Экзогенные геологические процессы на юге Ивановской области

История развития и становления рельефа на юге Ивановской области. Геоморфология территории: ледниковые формы рельефа и морфология речных долин. Характерные проявления экзогенных геологических процессов и факторов, влияющих на них. Карстовые процессы.

Рубрика Геология, гидрология и геодезия
Вид дипломная работа
Язык русский
Дата добавления 13.03.2011
Размер файла 141,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Четвертичный период

С наступлением четвертичного периода климат, растения и животные приобрели все современные основные характеристики. В это время, на изучаемой территории происходило накопление толщ осадочного материала (в основном песков, супесей, суглинков), мощностью до 60 -80 м.

С наступлением четвертичного периода климат в отдельные моменты плейстоцена становится настолько холодным, что с севера Фенно-Скандии, Скандинавии и Балтийского моря на юг надвигаются огромные ледники, которые покрывают всю территорию Англии, Германии, Польши и значительную площадь европейской части России. Тщательное изучение ледниковых отложений указывает на то, что ледниковая эпоха обнимает собой огромный отрезок времени, около 1 млн. лет. На протяжении этого времени ледник несколько раз наступал на юг, периодически надолго отступая на север, к центрам оледенения.

Перемещение ледника по территории равнин вероятнее всего происходило следующим образом: ледник шел не сплошным ледниковым фронтом, а в виде отдельных языков, заполнявших сначала понижения в рельефе, а затем все более высокие районы. Так как наиболее низкие высоты были заняты доледниковыми речными, или озерными бассейнами, то именно по ним и распространялся ледник. При этом при своем движении он сначала незначительно, а потом все глубже перерабатывал поверхность суши. Достигнув максимальной мощности, ледник двигался в виде нескольких языков, или потоков. Иногда ледник срывал толщи коренных пород, сносил целые холмы, все речные долины были серьезно преобразованы: некоторые углублены и расширены, а некоторые, наоборот, заполнены мореным материалом. Таким образом, шло выравнивание доледникового рельефа.

Таяние ледника происходило следующим образом: ледник, скорее всего, распадался на отдельные глыбы, вытаивающие в течение столетий. Ледниковые массивы распределялись по территории неравномерно. Они не выстраивались в какие-либо цепи, их размещение подчинялось закономерностям, которые в настоящее время не возможно достоверно восстановить. Именно эти глыбы, с имеющимися между ними понижениями, сформировали современный холмистый рельеф территории изучаемого района.

Ледниковые века сменялись межледниковыми [23].

Вопрос о количестве оледенений на Русской равнине является спорным. Но большинство ученых склоняется к мысли, что оледенений было четыре: окское, днепровское, московское и валдайское.

На территории изучаемого района достоверно установлены следы окского оледенения, наиболее широко распространены следы днепровского и двух фаз московского оледенения, а так же отложения перигляциальных зон валдайского оледенения. Наибольшее влияние на формирование рельефа местности оказало московское оледенение.

Граница распространения окского оледенения проходит по долине реки Оки. Вероятно, что окский ледник сильно переработал доледниковый рельеф, однако результаты его деятельности были существенно изменены последующими днепровским и московским ледниками. Поэтому в современном рельефе практически невозможно найти следы первого окского материкового покровного оледенения. Отложения окского горизонта можно встретить на больших глубинах, в основании древних долин.

Основа современного рельефа сформирована в среднечетвертичное время. Здесь выделяют два оледенения: днепровское и московское.

Днепровский ледник распространялся по всей территории Ивановской области и доходил до Днепра и Дона на юге. Днепровское оледенение самое мощное. Ледник полностью покрывал территорию изучаемого района, наиболее сильно переработал поверхность. Мощность льда достигала около 3,5км. Ледник существенно сгладил водоразделы и заполнил древние ложбины стока.

В период последующего межледниковья происходило формирование зандров. Талые воды отступающего днепровского и наступающего московского ледника способствовали накоплению флювиогляциальных отложений большой мощности [27].

Московский ледник. Выделяют две стадии московского оледенения. Первый раз ледник доходил до долины современной реки Клязьмы. Следовательно, на территории изучаемого района проходила краевая зона ледника, для которой характерны разнообразные морено-конечные ледниковые и водно-ледниковые образования (камы, озы), следы которых можно обнаружить в современном рельефе. В результате движения и отступания льдов московского оледенения формировался современный равнинно-волнистый и холмисто-мореный рельеф территории. Отступая к северу, ледник таял, что приводило к формированию и накоплению зандров. Вторично остановился ледник в районе города Плеса, о чем свидетельствует конечная морена (вторая стадия московского оледенения).

Талые воды московского ледника формировали обширные водноледниковые зандровые равнины. Послеледниковые остаточные озера положили начало современным болотам с мощными торфяниками. В позднемосковское микулинское и осташовское время в них, в условиях характерного плоского озерно-болотного рельефа, разбитого мореными холмами и грядами на отдельные котловины, шло накопление озерно-ледниковых и озерно-болотных отложений. В голоцене процесс торфонакопления шел интенсивно, и в результате накопились многометровые толщи торфа. Время микулинского межледниковья связывают с заложением современной гидрографической сети территории. С этим же связано образование покровных суглинков.

Валдайское оледенение не достигло границ изучаемого района. Оно было распространено лишь на северо-западе Ивановской области. Однако талые воды ледника приводили к углублению речных долин и формированию террас.

В голоценовое время продолжается углубление речных долин и образование пойменных уровней. Комплекс экзогенных и антропогенных процессов формировал современный рельеф территории изучаемого района [34].

3.4 Полезные ископаемые

Полезные ископаемые на изучаемой территории представлены месторождениями торфа, известняков, глин кирпичных, гончарных, песка строительного, стекольного, гипсоносных отложений. Полезные ископаемые приурочены к четвертичным и дочетвертичным отложениям.

Наибольший практический интерес для народного хозяйства в основном для нашего района имеют полезные ископаемые, приуроченные к четвертичным образованиям. Основными из них являются торф, легкоплавкие глины, используемые для кирпичного, реже черепичного производства, строительные пески. С дочетвертичными отложениями связаны месторождения известняков [11].

Горючие полезные ископаемые

Торф

Торфяные месторождения расположены в основном в поймах рек и надпойменных террасах, в меньшей степени на водоразделах, связаны с современными болотными отложениями. Большинство болот относят к низинному типу, к которому и приурочены наиболее крупные торфяные месторождения. Основной тип растительности этих болот: осока, пушица, гипновый мох и древесная растительность, преимущественно береза, осина, реже сосна. В соответствии с типом растительности выделяют следующие типы низинных болот: древесно-осоковые, древесно-тростниковые и лесотопяные.

На изучаемой территории месторождения торфа распределены не равномерно.

