Рославльское нефтяное месторождение

Географическое и административное положение месторождения и экономическая характеристика района. Климатические условия месторождения. Литолого-стратиграфическая характеристика разреза. Эксплуатация скважин установками погружных центробежных насосов.

Рубрика Геология, гидрология и геодезия
Вид дипломная работа
Язык русский
Дата добавления 03.09.2010
Размер файла 756,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Общая толщина отложений березовской свиты составляет 159-168 м.

Ганькинская свита

Ганькинская свита завершает разрез отложений меловой системы. Свита представлена морскими глинами, серыми, реже светло-серыми с зеленоватым оттенком, известковистыми, алевритистыми, с редкими зернами глауконита, конкрециями сидерита, с обломками раковин моллюсков, растительным детритом. В породах свиты встречается фауна фораминифер маастрихт-датского возраста. Толщина отложений ганькинской свиты составляет 184-192 м.

Кайнозойская группа

Палеогеновая система

Отложения палеогеновой системы представлены тремя отделами: палеоценом, эоценом и олигоценом. В составе палеоцена выделяются талицкая свита и нижняя подсвита люлинворской свиты; в составе эоцена+олигоцена - средняя и верхняя подсвиты люлинворской свиты, тавдинская, атлымская, новомихайловская и туртасская свиты. Отложения нижней части палеогена в основном морские, в верхней части развиты прибрежно-морские и континентальные.

Талицкая свита

Талицкая свита представлена глинами темно-серыми, до черных, в нижней части с буроватым или зеленоватым оттенком, плотными, жирными на ощупь, неяснослоистыми, алевритистыми с включениями глауконита, с тонкими линзовидными прослоями глинистого алеврита и буровато-коричневого сидерита в верхней части. Встречаются мелкие пиритизированные растительные остатки, чешуйки рыб и включения пелеципод палеоценового возраста. Толщина отложений талицкой свиты в пробуренных скважинах Рославльского месторождения составляет 90-97 м.

Люлинворская свита

Люлинворская свита объединяет морские осадки нижнего и среднего эоценового отдела и сложена преимущественно глинами серыми, зеленовато-серыми, реже желтовато-зелеными, тонкоотмученными, алевритистыми. В нижней части глины часто опоковидные, с прослоями опок, реже глауконитовых песчаников; в средней - наравне с алевритистыми глинами присутствуют прослои диатомитовых глин, вверх по разрезу переходящие в прослои глинистых диатомитов. Толщина отложений люлинворской свиты 200-208 м. Вскрытый разрез в интервале глубин 0 -300500м в пробуренных скважинах каротажем не охарактеризован, поэтому детальное расчленение осадков эоцена, олигоцена и четвертичных отложений Рославльского месторождения приводится по аналогии с близлежащим Усть-Котухтинским месторождением, находящимся также по МСК в Центральной фациальной зоне по палеогену.

Тавдинская свита

Тавдинская свита (верхний эоценовый отдел) представлена глинами серыми, зеленовато- и голубовато-серыми, листоватыми, алевритистыми, жирными на ощупь, с прослойками алевритов и присыпками слюдистого, алевритового материала, с включениями растительных остатков и лигнитов.

Толщина осадков тавдинской свиты порядка 120-180 м.

Атлымская свита

Атлымская свита (нижний олигоценовый отдел) сложена песками серыми, мелко- и среднезернистыми, преимущественно кварцевыми, с прослоями бурого угля и глин серых, зеленовато-серых, алевритистых, содержащих в изобилии углистый детрит, включения растительных остатков, обломки лигнитизированной древесины. Толщина отложений атлымской свиты составляет 70-90 м.

Новомихайловская свита

Новомихайловская свита (средний олигоценовый отдел) представлена неравномерным переслаиванием серых, светло-серых, тонко- и мелкозернистых, кварцево-полевошпатовых песков с серыми и коричневато-серыми алевритами и глинами. Отложения свиты характеризуются наличием прослоев бурых углей, включениями растительных остатков, обилием углистого детрита и обломков лигнитизированной древесины.

Толщина осадков новомихайловской свиты достигает 90-100 м.

Туртасская свита

Туртасская свита (верхний олигоценовый отдел) сложена глинами и алевритами зеленовато-серыми, тонкослоистыми с прослоями кварцево-глауконитовых, тонко- и мелкозернистых песков и диатомитов. Толщина свиты составляет 40-70 м.

Четвертичная система

Район работ характеризуется наличием мощной толщи осадков четвертичного возраста, несогласно залегающих на отложениях туртасской свиты. Это осадки аллювиальных, озерно-аллювиальных, озерных фаций и современных отложений, представленных чередованием глины, песка, суглинка, алеврита, торфяников с включением растительного детрита. В основании разреза четвертичной системы встречаются галечник и валуны.

Глины зеленовато- и буровато-серые, вязкие, песчанистые. Песок серый, желтовато-серый, разнозернистый, кварцево-полевошпатовый. Суглинок легкий, алевритовый, алеврит глинистый. Толщина четвертичных осадков в районе работ достигает 50 м.

2.2. Тектоника

В геологическом разрезе Западно-Сибирской плиты выделяется три структурно-тектонических этажа. Нижний этаж - складчатый фундамент, сформировавшийся в палеозойское и допалеозойское время, соответствует геосинклинальному этапу развития.

В скважине 14Р Рославльского месторождения, доюрский фундамент вскрыт на глубине 3594м, и представлен туфами эффузивов кислого состава сильно дислоцированными и карбонатизированными. Вскрытая толщина пород составила 113м.

Промежуточный структурный этаж (ПСЭ) сопоставляется с отложениями пермо-триасового возраста и характеризует собой парагеосинклинальный этап в истории развития плиты, формирование которого происходило в погруженных частях фундамента. Сейсморазведочными работами на Рославльском месторождении отложения ПСЭ не изучены, по данным бурения скв. 14Р он представлен корой выветривания толщиной 24м.

Верхний структурно-тектонический этаж сложен мощной толщей мезозойских и кайнозойских образований, накопившихся в условиях длительного и стабильного прогибания фундамента. Этот этаж, или собственно осадочный чехол плиты, является объектом детального изучения на современном этапе, т.к. с ним связаны все основные скопления УВ в Среднем Приобье.

Согласно «Тектонической карты мезозойско-кайнозойского ортоплатформенного чехла Западно-Сибирской геосинеклизы» Рославльское месторождение приурочено к одноименной структуре III порядка, расположенной в пределах Южно-Гаяновского малого прогиба - средней структуры II порядка, которая в свою очередь осложняет Новоаганский крупный прогиб - крупную структуру II порядка.

Новоаганский крупный прогиб разделяет Варьеганский крупный вал - на востоке, Нижневартовский свод - на юге, Курраганский структурный мыс и Средневатьеганский малый вал - на западе и Вэнгапурский крупный вал - на севере.

