
Водитель автомобиля |
Сапоги кирзовые |
1 пара на 2 года |
|
Костюм хлопчатобумажный |
1 на 2 года |
||
Рукавицы комбинированные |
4 пары на 1 год |
||
Техник-геофизик |
Костюм хлопчатобумажный |
1 на год |
|
Ботинки кожаные |
1 пара на год |
||
Рукавицы комбинированные |
12 пар на год |
||
Плащ непромокаемый |
дежурный |
||
Машинист буровой установки |
Костюм брезентовый |
1 на год |
|
Сапоги кирзовые |
1 пара на год |
||
Рукавицы брезентовые |
12 пар на год |
8.5 Загазованность и запыленность воздуха рабочей зоны
Работы будут проводиться в полевых условиях. Источником загазованности будет являться работа автомобилей. В процессе работ могут выделяться следующие вредные газы: окислы азота, окись углерода, масла минеральные, сероводород, углеводороды (таблица 26). Для контроля за содержанием вышеперечисленных веществ в воздухе необходимо проводить отбор проб и сравнивать их с ПДК. Отбор проб следует производить во время подготовки машин к полевым работам на базе партии. При наличии в воздухе нескольких вредных веществ контроль воздушной среды проводится по наиболее опасным веществам.
Предельные концентрации вредных веществ рабочей зоны
Таблица 26
Наименование веществ |
Формула |
ПДК |
||
% по объему |
мг/м3 |
|||
Окислы азота (в пересчете на NO2) |
NO+NO2 |
0,00025 |
5 |
|
Углеродная окись |
CO |
0,0016 |
20 |
|
Масла минеральные (нефтяные) |
- |
- |
5 |
|
Сероводород |
H2S |
0,00066 |
10 |
|
Углеводороды в пересчете на С |
- |
- |
300 |
Концентрация вредных веществ на основных рабочих местах не должна превышать ПДК, т.к. при повышенной концентрации углеводородов у работающих возможно раздражение слизистых оболочек и кожи, головная боль. При повышенной концентрации эфиров: раздражение слизистой оболочки верхних дыхательных путей и глаз, поражение печени и почек.
Загрязнения возникают в основном при выделение паров дизельного топлива на основных рабочих местах, от газов возникающих при сгорании дизельного топлива.
8.6 Шум, вибрация, ионизирующие и неионизирующие излучения
В процессе бурения работники подвергаются воздействию повышенного уровня шума и вибрации, поэтому, буровая установка должна оснащаться коллективными средствами по снижению уровня шума и вибрации. Вследствие работы дизеля возникают шум и вибрация. Для уменьшения их вредных воздействий необходимо:
1. Строго соблюдать правила монтажа и крепления оборудования для предотвращения повышенного уровня шума и вибрации;
2. Регулярно осуществлять профилактические осмотры и плановые ремонты оборудования во избежание возникновения дополнительного шума вследствие повышенного износа деталей и узлов;
3. После ремонтов обязательно проводить контроль параметров шума и вибрации, не допускать эксплуатацию неисправного бурового оборудования
Нормы шума и вибрации приведены в таблицах №№ 27 и 28
Уровень звукового давления на буровой
Таблица 27
Уровни звукового давления (дБ), в октавных полосах со средне геометрическими частотами (Гц) |
|||||||||
ПДУ для буровых установок |
63 |
125 |
250 |
500 |
1000 |
2000 |
4000 |
8000 |
|
91 |
83 |
77 |
73 |
70 |
68 |
66 |
64 |
Предельно допустимые уровни виброскорости
Таблица 28
Вибрация |
Направление формирования вибрации |
Среднегеометрические частоты, Гц |
||||||||||
1 |
2 |
4 |
8 |
16 |
31,5 |
63 |
125 |
250 |
500 |
|||
Общая |
Вертикальное (по оси) |
20 132 |
7,1 123 |
2,5 114 |
1,3 108 |
1,1 107 |
1,1 107 |
1,1 107 |
1,1 107 |
_ |
_ |
|
Локальная |
По каждой оси |
_ |
_ |
_ |
5,0 120 |
5,0 120 |
3,5 117 |
2,5 114 |
1,8 111 |
1,3 108 |
0,9 105 |
Планируемое оборудование будет удовлетворять уровнем шума и вибрации нормативным актам: ГОСТ 12.1.003-01, СН 2.2.4/2.1.8.562-96, ГОСТ 12.1.012-01, Средства индивидуальной защиты от вибрации по методу контакта оператора с вибрирующим объектом, подразделяют на средства индивидуальной защиты рук, ног и тела оператора. При работе с буровой установкой предусматривается применение следующих средств индивидуальной защиты:
ь для рук: рукавицы, перчатки, полуперчатки, наладонники.
ь для ног: специальная обувь, стельки (вкладыши), наколенники.
ь для тела: нагрудники, пояса, специальные костюмы .