Большая часть месторождений, занимающая западную часть территории, мелкие, с запасами торфа менее 1млн. м3. Наиболее крупным является Хвастовское месторождение. Средняя мощность полезной толщи 1,8 - 2,6 м., максимальная 5,9 м. Зольность торфа 4,4 - 10,9 %. Почти все месторождения эксплуатируются.

Восточнее располагается крупный торфяник «Большое», имеющий запас торфа 5120 тыс. м3. Мощность полезной толщи изменяется от 1,0 до 3,5 м. Средняя мощность торфа составляет 1,5 - 2,0 м. Преобладают низинные болота, торф которых имеет небольшую кислотность, так как в нем встречаются прослойки и линзочки мергеля, и он может использоваться в качестве удобрений. Зольность торфа до 40 - 50 %, в среднем 15 - 30%, теплопроводная способность колеблется от 4480 - 4900 кал. В виду небольших размеров, высокой зольности торфа и довольно низкой теплотворной его способности данное месторождение не эксплуатируется [16].

Рассмотрим южную часть территории, включающей Южский и Пестяковский районы. Характерно неравномерное распределение торфяных болот. Они приурочены к зандровой равнине времени отступания московского ледника, поймам и низким террасам рек Луха и Клязьмы. Свойства торфяных залежей зависят от их положения на той или иной террасе, или на зандровой поверхности. На пойме расположены торфяники низинного типа, на первой надпойменной террасе низинного и переходного типов, на второй надпойменной террасе и на зандровой поверхности - верхового типа.

Для залежей верхового типа характерен пушициево-сфагнумовый состав торфяной массы, средняя степень разложения до 40% и небольшая зольность до 5%, что характеризует их как источники хорошего топлива. К этому типу принадлежат такие залежи как Дубовичье, Святозерское, Демидовское с запасами торфа соответственно 39257, 41566, 18016 тыс. м 3.

Переходные типы торфяников представляют собой отдельные участки древесных торфов со сфагнумом и осокой, хорошей степени разложения 42% и зольностью до 8%, расположенные среди низинной залежи торфяников. К ним относятся залежи Эстонское (западнее пос. Моста) и Жилкинское (в районе деревень Якушево, Осинки - восточная часть изучаемой территории), с запасами соответственно 2249 и 2537 тыс. м 3.

Торфяникам низинного типа свойственен осоково-древесный состав торфяной массы, невысокая степень разложения и повышенная зольность. Крупными являются месторождения в районе поселков Машная, Мургеевский (Святозерское), Ламна. Большинство торфяных массивов разрабатываются.

В южной части изучаемой территории расположено крупное по площади месторождение Костяево-Клязьменское (юго-восточнее поселка Холуй), с площадью промышленной залежи 1538 тыс. м3. Мощность торфа на месторождениях составляет в среднем 1,0 - 2,5 м., достигая на отдельных участках 7,0 - 9,0 м. (месторождения близ деревень Архиповка, Аристиха, расположенных восточнее пос. Савино). Зольность торфа низкая 4 - 10% и лишь изредка 30 - 40%. Теплотворная способность торфа колеблется от 2,5 до 5,0 тыс. кал. Часть месторождений эксплуатируется с целью топлива и удобрений [15].

Строительные материалы

Глины кирпичные

Легкоплавкие глины и суглинки широко распространены в описываемом районе. Лучшим сырьем для производства кирпича и черепицы, как по качеству, так и по условиям залегания являются покровные суглинки.

Месторождения кирпично-черепичных суглинков, связанных с покровными образованиями, расположены в северо-западной части изучаемой территории. Средняя мощность полезной толщи суглинков составляет 1,0 - 1,5 м. Покровные суглинки имеют пестрый гранулометрический состав: содержание (в %) песчаных фракции 13 -62; пылеватых фракции 7,5 - 6,9; глинистых фракции 5 - 30. Суглинки достаточно пластичны, небольшая степень засоренности природными включениями. По химическому составу довольно однородны, содержание (в %): SiO2 59 -79; Al2 O3 9 - 14; Fe 2O3 4 -8; CaO 0,6 - 2,0; MgO 0,7 - 2,0. Почти на всех месторождениях разведанные запасы не велики и изменяются от 0,2 до 0,9 млн. м3. Запасы всех месторождений могут быть увеличены за счет разведки прилегающих участков.

В восточной половине площади (Палехский район) покровные суглинки расположены не повсеместно, мощность их обычно до 1,0 м., редко больше. Кроме того, суглинки, залегающие на надморенных песках, сильно опесчанены и нередко переходят в супеси.

В местах отсутствия или слабого развития покровных суглинков для выработки кирпича используются моренные суглинки и глины. Месторождения моренных суглинков мелкие, с запасами обычно до 0,5 млн. м. По гранулометрическому составу суглинки относятся к средним и тяжелым: они засорены мелким гравием и галькой (до 30%), примесями кварца, песчаника, глинистого сланца, диабаза, окремненных пород, реже известняка, доломита. Химический состав суглинков: содержание (в %) SiО2 72 - 80; Al2 O3 9 - 14; Fe2 O3 6 - 7; CaO 0,9 - 3,0; MgO 0,6 - 1,6 [6].

Наибольшее распространение моренные суглинки получили в южной части изучаемой территории: Южский и Савинский районы.

Месторождения Южская гора и Лесной участок (в районе Южи). Полезная толща представляет собой суглинки красновато-коричневые плотные, с включениями гальки, осадочных и кристаллических пород и редких валунов. Мощность полезной толщи от 1,5 - 2 до 4 - 6 м., мощность вскрышных пород от 0,5 до 1,0 м., в редких случаях достигает 1,5 м. Химический состав следующий: SiO2 72,3 - 78,0; Al2O3 9,5 - 13,4; Fe2O3 3,0 - 7,8. Суглинки по гранулометрическому составу относятся к грубодисперсным, малопластичным; засоренность включениями размером более 0,5 мм до 5%. При температуре спекания они относятся к низкотемпературным (1100 С).

В Савинском, Южском месторождениях характерной особенностью моренных суглинков является обогащенность обломочным материалом, который при эксплуатации удаляется. Обычно мощность суглинков 5 - 10 м. Мощность вскрыши пород составляет 0,2 - 5,0 м., изредка больше.

Встречаются прослои суглинков в аллювиальных отложениях надпойменных террас. Однако здесь суглинки образуют маломощные, быстро выклинивающиеся прослои и линзы, в связи с чем, промышленного интереса они не представляют.