Рославльская структура выявлена и подготовлена к глубокому бурению сейсморазведочными работами МОВ ОГТ в 1:50000 масштабе (сп 6/84-85 и 80/84-85).

Последними сейcморазведочными работами МОВ ОГТ 2D (сп 5/01-02, 7/02-03) масштабов 1:50000 и 1:25000 изучено и уточнено строение территории лицензионного участка по отражающим горизонтам: А (подошва осадочного чехла), ТЮ10 (нижняя юра), ТЮ2 (средняя юра), Ю1, Б (верхняя юра), НБВ8, М (нижний мел), С (верхний мел).

Структурный план доюрского основания изучен по отражающему горизонту А, по которому, в контуре замкнутой изогипсы -3500м выделяется Рославльская антиклинальная складка, представляющая собой относительно крупную многокупольную структуру сложной конфигурации субмеридионального простирания размерами 11?1.5?8км, разбитую серией тектонических нарушений на блоки северо-западного и северо-восточного простирания. Амплитуда поднятия 87 м. В пределах этой структуры четко выделяется три локальных поднятия: собственно Рославльское, Северо-Рославльское и Малорославльское. Каждое из этих локальных поднятий оконтурено сейсмоизогипсой -3460м. Наиболее крупным из них является Рославльское л.п., в пределах сейсмоизогипсы -3460м имеет размеры 4.9?0.854?8км и амплитуду 47м, осложнено тремя незначительными куполами. Северо-Рославльское л.п. в пределах сейсмоизогипсы -3460м имеет размеры 1.55?1.25км, амплитуду 22м. Малорославльское л.п. в пределах сейсмоизогипсы -3460м осложнено двумя куполами, имеет размеры 2.85?0.5?1км и амплитуду 11м. По разным направлениям углы падения крыльев этой довольно сложной складки различны. В юго-восточном и юго-западном погружениях углы наклона наиболее крутые и составляют соответственно 5? и 6?20???. Южное и северное погружения более пологие, углы падения не превышают 2?50?.?? Северное крыло структуры разделяется на два заливообразным прогибом.

Среднеюрский сейсмостратиграфический комплекс (ССК), ограниченный в кровле отражающим горизонтом ТЮ2, контролирует строение регионально нефтеносного пласта ЮВ2 тюменской свиты, структурный план по которому в более пологом виде повторяет рельеф доюрского основания.

Рославльская антиклинальная складка по ОГ ТЮ2 уменьшилась в размерах, ранее входящее в ее состав Малорославльское поднятие локализовалось, отделившись от Рославльского поднятия неглубоким прогибом. Малорославльское локальное поднятие в пределах сейсмоизогипсы -2925м имеет размеры 1.5?1.25км? Собственно Рославльское совместно с Северо-Рославльским л.п. по кровле пласта ЮВ2 оконтуривается сейсмоизогипсой -2925м и имеет размеры 6.8?1.25?4.4км, высоту 23м. Северо-Рославльское поднятие приобретает вид структурного носа с вершиной, оконтуренной сейсмоизогипсой -2920м.

Накопление песчаников контролировалось палеоструктурными элементами и хорошие коллекторы развиты в пределах палеоподнятий. Установлена явная связь амплитуд отражения волн ТЮ2 с характером насыщения пласта, а именно, максимальные амплитуды приурочены к нефтенасыщенным зонам пласта, минимальные - к зонам водоносным по данным ГИС.

В верхнеюрском ССК был прослежен отражающий горизонт Ю1, который в структурном плане характеризует строение верхнеюрских песчаников васюганской свиты, перекрытых георгиевскими и баженовскими битуминозными аргиллитами. В общих чертах наблюдается унаследованность структурного плана по горизонту Ю1 от нижележащего отражающего горизонта ТЮ2.

Структурная карта по кровле продуктивного пласта ЮВ1, построенная на основе структурного плана по отражающему горизонту Ю1, позволила уточнить и детализировать строение залежи нефти в пределах Рославльского и Северо-Рославльского поднятий. Само поднятие оконтуривается сейсмоизогипсой -2845м, а по изогипсе -2850м раскрывается в направлении Малорославльского поднятия. Малорославльское поднятие в контуре сейсмоизогипсы -2845м имеет размеры 2.45?1.6км. В пределах изогипсы -2845м Рославльское поднятие совместно с Северо-Рославльским имеет размеры 6.35?1.4?4.7км, амплитуду 23м. По-прежнему Северо-Рославльское поднятие вытянуто в северном направлении и имеет форму структурного носа и самостоятельно оконтуривается по изогипсе -2840м. Наблюдается дальнейшее выполаживание структуры: углы падения крыльев в северо-западном погружении 1?34??? по другим направлениям не превышают 30?. Рославльское поднятие представляет собой антиклинальную складку субширотного простирания, заполненную нефтью до замка ловушки.

Отражающий горизонт Б является основным опорным репером и контролирует кровлю верхнеюрских отложений баженовской свиты в пределах Рославльского поднятия. В контуре сейсмоизогипсы -2820м Рославльское поднятие представляет собой антиклинальную складку неправильной конфигурации, субширотного простирания, осложненную тремя куполами. Самый крупный центральный купол (2.65?0.95км), расположенный в районе скважины 11Р и оконтуренный изогипсой -2805м. По сейсмоизогипсе -2815м он объединяется с западным и южным малоразмерными куполами. Размеры Рославльского поднятия в пределах сейсмоизогипсы -2820м 8.5?1.5?7.5 км, амплитуда 24м.

Нижнемеловые отложения охарактеризованы отражающим горизонтом НБВ8, на котором нашли свое отображение в более пологом виде, выделенные ранее по нижележащим горизонтам все структурные элементы.

Основной интерес в нефтеносном отношении в разрезе неокомского ССК представляют отложения мегионской свиты, в верхней части которой выделяется шельфовый пласт БВ8, являющийся основным продуктивным пластом на Рославльском месторождении и на смежных площадях (Покачевское, Егурьяхское, Западно-Варьеганское и др. месторождения). На Рославльском месторождении клиноформное строение мегионской свиты выражено не так ярко, как на более западных площадях, что связано, возможно, с высокой тектонической активностью территории, в результате которой изменилось направление привноса осадков и происходило встречное наложение отложений.

В палеоструктурном плане Рославльское поднятие по горизонту НБВ8 представляет собой антиклинальную складку неправильной формы, северная и юго-западная части которой, осложняются заливообразными прогибами. Размеры Рославльского поднятия по изогипсе -2525м 4.35?0.7?3.1км, высота 9м. Основной источник сноса находился на востоке, на восточном склоне и в южной присводовой части накапливались массивные песчаники, а на западе, в зоне затишья, пласт сильно расчленен прослоями глин. В северной части поднятия по изогипсе -2540м выделяется структурный нос, протяженностью 1.75км, а в южном направлении по изогипсе -2530м Рославльское поднятие раскрывается и объединяется с Малорославльским и Южнорославльским локальными поднятиями.