8.7 Безопасность производственных процессов
8.7.1 Электробезопасность
К электроустановкам на геологоразведочных работах предъявляются требования действующих ГОСТов, "Правил устройства электроустановок" (ПУЭ), "Правил технической эксплуатации электроустановок потребителей и Правил техники безопасности при эксплуатации электроустановок потребителей" (ПТЭ и ПТБ).
На производстве предусматривается буровая установка УРБ-2А2.
Будут проводится геофизические работы с применением электроразведки. Работы выполняются переносной аппаратурой на постоянном токе напряжение 35В и 1А
Получение электротравм возможно при работе с электрооборудованием в сырую погоду без средств защиты (диэлектрических перчаток, резиновых ковриков и.т.д.).
Безопасность геофизических работ обеспечивается применением следующих средств и методов защиты:
- защитное заземление;
- защитное отключение;
- изоляция токоведущих частей;
- знаки безопасности, средства защиты.
Защитное заземление или зануление обеспечивает защиту людей от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции.
Защитному заземлению или занулению подлежат металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты, обеспечивающих электробезопасность. Геофизическое оборудование подключается к электрической сети в соответствии с технической документацией по эксплуатации.
К обслуживанию электроустановок допускаются лица в соответствии с требованиями, изложенными в ПТЭ и ПТБ и в отраслевом "Положении о присвоении квалификационных групп по технике безопасности (электробезопасности) при эксплуатации электроустановок".
8.7.2 Обеспечение безопасности производственного оборудования, аппаратуры и инструмента
Материалы конструкции производственного оборудования должны обеспечивать безопасный режим работы предусмотренный условиями эксплуатации. Конструкция производственного оборудования и его отдельных частей исключает возможность их падения, опрокидывания и самопроизвольного смещения при всех предусмотренных условиях эксплуатации и монтажа (демонтажа). Движущиеся части производственного оборудования, являющиеся возможным источником травмоопасности, необходимо оградить так, чтобы исключалась возможность прикасания к ним. Конструкция производственного оборудования должна исключать самопроизвольное ослабление или разъединение креплений сборочных единиц и деталей, а также исключать перемещение подвижных частей за пределы, предусмотренные конструкцией.
Подобные документы
Инженерные изыскания — комплекс работ, проводимых для изучения природных условий района, участка, площадки, трассы проектируемого строительства. Геологические и инженерно-геологические карты и разрезы. Методы и стадии инженерно-геологических изысканий.
реферат [25,0 K], добавлен 29.03.2012Составление инженерно-геологического разреза участка строительства и его интерпретация. Анализ рельефа, горных пород и их свойств, подземных вод, инженерно-геологических процессов. Оценка физико-механических свойств грунтов исследуемой территории.
курсовая работа [18,6 K], добавлен 26.01.2014Описание физико-географических условий района, включающее орогидрографию, климат района и геологическое строение. Оценка инженерно-геологических условий на основе районирования территории. Методика и условия проведения инженерно-геологических изысканий.
дипломная работа [161,5 K], добавлен 30.11.2010Характеристика геологического строения, гидрогеологических и инженерно-геологических условий Самарской области. Рельеф и геоморфология. Комплексная инженерно-геологическая и топогеодезическая съемка. Буровые, гидрогеологические и горнопроходческие работы.
отчет по практике [1,7 M], добавлен 29.03.2015Оценка инженерно-геологических условий центральной части Нижнего Новгорода и составление проекта инженерно-геологических изысканий для выбора площадки строительства комплекса административных зданий на стадии "Проект". Порядок необходимых расчетов.
курсовая работа [362,3 K], добавлен 21.04.2009Общая характеристика климатологических особенностей района строительства. Исследование рельефа и геоморфологии участка строительной площадки, его геологическое строение и гидрогеологический состав. Изучение физико-механических свойств грунтов района.
контрольная работа [31,6 K], добавлен 07.08.2013Особенности инженерно-геологических изысканий при проектировании и строительстве магистральных трубопроводов на территории Северо-Западного Кавказа. Физико-географические условия трассы нефтепроводов Тенгиз - Астрахань - Чёрное море и Тихорецк - Туапсе.
дипломная работа [2,8 M], добавлен 09.10.2013Задачи и цели инженерно-геодезических изысканий для строительства автодорог. Камеральное и полевое трассирование. Развитие съемочных сетей теодолитными ходами. Тахеометрическая съемка вдоль трассы. Техника безопасности при закладке центров и марок.
дипломная работа [419,3 K], добавлен 01.05.2016Инженерные изыскания для строительства — работы, проводимые для комплексного изучения природных условий района, площадки, участка или трассы проектируемого объекта. Лицензирование в сфере инженерных изысканий. Перечень изыскательских видов работ.
практическая работа [26,1 K], добавлен 25.12.2014Исследование истории геологического развития Самарской области. Изучение тектонического строения и рельефа территории. Характеристика минералов и горных пород, основных сфер их применения. Анализ геологических условий строительства в пределах г. Самары.
отчет по практике [2,8 M], добавлен 21.02.2014