Пестяковское месторождение кирпичных глин, связанное с озерно-ледниковыми отложениями времени отступания московского ледника. Месторождение мелкое. Полезная толща сложена глинами плотными, жирными с линзочками песков, залегает линзообразно. Её мощность меняется от 0,15 до 2,7 м. Мощность вскрыши, представленной песками составляет 0,4 - 1,6 м. Подстилаются глины обводненными водно-ледниковыми московскими песками. По гранулометрическому составу глины относят к пылеватым, высокопластичным (с коэффициентом пластичности 21,6). Химический состав глин: содержание (в %) SiO2 69,2; Al2O3 16; Fe2O3 4,4; MgO+CaO 3,5. Применяются для изготовления черепицы [16].

Пески строительные

Месторождения строительных песков развиты в южной части изучаемой территории. По долинам рек возможно использование аллювиальных песков.

На второй надпойменной террасе реки Шижегды разведано Рыжовское месторождение, расположенное в 7,0 км юго-западнее пос. Колобово. Средняя мощность полезной толщи составляет 4,1 максимально 6,4 м. По гранулометрическому составу, пески мелко и тонкозернистые: содержание фракции 0,15 - 0,3 мм составляет 80 - 85% (имеются включения гравия до 5 мм в среднем до 3%). Глинистость колеблется от 1 - 2 до 14% . Пески кварцевые с содержанием SiO2 92 - 95%, с примесью Al2O3 до 4%; Fe2O3 до 1%; CaO до 1,7%; MgO до 0,3%. По лабораторным исследованиям пески пригодны для кладочных и штукатурных растворов. Запасы месторождения составляют около 4 млн. м3.

В долине реки Тезы, около деревни Боняково, расположенной в 10 км южнее города Шуи на второй надпойменной террасе развиты аллювиальные пески. Полезная толща Боняковского месторождения мощностью от 1,3 до 7,3 м представлена песками кварцевыми, разнозернистыми, слабоглинистыми, с маломощными прослоями.

Залежи Клязьменского месторождения. Наиболее перспективными среди описываемого генетического типа являются отложения второй надпойменной террасы, широко развитые на левобережье. Полезная толща начинается обычно у поверхности и уходит на глубину 10 - 12 м. Она представлена среднезернистыми песками. Мощность полезной толщи меняется от 2,5 - 3 до 12 м. Полезная толща часто обводнена. Большая группа месторождений строительных песков приурочена к водно-ледниковым отложениям московского времени.

В пределах изучаемой территории располагается Фролищинское месторождение (на границе с Владимирской областью). Полезной толщей этого месторождения являются надморенные флювиогляциальные пески разнозернистые, с содержанием фракции крупнее 0,5 мм от 51 до 93%. Изредка встречаются валуны кристаллических и осадочных пород. Мощность песков изменяется от 0,5 до 4 - 5 м [16].

Пески стекольные

Наиболее хорошо отсортированные кварцевые разности песков приурочены к водно-ледниковым отложениям, но эти пески пригодны только для производства качественного тарного стекла. Стекольные пески высокого качества на территории не обнаружены. Водно-ледниковые пески обычно плохо отсортированы, залегают на значительной глубине (более 10 м) и почти повсеместно обводнены на всю мощность. На дневную поверхность пески выходят на отдельных участках по долинам рек, в частности, наиболее перспективным участком считается долина реки Люлех, где подморенные пески прослеживаются по правому и левому коренным склонам долины. В пределах изучаемой территории наиболее крупное разведано Палехское месторождение. Пески кварцевые с содержанием SiO2 от 87,0 до 98,0%; Al2 O3 от 0,3 до 2,0%; Fe2 O3 от 0,2 до 1,2%. В песках преобладает фракция 0,3 - 0,15 мм, (50 - 89%). Содержание глинистых и пылеватых частиц довольно постоянно 0,4 - 2,5 и только в единичных случаях достигает 29%. Пески могут использоваться для производства окрашенной тарной посуды, облицовочных плиток, стеклянных труб, стеклоблоков. Запасы песков составляют 3,4 млн. т [1, 6].

Известняк

В пределах изучаемой территории разведано два крупных месторождения известняков: Легковское и Тарасихинское. Оба месторождения приурочены к наиболее приподнятым участкам на юго-западе территории, в пределах Окско-Цнинского вала, где карбонатные породы казанского яруса верхней перми залегают близко к дневной поверхности. Месторождения мелкие. Полезная толща представлена доломитизированными известняками с прослоями доломитов и органогенно-обломочных известняков. Мощность необводненных карбонатных пород, отнесенных к полезной толще, составляет на Легковском месторождении от 2,3 до 19,4 м. На Тарасихинском от 3,1 до 7,5 м. Мощность вскрыши на Легковском месторождении изменяется от 0,9 до 14,4 м. (четвертичные суглинки или пески и глины, песчаники, алевриты татарского яруса верхней перми). Мощность вскрыши на Тарасихинском месторождении от 2,8 до 3,4 м (пески и суглинки второй надпойменной террасы). По химическому составу пески и доломиты (содержание СаО 31,4 - 52%; MgO 0,6 - 23,8%) пригодны для производства магнезиальной строительной извести, муки для известкования почв. Так же месторождения эксплуатируются для получения удобрений. На юге изучаемой территории развиты гипсоносные отложения, отличающиеся высоким качеством гипса, и могут применяться в различных отраслях промышленности [2, 16].

Выводы

Таким образом, можно сделать вывод, что в основании изучаемой территории залегает кристаллический фундамент, сложенный породами архейского и нижнепротерозойского возраста. Поверхность кристаллического фундамента погружается в северо-восточном направлении. На нем последовательно и горизонтально залегают молодые осадочные породы. На формирование осадочного чехла большое влияние оказали четвертичные отложения, представленные моренными и водно-ледниковыми образованиями окского, днепровского и, в значительной степени, московского ледников.

Описываемая территория находится в зоне сочленения двух крупных надпорядковых структур Русской платформы: Московской синеклизы и Токмовского свода Волго-Уральской антиклизы, расположенного юго-восточнее изучаемого района.

Главным структурным элементом территории является Окско-Цнинский вал, представляющий собой вытянутую в меридиональном направлении полосу пологих поднятий.

Полезные ископаемые изучаемой территории тесно связаны с ее геологическим строением. С дочетвертичными образованиями связано месторождение известняков, с четвертичными отложениями - месторождения торфа и строительные материалы.

4. Геоморфология

Территория описываемого района входит в состав Волжско-Клязьменской морено-зандровой равнины. Она залегает на размытых пермских и мезозойских отложениях южной части Московской синеклизы и восточной части Волго-Уральской антиклизы.

В пределах изучаемого района выделяют два основных типа рельефа: зандровая долина, расположенная в низовьях рек Тезы и Луха, так же затрагивающая левобережье Клязьмы, и ледниковая равнина, расположенная на водоразделах этих рек.

Для более детального описания рельефа учитывались морфологические признаки отдельных участков.