В силу специфических условий формирования неокомских отложений, а также по данным поисково-разведочного бурения (скв.11Р, 13Р, 18Р, 30Р и 37Р), пласт БВ8 имеет сложное строение, состоит из трех пластов БВ8/1(нефтеносный), БВ8/2 (преимущественно водоносный) и БВ8/3 (водоносный). Сложное строение пласта БВ8/1 обусловлено чередованием слабо выдержанных по площади и в разрезе песчаных и глинистых прослоев, а также колебаниями ВНК по скважинам. В свою очередь в пласте БВ8/1 выделяется три объекта: БВ8/1-0; БВ8/1-1 и БВ8/1-2+3, изолированных друг от друга глинистыми перемычками. Следует отметить, что в момент накопления пласта БВ8/1-1 Рославльское поднятие испытало относительный подъем, в результате которого пласт БВ8/1-1 оказался размытым в наиболее приподнятой части этого поднятия, а на его склонах сформировались две песчаные линзы, к которым приурочены залежи нефти структурно-литологического типа. При прогнозе перспективных объектов проведены динамический и сейсмофациальный анализы, на основании которых по динамическим характеристикам выделены предполагаемые границы замещения пласта, т.е. песчаные пласты, сформировавшиеся в районе скважины 30Р (ранее Северо-Рославльское локальное поднятие), гидродинамически изолированы от основной залежи. Однако, приведенные границы замещения являются спорными, т.к. проследить их по разрезам невозможно. По нашему мнению, здесь предполагается зона отсутствия коллекторов между основной залежью и районом скв.30, проведенная на расстоянии одной трети между скважинами с различными значениями ВНК. Чтобы доказать это предположение, необходимо провести дополнительные исследования, в первую очередь сейсморазведочные работы 3Д на всей площади Рославльского месторождения, а также гидродинамические, что позволит обоснованно выделить участки с разным уровнем ВНК и с некоторыми особенностями строения пласта.

Вышележащие апт-альб-сеноманский и верхнемеловой ССК, изученные по отражающим горизонтам М и С, интереса в нефтепоисковом отношении не представляют.

По отражающему горизонту М происходит дальнейшее выполаживание и расформирование структуры. Рославльское поднятие представляет собой брахиантиклинальную складку субширотного простирания оконтурено по сейсмоизогипсе -1885м, имеет размеры 1.6?0.7км, амплитуду 7м.

По отражающему горизонту С площадь работ представляет собой моноклиналь северо-восточного падения, осложненную структурными носами и заливами.

Основные тектонические элементы были сформированы к концу палеозоя и началу мезозоя и унаследованно развивались в течение всего мезозойско-кайнозойского периода. Существенных структурных перестроек в ходе геологической истории не наблюдалось, практически все поднятия и прогибы сохраняются на своих местах, лишь несколько меняя свои очертания и закономерно уменьшая амплитуды с течением времени. Значительная перестройка палеоподнятий произошла в верхнемеловое время (горизонт С). К этому времени произошло полное расформирование палеоподнятий, район работ трансформировался в моноклиналь, осложненную структурными носами и заливами.

3 ТЕХНИКО - ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ

3.1 Технология добычи нефти УЭЦН

Эксплуатация скважин установками погружных центробежных насосов (УЭЦН), относящихся к классу бесштанговых, является в настоящее время основным способом добычи нефти в России. Установки электроцентробежных насосов (УЭЦН) применяют в скважинах для откачки пластовой жидкости.

Область применения УЭЦН - это высокодебитные обводненные, глубокие и наклонные скважины с дебитом 10 1300 м3/сут и высотой подъема 5002000м.

Условия применимости УЭЦН по перекачиваемым средам: жидкость с содержанием механических примесей не более 0,5 г/л, свободного газа на приеме насоса не более 25%; сероводорода не более 1,25 г/л; воды не более 99%; водородный показатель (рН) пластовой воды в пределах 68,5. Температура в зоне размещения электродвигателя не более +90оС (специального теплостойкого исполнения до +140С).

Установки УЭЦНМ и УЭЦНМК имеют следующие преимущества:

· возможность более точного подбора оборудования к технологическим режимам скважины и последовательное обеспечение работы оборудования в режимах, близких к оптимальным;

· повышенные параметры надежности;

· снижение энергетических затрат за счет оптимального подбора установки к конкретным параметрам скважин;

· расширение области применения по газосодержанию на приеме насоса за счет использования насосного газосепаратора.

Установка состоит из подземного оборудования, кабельной линии и наземного электрооборудования (рис. 2.1).

Подземное оборудование, спускаемое в скважину на насосно-компрессорных трубах, включает в себя погружной электродвигатель, гидрозащиту и центробежный насос, над которым устанавливается обратный и сливной клапаны.

Кабельная линия служит для подвода напряжения к двигателю, состоит из основного питающего кабеля и плоского удлинителя с муфтой. Кабель прикреплен к гидрозащите, насосу и насосно-компрессорным трубам металлическими поясами.

Оборудование устья скважины обеспечивает подвеску колонны насосно-компрессорных труб с насосным агрегатом и кабелем на фланце обсадной колонны, герметизацию затрубного пространства, отвод пластовой жидкости в трубопровод.

Насос (ЭЦНМ) - погружной центробежный модульный многоступенчатый вертикального исполнения.

Насосы подразделяют на три условные группы - 5; 5А и 6. Диаметры корпусов группы 5- 92 мм, группы 5А - 103 мм, группы 6 - 114 мм.

Рабочие колеса свободно передвигаются по валу в осевом направлении и ограничены в перемещении нижним и верхним направляющими аппаратами. Осевое усилие от рабочего колеса передается на нижнее текстолитовое кольцо и затем на бурт направляющего аппарата. Частично осевое усилие передается валу вследствие трения колеса о вал или прихвата колеса к валу при отложении солей в зазоре или коррозии металлов. Крутящий момент передается от вала к колесам латунной (Л62) шпонкой, входящей в паз рабочего колеса. Шпонка расположена по всей длине сборки колес и состоит из отрезков длинной 400-1000 мм.

Направляющие аппараты сочленяются между собой по периферийным частям, в нижней части корпуса они все опираются на нижний подшипник и основание, а сверху через корпус верхнего подшипника зажаты в корпусе.

Газосепараторы ЭЦН Для откачивания пластовой жидкости, содержащей у сетки входного модуля насоса свыше 25 % (до 55 %) по объему свободного газа, к насосу подсоединяется модуль насосный - газосепаратор. Газосепаратор устанавливается между входным модулем и модулем-секцией. Наиболее эффективны газосепараторы центробежного типа, в которых фазы разделяются в поле центробежных сил. При этом жидкость концентрируется в периферийной части, а газ - в центральной части газосепаратора и выбрасывается в затрубное пространство. Газосепараторы серии МНГ имеют предельную подачу 250500 м3/сут, коэффициент сепарации 90%, массу от 26 до 42 кг. Погружные электродвигатели ПЭД - погружные трехфазные коротко замкнутые двухполюсные маслонаполненные обычного и коррозионно-стойкого исполнения унифицированной серии ПЭДУ и в обычном исполнении серии ПЭД модернизации Л (рис.2.2). Гидростатическое давление в зоне работы не более 20 МПа. Номинальная мощность от 16 до 360 кВт, номинальное напряжение 5302300 В, номинальный ток 26122,5 А. Гидрозащита двигателей ПЭД предназначена для предотвращения проникновения пластовой жидкости во внутреннюю полость электродвигателя, компенсации изменения объема масла во внутренней полости от температуры электродвигателя и передачи крутящего момента от вала электродвигателя к валу насоса. Гидрозащита состоит либо из одного протектора, либо из протектора и компенсатора. Могут быть три варианта исполнения гидрозащиты.

Рисунок 3.2 - Электродвигатель серии ПЭДУ:

1 - соединительная муфта; 2 - крышка; 3 - головка; 4 - пятка; 5 - подпятник; 6 _ крышка кабельного ввода;7 - пробка; 8 - колодка кабельного ввода; 9 - ротор; 10 - статор; 11 - фильтр; 12 - основание.

Кабельная линия представляет собой кабель в сборе, намотанный на кабельный барабан. Кабель в сборе состоит из основного кабеля - круглого КПБК (кабель, полиэтиленовая изоляция, бронированный, круглый) или плоского - КПБП (рис. 2.3), присоединенного к нему плоского кабеля с муфтой кабельного ввода (удлинитель с муфтой).

Кабель состоит из трех жил, каждая из которых имеет слой изоляции и оболочку; подушки из прорезиненной ткани и брони. Три изолированные жилы круглого кабеля скручены по винтовой линии, а жилы плоского кабеля - уложены параллельно в один ряд.

Рисунок 3.3 - Кабели:

а - круглый; б - плоский; 1 - жила; 2 - изоляция; 3 - оболочка; 4 - подушка; 5 - броня

Кабель КФСБ с фторопластовой изоляцией предназначен для эксплуатации при температуре окружающей среды до+160оС.

Система термоманометрическая ТМС - 3 предназначена для автоматического контроля за работой погружного центробежного насоса и его защиты от аномальных режимов работы (при пониженном давлении на приеме насоса и повышенной температуре погружного электродвигателя) в процессе эксплуатации скважин. Имеется подземная и наземная части.

Диапазон контролируемого давления от 0 до 20 МПа. Диапазон рабочих температур от 25 до 105оС. Масса общая - 10,2 кг.

Комплексная трансформаторная подстанция погружных насосов - (КТППН) предназначена для питания электроэнергией и защиты электродвигателей погружных насосов из одиночных скважин мощностью 16125 кВт включительно. Номинальное высокое напряжение 6 или 10 кВ, пределы регулирования среднего напряжения от 1208 до 444 В (трансформатор ТМПН100) и от 2406 до 1652 В (ТМПН160). Масса с трансформатором 2705 кг.

Комплектная трансформаторная подстанция (КТППНКС) предназначена для электроснабжения, управления и защиты четырех центробежных электронасосов с электродвигателями 16125 кВт для добычи нефти в кустах скважин, питания до четырех электродвигателей станков-качалок и передвижных токоприемников при выполнении ремонтных работ. КТППНКС рассчитана на применение в условиях Крайнего Севера и Западной Сибири.

3.2. Анализ наработки на отказ применяемых ЭЦН в ОАО «Аганнефтегазгеология» НК «Русснефть» по заводам - изготовителям

Рассмотрим сравнительную наработку на отказ отечественных и зарубежных насосов. Как видно из диаграммы на рис.2.4, на предприятии используются ЭЦН различных отечественных и зарубежных фирм-производителей: «Борец», «Новомет», «Лемаз», «Алнас», Centrilift, Schlumberger и др.

Рисунок 3.4 - Анализ наработки на отказ по заводам - изготовителям

Анализ приведенной диаграммы показал наибольшую эффективность наработки на отказ зарубежных насосов по сравнению с отечественными. Наибольшая наработка на отказ наблюдается у фирмы Schlumberger - 1524 сут. Из отечественных насосов самая высокая наработка на отказ - Борец и Алмаз -326 и 299 суток соответственно.

Рисунок 3.5- Анализ наработки на отказ нового оборудования по отечественным заводам -изготовителям

Анализ наработки на отказ нового оборудования по отечественным заводам изготовителям показал высокий рост таких отечественных производителей насосов как Алмаз и Борец.

Рисунок 3.6 - Наработка на отказ импортных УЭЦН
по пластам на 01.01.07 г.

Увеличивается наработка на отказ импортных УЭЦН по пластам от 250 до 821 сут., что показывает эффективность использования импортных насосов по сравнению с отечественными.

Рисунок 3.7 - Причины отказов УЭЦН.

Наименьший процент составляет бесконтрольная эксплуатация 0,8 - 1%. От 10 - до 12% отказов УЭЦН составили причины по ГТМ и коррозии оборудования. От 4 до 9% наработка на отказ составляет по некачественным СПО.

Проведем сравнительный анализ применения импортных и отечественных УЭЦН двухопорного исполнения на фонде скважин в 2007 г. (табл. 3.1., 3.2).

Общее количество скважин в фонде на 01.01.2007г. составило 62 скважины, из них по пластам распределение следующее:

Пласт Б8 - 27 скважин;

Пласт Ю - 35 скважин.

Как видно из таблицы 2.1, самое большее количество наработки на отказ - 821 суток приходится на фонд скважин с УЭЦН, работающих на пластах группы Б8. Наименьшее количество суток отработано на скважинах пласта Ю -250 суток.

Планируемое к применению оборудование в течение 2007 года составило 47 скважины, в т.ч. ремонтное - 37, закупка нового оборудования -10 единиц.

Таблица 3.1 - Наработка на отказ при использовании импортных УЭЦН

Пласт

Наработка на отказ, сут.

Фонд скважин на 1.01.07

Ожидаемое количество отказов в 2007 г.

Планируемое к применению оборудование в течении 2007 г.

Б8

821

27

5

19

Ю

250

35

41

28

Итого:

62

46

47

Ремонтное

37

Закуп

10

Из проведенного анализа следует, что количество отказов при использовании импортных УЭЦН увеличивается по сравнению с ожидаемыми показателями по пластам.