Рассматриваемая территория представляет собой, в общем, пологоволнистую равнину, понижающуюся в южном направлении. Описываемый район расположен в пределах двух орографических областей. Большая (северная) его часть принадлежит Балахнинской низине, выделяемой под местным названием Лухская низина. Южная часть района граничит с северо-западным окончанием Приволжской возвышенности - Гороховетским плато [15].

Основные черты современного рельефа были заложены еще в доледниковое время, однако, окончательное его формирование происходило под действием ледников, их талых вод и послеледниковой эрозии. Отложения окского и днепровского оледенений не смогли снивелировать древний рельеф. Возможно, что нивелировке рельефа в какой-то мере препятствовали неотектонические движения, которые обновляли древние структурные элементы. Основное значение в формировании современного рельефа имела аккумулятивная деятельность московского ледника, который, как и предыдущие, захватил всю территорию изучаемого района. В верхнечетвертичное время продолжается заложение и развитие гидросети. В современный период эразионно-денудационные процессы и, частично, культурная деятельность человека постепенно преобразуют внешний облик сформированной поверхности [49].

4.1 Ледниковые формы рельефа

По генетическим и морфологическим признакам в пределах территории можно выделить следующие типы рельефа (рассматриваемые типы рельефа описаны в направлении с запада на восток).

Плоская пологоволнистая, местами расчленённая моренная равнина московского оледенения расположена на северо-западе изучаемого района на правобережье реки Тезы. Современный рельеф в основных чертах унаследовал дочетвертичный: сохранился древний водораздел, расположенный в районе максимально абсолютных высот дочетвертичного (120 - 140 м.) и современного (150 - 165 м.) рельефа. Поверхность равнины пологоволнистая, участками почти плоская, заболоченная в результате слабого дренажа. Общий уклон поверхности направлен от Волжско-Клязьменского водораздела к юго-западу. Абсолютные высоты в этом направлении снижаются соответственно до 120 - 110 м.

Пологоволнистая водно-ледниковая равнина московского оледенения занимает территорию по долинам и на водоразделе рек Тезы и Люлеха. Поверхность водно-ледниковой равнины пологоволнистая, местами плоская с заболоченными понижениями различной формы и размеров. Абсолютные высоты равны 80 - 110 м. Наиболее повышенные участки равнины представляют собой останцы московской морены и песками в большинстве случаев не перекрыты.

Плоская и пологоволнистая слаборасчленённая водно-ледниковая равнина московского оледенения занимает незначительный по площади участок. Абсолютные высоты этой равнины изменяются от 118 - 120 м. Наиболее широко этот тип рельефа развит на левобережье реки Люлеха, где максимальная высота равнины достигает 134 м. Почти плоская поверхность вводно-ледниковой равнины местами (с. Тименка, д.Костихино, д.Погорелка и др.) осложнена мелкими холмами с пологими склонами, плоскими вершинами, относительное превышение которых над окружающей местностью 3 5 м. наиболее высокие из холмов сложены моренными суглинками и не перекрыты флювиогляциальными отложениями, представляя собой останцы моренной равнины. Холмы разделены лощинообразными понижениями, к днищу которых в большинстве случаев приурочены временные водотоки, входящие в современную речную систему [1].

Слаборасчленённая полого-холмистая моренная равнина московского ледника характерна для водораздела рек Луха, Клязьмы и Волги и частично для правого берега реки Луха, в районе города Южи. Основную рельефообразующую роль здесь играла аккумулятивная деятельность московского ледника. Равнина имеет холмистый рельеф с перепадами абсолютных высот до 120 - 140 м. Общий уклон как древний так и современной поверхности понижается с севера на юг. Положительные формы рельефа разобщены друг от друга понижениями удлинённой лощинообразной формы, нередко представляющими собой ложе стока ледниковых вод. Долины рек Ландеха, Пурежки, Пенюха, стекающие с моренной равнины, наследуют древние ложбины стока, врезаны неглубоко, разработаны слабо. Форма долин лощинообразная, с заболоченной поймой и слабым водотоком. Ложбины между моренными холмами, как правило, врезаны неглубоко, поперечный профиль их пологовогнутый. Иногда в них отмечаются остаточные ледниковые озера. Сами холмы пологовыпуклые, с растянутыми склонами, на 10 - 15 м. возвышаются над окружающей поверхностью. Ширина их в основании от 0,5 до 1,5 - 2,0 км. Современные эрозионные процессы в пределах моренной равнины развиты сравнительно слабо, а эрозионные формы рельефа практически отсутствуют. Характерной особенностью описываемого типа рельефа является широкое развитие ложбин стока ледниковых вод.

Слаборасчленённая пологоволнистая водно-ледниковая равнина времени отступания московского ледника. Данный тип рельефа характерен для южной части изучаемого района. Включает территорию низовий рек Луха и Тезы, а так же левобережье Клязьмы. Неширокой полосой данный тип рельефа заходит южнее, затрагивает правый берег реки Клязьмы, окаймляющий долину в виде долинного зандра.

Абсолютные высоты поверхности равнины изменяются от 126 - 95 м. в пределах этих высот выделяются три уровня. Поверхность с отметками 126 - 105 м. наиболее широкая по площади, примыкает к моренной равнине и обрамляет её с юга. Второй уровень с отметками поверхности 105 - 100 м. спускается ниже от водоразделов к долинам рек. Третий, самый низкий уровень, связан с последней стадией отступания московского ледника. Абсолютные отметки его поверхности 98 - 95 м.

Юго-западная часть территории, включающая левобережье реки Клязьмы, более пологая. Поверхность равнины плоская, слегка волнистая. Иногда наблюдаются отдельные всхолмления с относительными превышениями 5 - 7 м. Холмы, чаще всего, ориентированы в направлении юго-запад - северо-восток. Протяженность холмов вдоль длинной оси обычно не превышает 2,0 - 2,5 км. Склоны холмов очень пологие и растянутые: они совершенно не заметно сливаются с окружающей равниной [15].

Юго-восточнее рельеф становится более холмистым. Возвышаются отдельные холмы, сложенные песками и глинами с крупными валунами и галькой, являющиеся конечно-моренными образованиями ранней стадии московского оледенения. Холмы возвышаются на 25 -30 м. над окружающей поверхностью, вытянуты в северо-восточном направлении; ширина их в основании 500 - 800 м.; в районе д. Сезух в долине реки Луха они образуют многовершинную гряду длиной до 2,5 км. Склоны холмов довольно крутые.

Граница между моренной и водно-ледниковой мореной довольно четкая и хорошо дешифрируется по перегибам и смене ландшафта. Перегибы между уровнями зандров устанавливаются не везде четко. Поверхность зандров сложена песками, обычно, осложнена дюнными всхолмлениями.