В табл.3.2 показан расчет количества отказов при использовании отечественных УЭЦН специального исполнения. Как видно из данных таблицы, наработка на отказ УЭЦН специального исполнения такая же, как и импортных УЭЦН - на скважинах пласта Б8 - 556 суток, что на 309 суток больше самого низкого показателя наработки на отказ по пласту Ю.

Таким образом, можно сделать вывод о том, что количество отказов растет при использовании отечественных УЭЦН специального исполнения, по сравнению с импортными УЭЦН.

Таблица 3.2 - Наработка на отказ при использовании отечественных УЭЦН специального исполнения

Пласт

Наработка, сут.

Фонд на 1.01.07

Ожидаемое количество отказов в 2007 г.

Планируемое к применению оборудование в течении 2007 г.

Б8

556

27

12

19

Ю

147

35

54

28

Итого:

62

66

47

Таким образом, по результатам анализ работы механизированного фонда скважин в ОАО «Аганнефтегазгеология» можно сделать вывод о том, что наработка на отказ по заводам - изготовителям в среднем изменяется от 150 до 1500 суток; по пластам в среднем составляет 360-400 суток с учетом использования импортных ЭЦН.

Увеличения наработки на отказ по фонду добывающих скважин можно ожидать за счет оптимизации работы скважин, оборудованных УЭЦН.

Следует обратить особое внимание на работу погружного оборудования УЭЦН в условиях повышенного выноса мехпримесей, АСП-отложений, повышенного газосодержания на приеме ЭЦН.

3.3 Мероприятия по улучшению работы УЭЦН

Поскольку основным способом нефтедобычи на Рославльском месторождении является добыча при помощи УЭЦН, то необходимость проведения мероприятий по улучшению работы скважин и защите УЭЦН от вредного влияния газа, механических примесей, а также от агрессивной продукции скважин является мероприятиями первостепенной важности.

Проводя эти мероприятия, предприятие не только продлевает срок службы оборудования, но и получает дополнительную добычу нефти.

Защита скважинного оборудования от механических примесей и вредного влияния газа осуществляется с помощью установки на приёме насоса газового и песочного якорей, а так же применения износостойкого оборудования, которое позволяет установке надежно работать при довольно высоком выносе механических примесей.

Для борьбы с газом в ОАО «Аганнефтегазгеология», как и во многих других предприятиях, используются газосепараторы различных конструкций. Чаще всего используют газосепараторы фирмы «Алнас».

Модуль газосепаратор специальный МГСБТ5, МГСБТ5А (рис. 3.8) предназначен для обеспечения работы погружных центробежных насосов при откачке из нефтяных скважин пластовой жидкости с повышенным газосодержанием и восприятия осевых сил, действующих на валы секций насоса.

Модуль предназначен для комплектации насосов без осевых опор вала в секциях. Может использоваться для комплектации насосов с осевыми опорами вала в секциях и поставляться как самостоятельное изделие.

В модуле обеспечен осевой вход откачиваемой среды.

Вал модуля имеет диаметр 20 мм (в габарите 5) и 22 мм (в габарите 5А). Вал снабжен осевой опорой, выполненной из конструкционной керамики - карбида кремния, и радиальными опорами, выполненными из твердого сплава.

Различные исполнения модуля обеспечивают соединения с секцией насоса типа «болт-тело» по шести или восьми точкам и валами диаметром 17 мм и 20 мм (в габарите 5), и валами диаметром 17 мм, 20 мм и 22 мм (в габарите 5А).

Комплектуется шлицевыми муфтами для соединения с валами насоса и протектора гидрозащиты. Борьба с коррозией подземного оборудования в ОАО «Аганнефтегазгеология» заключается, в основном, в применении оборудования коррозионно-защитного исполнения. В течение прошедшего года формировались фонды скважин, осложненных коррозией. Для этого просматривались дефектовки насосов, акты ревизии НКТ, данные лаборатории по кислотности среды и минерализации. Для борьбы с АСПО на месторождении используют магнитные активаторы, а также подача ингибиторов с помощью специальных дозаторов. Рассмотрим эти мероприятия подробнее.

3.3.1 Измельчающее устройство ЭЦН

Для улучшения работы УЭЦН в условиях повышенного выноса механических примесей в ОАО «Аганнефтегазгеология» предлагается применить следующее приспособление - измельчающее устройство, которое позволит устранить причину отказов ЭЦН из-за попадания в его рабочие органы механических примесей ИМ -НМС (рис.3.9).

Рисунок 3.9 - Общий вид измельчителя мехпримесей ЭЦН

Измельчитель механических примесей предназначен для разрушения и измельчения механических примесей, находящихся в откачиваемой жидкости. ИМ устанавливается на нижний опорный подшипник УЭЦН.

Измельчающее устройство монтируется в приемной части насоса и состоит из шнека 4, пружины 5, неподвижного диска 2, кулачка 9, кольца 3, ножей 6. При вращении вала насоса 1 кулачок 9 упирается в пружину 10 и приводит во вращение кольцо с ножами 6 (рис.3.10).Ножи измельчают сравнительно нетвердые включения, например, кусочки парафина, смолистых отложений, а также волокнистые образования. Размельчение этих примесей происходит за один оборот вала. Если же в потоке жидкости встречается не поддающееся размельчению твердое тело, вращение ножей прекращается из-за упора одного из них в это твердое тело.

Вал насоса вместе с кулачком начинает проворачиваться относительно кольца 3, преодолевая усилие пружины. Кулачок и пружина поочередно приводят ножки в возвратно-поступательное движение в радиальном направлении при помощи направляющих пазов 8. Зубцы ножей при этом работают как пилы. Шнек обеспечивает проталкивание частиц через диск 2, имеющий отверстия 7 диаметром 2 мм.

Рисунок 3.10- Измельчающее устройство ЭЦН

1-вал ЭЦН; 2-диск; 3-кольцо; 4-шнек; 5,10-пружина; 6-ножи; 7-отверстия; 8-направляющие пазы; 9-кулачок.

В 2006 году внедрено пять УЭЦН с измельчителем механических примесей в скважинах со средней наработкой на отказ 72 суток. Из них отказало пять установок по причине снижения изоляции системы кабель-ПЭД со средней наработкой 101,7 суток. При дефектации оборудования выявлены твердые отложения и износ рабочих органов ЭЦН. В работе осталась одна установка с текущей наработкой 246 суток.

3.3.2 Комплект песочного якоря с противополетным оборудованием

Для снижения попадания механических примесей в ЭЦН предлагается комплект противополетного оборудования (ППО) фирмы Тайберсон" (США) и песочного якоря (рис. 3.11).

Песочный якорь 4 изготавливается из НКТ диаметрами 76 и 89 мм, имеет фильтр с отверстиями диаметром 3 мм и накопитель 5, длина которого рассчитывается в зависимости от концентрации песка в добываемой продукции и желаемого межочистного периода.

Сборка ППО 'Тайберсон" и песочного якоря устанавливается на расчетной глубине (обычно 30 - 40 м ниже зоны подвески ЭЦН 7) полностью разобщая пласт и ЭЦН. Продукция скважины поступает в якорь 4 через отверстия фильтра, песок оседает в накопителе 5, пластовая жидкость через клапан-отсекатель 2 ППО 3 поступает в насос.

На восьми скважинах НК «РуссНефть» с низкой наработкой ЭЦН из-за пескопроявления были спущены комплекты песочного якоря с ППО "Тайберсон". В результате наработка на отказ ЭЦН по этим скважинам в среднем увеличилась в 3,7 раза, число текущих ремонтов за год снизилось с 17 до I.

3.3.3 Шарнирное устройство для работы ЭЦН в искривленных скважинах

По актам ремонтов скважин с УЭЦН установлено, что основной причиной остановки скважин в ремонт является падение установок на забой. Анализ причин обрывов ЭЦН в скважинах со сверхнормативным искривлением ствола показывает [2], что наибольшее число аварий обусловлено разрушением НКТ и соединительных элементов УЭЦН. Основной причиной разрушения соединительных элементов является их ослабление при прохождении ЭЦН участков максимального искривления. При этом на часть болтов нагрузка возрастает, и они разрушаются.

В настоящее время разработаны и внедрены устройства для повышения устойчивости работы УЭЦН в скважинах со сверхнормативным искривлением ствола. Устройства обеспечивают снятие изгибающих нагрузок, действующих на установку как при прохождении интервалов с интенсивным набором кривизны при спуске, так и в период ее эксплуатации в зоне с набором кривизны выше допустимого.

Для устранения изгибающего момента, передаваемого от НКТ к ЭЦН, разработано шарнирное устройство, размещаемое в точке подвеса погружного агрегата к НКТ (рис. 3.12).

Шарнирное устройство допускает перекос оси установки относительно оси НКТ до 5°. Особое внимание уделено совершенствованию узла соединения насоса с электродвигателем, как основного элемента, на долю которого приходится наибольшее число разрушений.

Рисунок 2.13- Шарнирное устройство ЭЦН

а - устройство шарнирное; б-шарнирно-кулачковая муфта; 1-погружной электродвигатель; 2-ЭЦН; 3-НКТ

Вместо стандартного соединения насоса с протектором предложена шарнирно-кулачковая муфта, состоящая из карданного и сферического шарниров, кулачковой муфты, объединенных в одну сбоку. повышается устойчивость его работы. Муфта допускает отклонение осей насоса и электродвигателя до 4°, что исключает возникновение изгибающих нагрузок. ЭЦН, оснащенный комплектом из шарнирного устройства и шарнирно-кулачковой муфты, свободно проходит по стволу искривленной скважины, в результате

3.3.4 Внедрение УЭЦН с адресной доставкой реагента посредством дозирования через гибкий трубопровод фирмы «ФЛЭК»

Эффективность предупреждения солеотложений и асфальто-смолисто-парафиновых отложений (АСПО) на нефтепромысловом оборудовании зависит не только от ингибиторов, но и от технологии их применения.

При выборе технологии учитывают геологические особенности разрабатываемого месторождения, состав попутно добываемых вод, причины и условия отложения солей, их состав, длительность межремонтного периода работы оборудования, климатические условия и т.д.

В основе технологии применения ингибиторов соле- и парафиноотложений лежит способ дозирования ингибитора. К выбору способа дозирования предъявляют следующие требования:

1. надежность и универсальность, т.е. возможность применения при различных способах эксплуатации скважин;

2. возможность защиты скважины и оборудования по всей технологической линии;

3. обеспечение стабильного дозирования реагента;

4. простота технологии и обслуживания;

5. минимальная трудоемкость и металлоемкость;

6. возможность применения при любых климатических условиях;

7. экономичность расходования реагента;

8. безопасность способа для обслуживающего персонала и удовлетворения требованиям охраны недр и окружающей среды.

На промыслах применяют следующие способы дозирования ингибитора солеотложений:

· непрерывное дозирование в скважину с использованием поверхностных дозировочных насосов или глубинных дозаторов;

· периодическая подача ингибитора в затрубное пространство скважины;

· периодическое задавливание ингибитора в призабойную зону пласта (залповая подача реагента);

По принципу размещения применяемые типы дозаторов можно разделить на две группы:

1. наземные - подают реагент в затрубное пространство скважины;

2. скважинные - подают реагент непосредственно на прием насоса.

Обычно оценка эффективности их применения производится по признаку доступности для осмотра и обслуживания.

Проведенные исследования с целью оценки технологической эффективности различных способов подачи реагентов в скважину, позволяют считать метод затрубного дозирования малоэффективным. При дозировании в затрубное пространство химреагент, проходя столб газожидкостной смеси, достигающий сотни, а иногда и тысячи метров, срабатывает и к приему насосов или башмаку труб поступает лишенным активности.

С целью достижения эффекта приходится намеренно увеличивать дозу реагента, что при его высокой стоимости отражается на себестоимости добычи нефти и снижает экономичность дозатора. Следует иметь в виду еще один фактор: многие реагенты при снижении температуры окружающей среды увеличивают вязкость, а в зимнее время замерзают. Это затрудняет операции с ними.

В ОАО «Аганнефтегазгеология» НК «Русснефть» разработана программа проведения опытно-промышленных испытаний ингибитора солеотложения «ФЛЭК-ИСО-4». Согласно разработанной программы поставлено 2 наземных блока дозирования химического реагента через импульсную трубку на приём насоса (рис.3.13).

Рисунок 3.13 - Схема подачи ингибитора солеотложений в скважину с ЭЦН при помощи блока дозирования

Результаты применения наземного дозатора ингибитора солеотложения «ФЛЭК-ИСО-4»:

· Куст № 1 скв. 1053 Э25-1700г/c - в работе 97 суток;

· куст 6 скв. 2005 Э125-1700 отработала 40 суток, отказала по причине Rк-0.

Во время работы УЭЦН в дозировочном насосе было обнаружено затвердевание ингибитора. Таким образом, подача ингибитора фактически не осуществлялась. При дефектации ЭЦН на рабочих органах солевых отложений не было. По скважине 1049 куста 310 также выявлено затвердевание ингибитора и засорение гибкого трубопровода.

В настоящее время специалистами фирмы «ФЛЭК» в рамках опытно-промышленных испытаний ведется оптимальный подбор ингибитора солеотложений, применимого для данной технологии обработок глубинного насосного оборудования.