Плоская поверхность равнины, сравнительно высокое положение грунтовых вод, обуславливает слабое появление эрозионных процессов и незначительное расчленение рельефа, а так же образование бессточных западин и болот. Небольшие пологие лощинообразные овраги и мелкие речки приурочены к склонам долин рек Шижегды и частично Клязьмы. Глубина их вреза 5 - 7 м., свежих промоин почти нет. В описываемом районе очень широко развиты карстовые процессы. Это связано с тем, что карстующиеся породы казанского яруса верхней перми и нижней перми здесь в ряде мест прорезаны древними дочетвертичными долинами, создавшими предпосылки для растворения этих пород маломинерализованными нисходящими водами [16].

4.2 Морфология речных долин

Речные долины занимают значительную часть изучаемой территории. Реки относятся к бассейну реки Клязьмы, имеют довольно хорошо разработанные, в большинстве случаев унаследованные долины.

Главными речными системами на территории изучаемого района являются: Клязьма, Шижегда, Теза, Люлех, Лух с двумя крупными притоками Ландех и Люлих и более мелкими притоками Пурешка, Сезух, Пенюх и др.

Долины большинства рек имеют простое строение: в поперечном профиле они преимущественно симметричны, склоны очень пологие и растянутые, ширина пойм не превышает 200 м. Глубина вреза не более 8 - 10 м [42]. Наиболее сложное строение имеют долины рек Тезы и Клязьмы. Река Клязьма имеет резко ассиметричную долину: правый берег ее везде крутой, обрывистый, с резкими обрывками террас, а левый - очень пологий, с хорошо развитыми надпойменными террасами, иногда достигающими значительной ширины. На территории изучаемого района река Клязьма охватывает только небольшой участок нижнего своего течения.

Современная долина реки Тезы по отношению к древней смещена на запад и юго-запад, а в верховье - на восток. И только севернее изучаемой территории, на участке Шуя - Каменский, полностью унаследовала древнюю долину. На территории изучаемого района, южнее города Шуи долина почти на всем своем протяжении ассиметрична. Более крутой - левый коренной склон, который на многих участках (Сергеево, Красноармейское) подмывается руслом реки и является обрывистым и хорошо обнаженным. В долине хорошо развиты первая и вторая надпойменные террасы, особенно в правобережной части. Глубина вреза долины реки Тезы колеблется от 6 - 10 м. до 32 м., а ее ширина по днищу от 0,5 км. До 3 - 5 км; при впадении реки Люлех в реку Тезу, где развиты первая и вторая надпойменные террасы, ее ширина достигает 8 - 9 км. Русло реки сильно меандрирует, поэтому пойма развита не повсеместно.

В пределах изучаемого района хорошо разработанную долину имеет река Люлех. Люлех врезался в древнюю долину, которая, несмотря на мощный четвертичный покров, более 50 - 60 м., хорошо выражена в современном рельефе. Долина имеет симметричное строение в поперечном профиле. Коренные склоны пологие, местами наблюдаются перегибы от водораздельного склона к коренному и к пойме. Русло реки сильно меандрирует. В районе село Красное, где проходит граница различий в строении долины, наблюдается коленообразный изгиб. Возможно, верховье реки Люлех принадлежало бассейну реки Лух, которая так же протекает по широкой и заболоченной унаследованной долине. Перехват реки нижним течением современной рекой Люлех произошел еще, очевидно, в верхнечетвертичное время, так как в районе село Красное наблюдается расширение долины, нет резкого перехода высот, что характерно для древнего перехвата [32].

Река Лух и ее притоки Ландех, Люлих, так же относящиеся к бассейну реки Клязьмы, имеют широкие (до 1,5 - 2 иногда 5 - 10 км.) долины. В основном, в поперечном профиле, долины симметричны, с пологими и растянутыми коренными склонами (слабо затронутыми эрозией), которые постепенно переходят в надпойменные террасы или пойму и в водораздельные пространства. В долинах наиболее крупных рек развиты, кроме поймы, две надпойменные террасы.

Третья надпойменная терраса цокольная, развита только по левобережью реки Клязьмы. Ширина ее 1,5 - 2,0 км., высота над урезом реки 20 - 23 м. Уступ, отделяющий третью надпойменную террасы от второй, чаще всего выражен плохо. Поверхность террасы плоская, чуть наклоненная в сторону русла реки Клязьмы.

Вторая надпойменная терраса развита в долинах всех крупных рек, на мелких сохранилась в виде небольших изолированных площадок. Для рек изучаемого района характерны цокольная и эрозионно-аккумулятивная террасы. Первая представлена в долинах рек Клязьмы, Шижегды. Цоколь сложен четвертичными породами: аллювиально-флювиогляциальными отложениями времени отступания московского ледника, либо отложениями московской морены. Второй тип приурочен к долинам рек Тезы и Луха. Цоколь сложен суглинками московской морены. Аллювиальные отложения местами отсутствуют, и морена выходит на поверхность. По левобережью реки Клязьмы и по долине реки Шижегды вторая надпойменная терраса прослеживается сплошной полосой. На реке Тезе вторая надпойменная терраса прослеживается отдельными участками: ниже деревни Марково, по левобережью реки Люлеха, ниже села Красное и в долине реки Шижегды, между деревнями Кривоносово - Затхлино. Абсолютные высоты второй надпойменной террасы колеблются в пределах 90 - 100 м. Максимальная ширина ее 10 - 15 км., минимальная 0,2 - 0,5 км. Высота над рекой 10 - 12 м. Высота уступа над поймой 5 - 7 м., над первой надпойменной террасой 3 - 4 м. От водораздела описываемая терраса отделяется пологим и растянутым уступом, высотой 10 - 12 м. На реке Тезе по второй надпойменной террасе причленяется как первая надпойменная терраса, так и пойма. На отдельных участках (деревни Векино, Аристово) она подмывается непосредственно руслом реки. Сочленение террасы с коренным склоном в долине реки Тезы плавное, без четко выраженных уступов. В долинах Шижегды и Люлеха уступ выражен очень четко. Его высота 2,5 - 8 м. Поверхность второй надпойменной террасы плоская, ровная, участками слегка всхолмленная за счет дюн, иногда заболачивания. В долине реки Тезы ее поверхность осложнена буграми перевеянных и закрепленных песков, карстовыми воронками и котловинами. Более часто заболоченность наблюдается на террасе рек Шижегды и Тезы и на левобережье реки Тезы, близ ее устья, что объясняется высоким положением уровня грунтовых вод.