3.4 Вредное влияние АСПО на работу подземного оборудования добывающих скважин

Опыт механизированной эксплуатации скважин на нефтяных месторождениях показывает, что в течение некоторого времени, исчисляемого от 1 до 4 месяцев, на поверхности промыслового оборудования образуются отложения парафина и асфальто-смолистых веществ.

Поздняя стадия разработки, на которой находится в настоящее время большинство нефтяных и газовых месторождений, в силу ряда известных причин способствует росту доли осложнений, связанных с эмульсеобразованием, АСПО и отложениями неорганических солей, имеющих место по всей технологической цепочке добычи, транспорта и подготовки нефти и газа. Подъем скважинной жидкости, представляющей собой водогазонефтяную эмульсию, от продуктивного пласта к устью, связан с изменением давления, температуры, скорости движения потока.

Качественная оценка процессов, происходящих в скважине, свидетельствует о главенствующей роли скорости движения потока. При малых скоростях происходит образование АСПО и солеотложений, при высоких скоростях - образование эмульсий и повышение вязкости продукции. 

Причины и условия образования АСПО

Известны две стадии образования и роста АСПО:

1. первой является зарождение центров кристаллизации и рост кристаллов парафина непосредственно на контактирующей с нефтью поверхности;

2. на второй стадии происходит осаждение на покрытую парафином поверхность более крупных кристаллов.

При насосном способе эксплуатации давление на приеме насоса может быть меньше, чем давление насыщения нефти газом. Это может привести к выпадению парафина в приемной части насоса и на стенках эксплуатационной колонны. В колонне НКТ, выше насоса, можно выделить две зоны: - непосредственно над насосом, где давление резко возрастает и становится больше давление насыщения. Вероятность АСПО в этой зоне минимальная; - зона снижения давления до давления насыщения и ниже, где начинается интенсивное выделение парафина.

Как показывает практика, основными объектами для образования отложения парафина являются скважинные насосы, НКТ, выкидные линии от скважин, резервуары промысловых сборных пунктов. Наиболее интенсивно АСПО откладываются на внутренней поверхности НКТ.

Промысловые исследования показывают, что характер распределения парафиновых отложений в трубах различного диаметра примерно одинаков. Толщина отложений постепенно увеличивается от места начала их образования на глубине 500-900 м и достигает максимума на глубине 50 - 200 м от устья скважины, затем уменьшается до толщины 1-2 мм в области устья.

На образование АСПО оказывают существенное влияние:

· снижение давления на забое скважины и связанное с этим нарушение гидродинамического равновесия ГЖС;

· интенсивное газовыделение;

· уменьшение температуры в пласте и стволе скважины;

· изменение скорости движения ГЖС и отдельных её компонентов;

· состав углеводородов в каждой фазе смеси;

· соотношение объема фаз;

· состояние поверхности труб.

Интенсивность образования АСПО зависит от преобладания одного или нескольких факторов, которые могут изменяться во времени и глубине, поэтому количество и характер отложений не являются постоянными.

Влияние АСПО на работу подземного оборудования

Под парафиновыми соединениями, выделяющимися из нефти в добывающих скважинах в процессе их работы, понимают сложную углеводородную физико -химическую смесь, в состав которой входят различные вещества, такие как парафины, асфальтосмолистые соединения, силикагелевые смолы, масла, вода. Механические примеси.

Содержание отдельных компонентов в парафинистой массе различно и зависит от условий формирования нефтяной залежи и характеристики нефти.

Наличие парафина независимо от его количества в нефти ставит перед производственниками много технологических и технических задач, связанных с ликвидацией осложнений, вызываемых парфиноотложениями.

В процессе работы скважины возникают определённые условия, при которых интенсивность парафиноотложений возрастает:

1. снижение давления в области забоя и связанное с этим нарушение гидродинамического равновесия газожидкостной смеси (ГЖС);

2. интенсивное газовыделение;

3. уменьшение температуры в пласте и стволе скважины;

4. изменение скорости движения ГЖС;

5. состав и соотношение углеводородов в каждой фазе ГЖС.

Поскольку для нормального процесса добычи нефти проблему представляет не сам факт выпадения парафина из нефти, а его накопление на подземном оборудовании и НКТ, то и интерес вызывают условия образования АСПО в скважине. Некоторыми такими условиями являются:

· адсорбционные процессы на границе металл- парафин;

· наличие на поверхностях отложений продуктов разрушения пласта, мехпримесей, продуктов коррозии металлов и т.д.;

· шероховатость поверхности подземного оборудования (в особенности НКТ);

· скорость движения ГЖС;

· структура потока жидкости.

Практика добычи парафинистой нефти показывает, что основными местами отложений парафина являются:

- скважинные насосы;

- НКТ;

- выкидные линии отскважин;

- резервуары промысловых сборных пунктов.

Толщина отложений увеличивается постепенно от места начала их образования на глубине 500-900 м и достигает максимальной толщины на глубине 50-200м от устья, затем уменьшается до 1-2мм в области устья.

3.5 Технология применения греющего кабеля УЭЦН для борьбы с АСПО

Одна из проблем, серьезно затрудняющих эксплуатацию многих нефтяных месторождений Западной Сибири - образование гидрато-парафиновых пробок (ГПП) в работающих скважинах. Несмотря на интенсивные профилактические меры (скребкование, горячие промывки, использование ингибиторов парафиноотложений) полностью исключить образование ГПП, не удается, что приводит к потерям в добыче нефти, происходящим из-за остановок скважин для проведения восстановительных мероприятий. Для возвращения скважин в рабочее состояние необходимо принимать серьезные меры по ликвидации гидрато-парафиновой пробки большой протяженности (50-300м), на что тратятся значительные силы и средства. Для радикального решения проблемы требуется разработка такой технологии, при которой вовсе отсутствовали бы условия для образования ГПП в скважине, необходимо создание методов, которые были бы направлены не на борьбу с последствиями образования гидрато-парафиновых пробок, а на предотвращение условий их образования.

3.5.1 Технология применения греющего кабеля

Одним из главных факторов способствующих выделению парафина из нефти и образования гидратов является температура. Повышение температуры нефтеводогазовой смеси в НКТ, позволяет избежать образования гидратно-парафиновых пробок. Принцип работы греющего кабеля заключается в нагреве внутреннего пространства насосно-компрессорных труб с помощью специального изолированного нагревательного кабеля, помещенного в интервал интенсивного гидрато-парафиноотложения. Применение того или иного греющего кабеля определяется способом добычи нефти. Для скважин, оснащенных штанговым глубинным насосом (ШГН), нагреть скважинную жидкость можно с помощью нагревательного кабеля, проложенного только снаружи НКТ (рис.3.14,а), так как внутри НКТ находится штанга. Для скважин, оснащенных электроцентробежным насосом (ЭЦН), а также фонтанных и газлифтных нагреть скважинную жидкость можно с помощью нагревательного кабеля, опускаемого в НКТ (рис.3.14,б) через лубрикатор.