Абсолютные высоты поверхности террасы на реке Лухе, в районе поселка Талицы около 100 - 102 м., ширина террасы в долине реки 0,5 - 4 км., местами (деревни Гоголи, Холмы, Чихачево) 10 км. Относительное превышение над урезом воды 4 - 5 м. Ее уступ к первой надпойменной террасе снивелирован. Поверхность террасы плоская, заметно наклоненная в сторону реки. Иногда встречаются старицы и старичные озера, болота. Сложена терраса песками, или супесями, покрыта сосновым лесом.

Характерной особенностью второй надпойменной террасы является значительная ее заболоченность. На ней расположены такие крупные торфяные болота как Дубовичье, Мургеевский бор и др. Также в долине реки Лух развиты прирусловые валы, эоловые и карстовые формы [31].

Первая надпойменная терраса почти всюду аккумулятивная. Развита она вдоль всех наиболее крупных рек района. Ширина ее изменяется от нескольких сотен метров до 3 - 4 км (Теза, Шижегда) 4 - 6 км (Лух, Клязьма). Высота террасы 7 - 9 м над урезом реки Клязьмы и 5,5 - 6 м на более мелких реках. Морфологически терраса выражена четко. От поймы она отделяется уступом высотой 3,5 - 4 м (Клязьма, Теза, Шижегда) 2 - 5 м (Лух). Поверхность террасы плоская, со старичными западинами, иногда она заболочена и осложнена дюнами (в долине реки Луха на поверхности террасы отмечаются мелкие дюны высотой 2 - 3 м).

В долине реки Тезы, южнее деревни Марково, первая надпойменная терраса тянется почти сплошной полосой, выклиниваясь только у деревни Ворошино. Сочленение террасы с поймой уступообразное. Уступ сохранился почти повсеместно.

В долине реки Люлех первая надпойменная терраса развита преимущественно в левобережной части, между селом Красное и деревней Матюкино. Ширина террасы колеблется от нескольких десятков метров до 1 км [32, 16].

Современная аллювиальная пойменная терраса. Современная пойма является аккумулятивной. Она прослеживается в долине всех рек и речушек исследуемого района.

Абсолютные высоты пойм различных рек неодинаковы. Высота поймы на реке Клязьме достигает 5 - 6 м, на реке Лухе 3 - 4 м. Ширина пойм рек Тезы и Люлеха доходит до 2 - 2,5 км, Клязьмы 6 - 7 км. В долинах рек Клязьмы и Тезы прослеживаются два уровня поймы: высокий 4,5 - 6 и низкий 1,5 - 3 м. Высокий уровень является наиболее распространенным. В долине реки Тезы южнее поселка Новые Горки, около деревни Чернцы, село Красное преобладает высокая пойма; низкая пойма встречается небольшими участками.

В долине реки Луха также отмечаются два уровня поймы, но разница в высотах настолько ничтожна, что они заметны только на аэрофотоснимках по разнице в фототоне.

Поймы более мелких рек имеют простое строение - плоскую, часто заболоченную и поросшую мелкими кустарниками поверхность. На поймах наиболее крупных рек хорошо выражен микрорельеф (прирусловые валы, старицы и т. д.). В долине реки Клязьмы поверхность поймы неровная, осложнена старицами, озерами, болотами. Последние нередко имеют карстовое происхождение с характерными для них круглыми и овальными контурами. В долине реки Тезы, где хорошо развита боковая эрозия, на пониженной центральной части поймы наблюдается большое количество заросших стариц, Старичных озер, сухих русел и протоков. Ниже слияния рек Клязьмы и Тезы, среди пойменной террасы реки Клязьмы наблюдаются эрозионные останцы первой надпойменной террасы.

Глубина вреза русла в пойму в различных реках колеблется от нескольких десятков метров до 2,0 - 3,5 м, а местами, по долине реки Тезы, достигает 4,5 м. В долине Тезы берега пойм крутые, обрывистые. На многих участках рек в результате меандрирования русел развита то левобережная, то правобережная пойма. Например, в долине реки Тезы в районе Сергеево, Красноармейское отсутствует левобережная пойма. Участками наблюдается боковой подмыв коренных склонов и обрывистых уступов пойм [32 49].

К началу четвертичного периода основные и крупные элементы рельефа были уже сформированы. К ним относятся: денудационное водораздельное плато и крупные речные долины - пра-Клязьмы, пра-Тезы и др. Глубина вреза этих долин относительно основного водораздела составляла 120 - 160 м. Окский ледник и его талые воды использовали для своего движения эти долины и в какой-то степени выровняли их. Во время днепровского оледенения сток вод наступающего ледника шел, в основном, по этим же долинам, окская морена была в значительной степени размыта. На водоразделах же она, по-видимому, уничтожена полностью. Морена днепровского ледника перекрыла сплошным чехлом территорию изучаемого района. При отступании ледника формировались маломощные зандры, сохранившиеся вокруг наиболее приподнятой части вала. Московский ледник оказал наибольшее влияние на морфологию речных долин. Он также как и днепровский полностью перекрывал исследуемую нами территорию, переработал древний рельеф, срезал отложения предыдущих стадий оледенения. Водно-ледниковые отложения московского ледника формируют цоколь второй надпойменной террасы. Ледником наиболее сильно переработан древний рельеф, изменены ложбины стока. Примерно к этому времени относят формирование в долине реки Клязьмы третьей надпойменной террасы. Во время валдайского оледенения в долинах основных рек образуются вторая и первая надпойменные террасы. К концу верхнечетвертичного времени оформляется уступ от первой надпойменной террасы к пойме. В голоценовое время происходит накопление пойменного аллювия, и развиваются процессы заболачивания.

Послеледниковый рельеф подвергался эрозионной переработке, которая продолжается и в настоящее время. Изменения современного рельефа происходят главным образом, в результате линейного и плоскостного смыва, глубинной и боковой эрозии рек, оползневых и карстовых явлений, а также заболачивания [47 31].

Выводы

Итак, изучаемая территория входит в состав Волжско-Клязьменской морено-зандровой равнины. Рассматриваемая территория представляет собой, в общем, пологоволнистую равнину, понижающуюся в южном направлении.

В орографическом отношении северная часть изучаемой территории принадлежит Балахнинской низине, а южная часть граничит с северо-западным окончанием Приволжской возвышенности.

На основе генетических и морфологических критериев на изучаемой территории можно выделить следующие типы рельефа: плоская пологоволнистая, местами расчленённая моренная равнина московского оледенении; пологоволнистая водно-ледниковая равнина московского оледенения; плоская и пологоволнистая слаборасчленённая водно-ледниковая равнина московского оледенения; слаборасчленённая полого-холмистая моренная равнина московского ледника; пологоволнистая слаборасчлененная водно-ледниковая равнина времени отступания московского ледника.

На формирование рельефа оказывали и продолжают оказывать большое влияние реки, протекающие на территории. Главными водными артериями являются Клязьма, Теза, Лух. Они текут в хорошо разработанных долинах, имеют современную пойменную и верхнечетвертичные первую и вторую надпойменные террасы. Современные физико-географические процессы на реках продолжают выравнивание рельефа.

5. Экзогенные геологические процессы, развитые на территории юга Ивановской области

На изучаемой нами территории из экзогенных геологических процессов получили развитие карстовые процессы, заболачивание территории и современные физико-геологические процессы.

5.1 Карстовые процессы

Карстовые проявления широко распространены на территории изучаемого района. Они связаны с карбонатными и сульфатными породами нижней и верхней перми, испытавшими подъем в позднепермский период и в мезозое. В четвертичное время карстующиеся породы дополнительно были перекрыты чехлом ледниковых образований ледника. Карст в силу этого здесь древний. Наиболее северные проявления карста известны южнее города Шуя. На юге карстовое поле переходит за Клязьму во Владимирскую область. Карст на изучаемой территории покрытый, так как карстующиеся породы залегают или под маломощными четвертичными рыхлыми отложениями или под песчано-глинистыми породами татарского яруса верхней перми [16 40].

В развитии карстового рельефа выделяются несколько стадий. В начальной стадии (молодой карст) грунтовые воды залегают не глубоко. Породы на поверхности почти лишены трещин и слабо пропускают воду, существуют наземные водотоки. На поверхности появляются воронки. По мере расширения трещин и увеличения их числа просачивание усиливается, но часть воды еще остается на поверхности. Просочившаяся вода скапливается над водоупорным слоем (слой чаще бывает водоупорным временно, до расчленения его трещинами), образуя отдельные потоки.

В стадии зрелости процесс закарстования идет снизу и сверху. На поверхности возникают провалы, воронки сливаются. Почти вся вода с поверхности уходит по трещинам вниз, вертикальная циркуляция воды приводит к возникновению подземных пещер. Грунтовые воды образуют подземную сеть водотоков.

В стадии старости формы карстового рельефа теряют определенность, воронки уплощаются, на поверхности скапливаются труднорастворимые продукты выветривания, засоряя поноры. Разрушенная поверхность снижается до уровня грунтовых вод, поэтому вертикальная циркуляция вод сменяется горизонтальной, вырабатывается нормальная речная сеть. Реки текут медленно, образуются болота. Поднятие поверхности или опускание уровня грунтовых вод может вызвать оживление процессов карстоообразования и обновление рельефа [36].

Проявления карста связаны с карбонатными и галогенными сульфатными породами нижней перми и казанским ярусом верхней перми. В составе нижней перми на территории изучаемого района прослеживаются: нижняя карбонатная толща, сложенная известняками и доломитами, иногда с прослоями ангидритов (до 150 м) и верхняя сульфатная гипс - ангидритовая толща, мощностью (до 60 м), с прослоями известняков и доломитов. Подверженные карстовым процессам породы нижней части казанского яруса верхней перми слагают карбонатную толщу (до 60 м.), состоящую из известняков и доломитов.

Проявление карста связано со всеми тремя толщами, в соответствии с этим в карстовом поле выделяется карст карбонатный, карст сульфатный карст смешанного типа [Приложение 3].

Смешанный тип карста

В карстовом поле в границах распространения казанских отложений, которые повсеместно залегают на породах сульфатной толщи и представлены почти исключительно доломитами и известняками, развит карбонатно-гипсовый карст. Он расположен на севере изучаемой территории. Характерной его особенностью является наличие крупных форм - котловин и воронок диаметром до 30 - 50 м. Наиболее четко эти карстовые формы выражены в деревне Хмельники.

При совместном залегании карбонатных и сульфатных пород карстовый процесс протекает наиболее интенсивно. В этом случае карстовый процесс протекает идентично с карбонатным типом. При этом происходит карстование и сульфатных толщ, в результате чего интенсивность поверхностного проявления карста может быть очень высокой. Кроме того, наличие гипсоангидритовых пород в подошве казанских отложений оказывает влияние на разрушение карбонатов, а последнее - на выщелачивание сульфатов. Растворимость смеси доломита с гипсом значительно превосходит растворимость кальцита и чистого доломита. Поэтому образование крупных карстовых форм рельефа на участках распространения казанских отложений объясняется весьма интенсивным выщелачиванием карбонатных и сульфатных пород. Развит этот тип карста в виде двух выступающих участков, севернее развития сульфатного и карбонатного типов карста. Западный выступ имеет площадь около 300 км2, восточный около 220 км2 [28].

Сульфатный тип карста

Сульфатный тип карста имеет наибольшую площадь развития в пределах изучаемой территории. Граница распространения на севере проходит через поселки Векино - Волокобино - Преображенское. Южная граница проходит через поселок Боняково - устье Тезы - вдоль Клязьмы, по границе с Владимирской областью до поселка Фролищи. Данный тип карста развит в пределах распространения сульфатной толщи сакмарского яруса нижней перми. Сульфатная толща здесь перекрывается или непосредственно песчано-глинистыми отложениями четвертичного возраста или же, что чаще всего, маломощными глинистыми породами татарского яруса мощностью от 5,3 м (деревня Мурзиха) до 24,6 м (село Волокобино).

Характерной особенностью сульфатной толщи является ее монолитность, а так гипсы и ангидриты являются хорошим водоупором, развитие карста происходит лишь в кровле сульфатной толщи. Площадь развития этого типа карста около 350 км2. Сюда можно отнести карст левобережья реки Тезы и ее долины, районы поселков Архиповка, Курмыш, Боняково.

Сульфатный карст на поверхности проявляется в виде воронок одиночных или цепью. Встречаются воронки от 1,5 - 3,0 м до 30 - 100 м в диаметре и глубиной от 1 - 2 м до 10 - 12 м. Такие воронки в изобилии встречаются в пойме реки Тезы, в районе поселка Моста, селе Волокобино, в деревне Путятино и др. Сюда же можно отнести озеро Литвин, размеры которого до 220 м в диаметре. Озеро находится в лесу, в 2 км западнее деревни Емельяново, имеет почти правильную округлую форму. А так же озеро Святое в Южском районе, расположенное севернее поселка Мургеевский. Озеро имеет неправильную форму, вытянутую с запада на восток. Размеры озера 2,6*1,4 км [28].

Кроме воронок развиты болота и заболоченные участки карстового происхождения. Ряд болот имеют значительную протяжность и, как правило, сопровождаются многочисленными карстовыми воронками. Сульфатный карст развивается по трещинам в сульфатных отложениях, имеющих тектоническое происхождение. Подземные воды, приуроченные к кровле сульфатной толщи, расширяют трещины путем механического воздействия и химического растворения. Трещины при этом заполняются материалом вышележащих пород и с течением времени на поверхности образуются просадки [8].