Рисунок 2.15 -Расположение нагревательных кабелей в скважине:

а) скважина с ШГН, б) скважины с ЭЦН, фонтанные и газлифтные: 1 - насосно-компрессорная труба; 2 - штанга насоса; 3 - кабель; 4 - обсадная колонна.

С помощью пакета прикладных программ ANSYS моделировалось температурное поле в поперечном сечении скважины, оно вычислялось из условия, что дебит равен нулю (рис.3.15).

Из рисунка видно, что при мощности кабеля 100 Вт/м температура нефти в НКТ составит 47°С, в то время как при нагреве самонесущим кабелем, расположенным в НКТ, 43°С при мощности 24 Вт/м.

Следовательно, нагрев кабелем, расположенным внутри НКТ, требует в несколько раз меньшей мощности, чем нагрев кабелем, расположенным снаружи НКТ. К числу методов по борьбе с гидратно-парафиновыми пробками, применяемым на предприятии, относятся: спуск-подъем скребков, горячая обработка скважин нефтью. Данные методы требуют значительных материальных затрат и затрат трудовых ресурсов, а также не всегда оказываются эффективными, что приводит к длительным простоям скважин.

В качестве профилактических мер с 2005 года ОАО «Аганнефтегазгеология» приступило к использованию греющего кабеля, что позволило получить ощутимый экономический эффект.

На данный момент греющим кабелем оборудованы 7 скважин, являющиеся самыми проблемными в плане образования гидрато-парафиновых пробок.

3.5.2 Техника и оборудование для осуществления прогрева скважин греющим кабелем

Технология реализуется с помощью установки по прогреву скважин (УПС). УПС позволяет в автоматическом режиме управлять прогревом и обеспечивать защиту нагревательного элемента.

Комплект УПС состоит из:

1. Нагревательного элемента.

2. Станции управления прогревом.

3. Силового трансформатора.

Нагревательный элемент представляет собой специальный термобаростойкий, сложно изготовленный кабель, устойчивый к воздействию агрессивных сред (рис.3.16). Рабочая часть нагревательного элемента имеет изоляционную оболочку, изготовленную из высокотемпературных материалов (фторопласт, сополимер пропилена), на которую затем накладывается броня из стальной оцинкованной проволоки в два повива. На верхний повив накладывается защитная оболочка из синтетического материала.

Рисунок 3.16 - Греющий кабель КГн12х2,5-55-90-Оа-25,8

1-центральная жила; 2-оболочка датчиков; 3-контрольные жилы; 4-изоляция контрольных жил; 5,10-теплопроводный заполнитель; 6,11-обмотка; 7,12,13-промежуточная оболочка; 8-токопроводящие жилы нагревательных элементов; 9-разделяющие жгуты; 14,15 -1-й и 2-й повив брони.

Нагревательный элемент выполняется с коаксиальными обмотками таким образом, что на центральную нагревательную жилу приходится 20% подаваемой электрической мощности, оставшиеся 80% электрической мощности выделяются на коаксиальный проводник, расположенный ближе к поверхности нагревательного элемента. С целью контроля за работой нагревательного элемента в его единую технологическую цепь монтируются датчики температуры.

Спуск нагревательного элемента в скважину проводится с помощью специализированных геофизических подъемников, снабженных необходимым оборудованием.

После спуска нагревательного элемента в скважину он закрепляется и герметизируется с помощью специального крепления и сальникового устройства (рис.3.17).

Станция управления прогревом предназначена для контроля и управления процессом прогрева жидкости в объеме лифтовых труб эксплуатационных скважин.


Подобные документы

  • Географическое и административное положение Рославльского нефтяного месторождения, экономическая характеристика района. Геологическое строение месторождения. Технология добычи нефти установками погружных насосов. Анализ наработки на отказ применяемых ЭЦН.

    дипломная работа [1,3 M], добавлен 10.09.2010

  • Геологическое строение района и месторождения. Литолого-стратиграфическая характеристика разреза, тектоника. Определение геофизических параметров Васюганской свиты верхнеюрского возраста. Определение коэффициента нефтенасыщенности и проницаемости.

    дипломная работа [3,6 M], добавлен 02.10.2012

  • Краткая характеристика района расположения месторождения, литолого-стратиграфическое описание. Физико-химические свойства пластовых жидкостей и газов. Анализ технологических показателей разработки месторождения. Осложнения при эксплуатации скважин.

    курсовая работа [943,0 K], добавлен 25.01.2014

  • Разработка Вынгаяхинского месторождения газа. Литолого-стратиграфическая характеристика разреза. Основные параметры сеноманской продуктивной толщи. Проницаемость и начальная газонасыщенность. Конструкция фонтанных подъемников и оборудование скважин.

    дипломная работа [3,0 M], добавлен 10.05.2015

  • Литолого-стратиграфическая характеристика осадочного разреза Ватьеганского месторождения. Физико-химические свойства и состав пластовых нефти и газов. Приборы, применяемые при исследовании скважин. Требования к технологиям и производству буровых работ.

    дипломная работа [2,1 M], добавлен 12.01.2015

  • Нефтегазоносный бассейн Персидского залива. Географо-экономическое расположение месторождения Гавар. Литолого-стратиграфическая характеристика разреза. Поставка нефти специальными судами-перевозчиками. Состояние запасов нефти на Ближнем Востоке.

    реферат [3,3 M], добавлен 11.12.2014

  • Характеристика Сосновского нефтяного месторождения в Беларуси. Количество запасов, сбор и транспорт нефти и газа. Краткая характеристика стратиграфии и литологии осадочного разреза месторождения. Тектоническая характеристика продуктивных горизонтов.

    реферат [12,2 K], добавлен 29.12.2010

  • Геологическое строение и нефтегазоносность района. Литолого-стратиграфическая и геофизическая характеристика продуктивной части разреза. Подсчет запасов нефти и растворенного газа залежи евлановско-ливенского горизонта Ковалевского месторождения.

    курсовая работа [3,1 M], добавлен 15.01.2014

  • История геолого-геофизического изучения Южно-Орловского месторождения, литолого-стратиграфическая характеристика разреза. Тектоническое строение, нефтегазоносные комплексы, процесс разработки месторождения как источник воздействия на окружающую среду.

    дипломная работа [52,8 K], добавлен 03.04.2010

  • Сведения о месторождении Кашаган в Каспийском море. Сроки начала добычи нефти. Литолого-стратиграфическая характеристика разреза, гидрогеологическая и термобарическая характеристика района. Мощность осадочных образований. Коллекторские свойства пород.

    курсовая работа [1,3 M], добавлен 30.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.