Карбонатный тип карста

К югу от сульфатной толщи распространен карбонатный тип карста. Южная граница проходит от устья Тезы к западу по Клязьме по границам с Владимирской областью. Карбонатный тип связан с породами ассельского яруса нижней перми, представленными доломитами и известняками. Отложения вышележащего сакмарского яруса выклиниваются на западе (примерно в районе Фурманов - Савино). Ильинская и Ивановская скважины подтверждают данный факт. Казанский ярус так же полностью выклинивается. Таким образом, породы ассельского яруса перекрываются отложениями татарского яруса верхней перми в западных районах территории, или непосредственно четвертичными образованиями [20, 8].

Почти повсеместно карбонатные породы закарстованы до глубины 50 - 60 м. Под воздействием пресных вод, приуроченных к верхней части карбонатной толщи, и в условиях активного водообмена трещиноватые известняки и доломиты разрушаются до основания щебня, и даже муки. Разрушенность карбонатных пород неодинакова, и объясняется это, прежде всего вещественным составом и температурными особенностями карбонатных пород. Политоморфные окремненные доломиты и известняки подвержены выщелачиванию значительно меньше, чем пористые и органогенные. Так как при превращении доломитов и известняков в муку первоначальный объем пород не изменяется, то на поверхности карстовый процесс не проявляется. На поверхности карстовые формы проявляются интенсивно там, где наиболее активна тектоническая деятельность. Вероятнее всего, что наиболее интенсивна она при пересечении нескольких систем тектонических трещин, где создаются благоприятные условия для вмывания в трещины разрушенного материала, при этом на поверхности образуются блюдцеобразные понижения. Такой тип карста наиболее распространен в бассейне реки Шижегды [Приложение 4].

Развитие поверхностных форм карста происходит на участках, где глубина залегания карстующихся пород составляет 45 - 50 м и они не перекрываются татарскими отложениями, а в случае присутствия последних мощность их не должна быть слишком большой (20 - 25 м). К северу же глубина залегания карстующихся пород увеличивается до 60 - 100 м, а мощность глинистых татарских отложений до 50 - 8 м.

Глины татарского яруса обладают низкой водопроницаемостью, и поэтому взаимосвязь поверхностных и подземных вод сильно затруднена.

В основном большинство карстовых форм приурочено к склонам и долинам древних и современных рек. Это связано с размывом и отсутствием отложений татарского яруса, которые препятствовали сообщению сульфатных трещинно-карстовых вод, приуроченных к кровле гипс - ангидритовых пород с пресными водами четвертичных отложений. Кроме того, размыв верхнепермских отложений создает благоприятные условия для разгрузки и дренажа подземных вод, залегающих в карстующихся породах.

В результате водообмена трещинно-карстовых вод с пресными четвертичными водами происходит растворение карстующихся пород наиболее интенсивно в тех районах, где татарские отложения полностью размыты, и, наоборот, ослабевает там, где они сохранились [8,40].

На всей выделенной территории, подверженной карсту, зафиксировано не менее 355 форм проявления карста в виде болотных массивов и заболоченных проседаний поверхности земли, карстовых озер, котловин воронок. Наиболее поздние формы проявления карста - карстовые озера, котловины, воронки - широкое развитие получили в долине рек Тезы, Шижегды; несколько меньшее - на правобережном склоне долины реки Лух и на водоразделе рек Луха и Клязьмы, на самом юге территории. По данным В. А. Семенова (Ивановский геологический фонд) образование карстовых воронок, котловин, озер, в основном, происходило в начале 20 века. Площадь развития наиболее молодых карстовых форм на выделенных трех участках не превышает 700 км2. Причем, более Ѕ приходится на долины рек Тезы и Шижегды.


Подобные документы

  • Характеристика физико-географических условий северной части Среднего Поволжья. Понятие опасных экзогенных геологических процессов и факторов, влияющих на их интенсивность. Рассмотрение опасных геологических процессов на территории города Нижнекамск.

    курсовая работа [4,8 M], добавлен 08.06.2014

  • Геоморфология, рассмотрение процессов образования рельефа, рельефообразующих процессов прошлого. Континентальные поднятия, платформенные равнины и их характерные особенности. Поверхности выравнивания, морфологическое становление области горообразования.

    реферат [22,2 K], добавлен 03.06.2010

  • Геологические памятники природы как обнажения редких горных пород и минералов. Геоморфологические участки речных долин с широким развитием скалистых обнажений. Пещеры и карстовые формы рельефа. Уральская карстовая страна как одна из крупнейших в России.

    реферат [20,8 K], добавлен 06.03.2009

  • Рельефообразующие эндогенные процессы и эрозионные процессы. Органогенные, антропогенные и биогенные рельефы. Прогнозирование изменения ландшафта сельскохозяйственных угодий, городских ландшафтов. Рельефы, созданные водотоками. Строение речных долин.

    курсовая работа [3,8 M], добавлен 05.12.2015

  • Характеристика экзогенных геологических процессов и их геологических результатов. Физико-механические свойства гранита, кварцевого порфира, вулканического стекла. Инженерно-геологическая классификация кислых пород. Определение плотности частиц грунта.

    контрольная работа [37,8 K], добавлен 14.03.2014

  • Разница в использовании термина "элювиация" в геологии и почвоведении. Формы рельефа, связанные с процессами карстования. Основные факторы, которые определяют современные осадконакопления. Таблица факторов, вызывающих собственно-гравитационные процессы.

    контрольная работа [17,0 K], добавлен 08.02.2011

  • Физико-географический очерк Сухоложкого района. Стратиграфия, магматизм, тектоника, геоморфология, гидрогеология региона. Современные геологические процессы в Сухоложком районе. Карстовые и эрозионные процессы. Влияние деятельности человека на природу.

    отчет по практике [13,5 M], добавлен 28.02.2016

  • Исследование истории геологического развития Самарской области. Изучение тектонического строения и рельефа территории. Характеристика минералов и горных пород, основных сфер их применения. Анализ геологических условий строительства в пределах г. Самары.

    отчет по практике [2,8 M], добавлен 21.02.2014

  • Эрозионно-аккумулятивные типы рельефа территории Новосибирска. Геологическое строение, физико-геологические процессы и явления. Назначение и сроки выполнения инженерно-геологических исследований. Лабораторные исследования грунтов, оврагов и балок.

    отчет по практике [1,0 M], добавлен 06.10.2011

  • Макроформы рельефа материков. Срединно-океанические хребты, океанические глубоководные желоба, разломы. Эндогенные и экзогенные процессы рельефа. Гипотеза Вегенера о дрейфе материков. Движущиеся литосферные плиты. Образование гор и горных хребтов.

    реферат [662,0 K], добавлен 20.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.