Мобилизм и зона спрединга

Описание новой глобальной тектоники литосферных плит как современного варианта мобилизма. Проведение статистического анализа спрединга дна океанов и его влияния на глобальные изменения климата. Противоречия в гипотизе мобилизма и концепции зон спрединга.

Рубрика Геология, гидрология и геодезия
Вид курсовая работа
Язык русский
Дата добавления 22.01.2015
Размер файла 2,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В настоящее время известно, что экваториальный диаметр Земли составляет 12 754 км, а полярный - около 12 711 км. Геометрически наша планета представляет собой трехосный эллипсоидный сфероид, сплющенный у полюсов. Площадь поверхности Земли около 510 млн. кв. км, из них 361 млн. кв. км приходится на воду. Объем Земли равен около 1121 млрд. куб. км. Масса Земли составляет около 6000х10 в 18 степени тонн. Масса Юпитера больше массы Земли примерно в 318 раз, Солнца - в 333 тыс. раз. Масса Земли в 82 раза превышает массу Луны. Средняя плотность планеты примерно в 5,5 раза больше плотности воды. Плотность мантии Земли от 3 до 5 г/ куб. см, в пределах ядра плотность значительно выше. В центре Земли она может достигать 17 г/куб.см. Плотность воздуха у земной поверхности примерно 1/800 плотности воды, а в верхних слоях атмосферы она значительно меньше.

Температура в нижних слоях атмосферы Земли варьирует. от + 58°C (зарегистрирована в Эль-Азизии в Ливии) до -89,2°С (на станции Восток близ Южного полюса в Антарктиде). В приповерхностном слое атмосферы средняя температура воздуха составляет +15° C. Оболочка Земли, в пределах которой температуры обычно ниже 0°С, называется криосферой (слой многолетней мерзлоты).

В тропиках отрицательная температура воздуха начинается на высоте около 4500 м, а в высоких широтах - на высоте уровня моря. В приполярных районах на материках криосфера может простираться на несколько десятков сотен метров ниже земной поверхности, формируя горизонт многолетней мерзлоты.

Земля вращается вокруг своей оси, при этом точка на экваторе перемещается со скоростью 1600 км/ч. Земля также обращается вокруг Солнца по орбите протяженностью около 958 млн. км со средней (но не постоянной) скоростью 29,8 км/с, совершая полный оборот за 365,242 средних солнечных суток. [34, c. 254--274]

Гигантская мировая система разломов и сбросов, известная как срединно-океанический рифт, опоясывает Землю на протяжении более 65 тыс. км. Для этого рифта характерны движения вдоль разломов, землетрясения и сильный поток внутренней тепловой энергии. Тихоокеанское "огненное кольцо" и Альпийско-Гималайский горный пояс - основные районы вулканической активности, связанные со срединно-океаническим рифтом. К первому из этих районов приурочены примерно 500 действующих вулканов. Иногда в этоп поясе возникают новые вулканы, как например, вулкан Парикутин в Мексике (1943) или вулкан Суртсей у южных берегов Исландии (1965).

В эпоху расширения происходит раздвижение дна океанов в рифтовых зонах, в результате чего площадь океана, а следовательно и объем планеты увеличиваются. Разуплотнение мантийного вещества приводит к его плавлению, и расплав в виде базальтовой магмы начинает поступать на поверхность и застывает, отдавая тепло в океан. Так образуются базальтовые дайки. При этом земная кора растягивается.

Между материковыми сиалическими плитами и океаническими базальтовыми также образуются разломы в виде глубоководных желобов. Здесь расплавленное вещество в виде магмы также поднимается вверх и изливается, расширяя дно океана.

В этих зонах в связи с разуплотнением вещества мантии также действуют вулканы, и не только на дне океана, но и на окраинной части материка. Эта окраинная часть материка растягивается, расплавляется снизу и проседает. Иногда куски материковой плиты отрываются от основной части плиты, становятся островными дугами, а между инми и материком возникают новые зоны спрединга, становящиеся морями типа Японского и Охотского.

Повышенные потоки тепла на дне глубоководных впадин (желобов) и в зонах спрединга на дне океанов являются причиной возникновения своеобразных башен, вокруг которых концентрируется очень своеобразная жизнь, основанная на извлечении энергии из химических соединений - так называемый хемосинтез. По сути, это совсем другая биосфера, не нуждающаяся в солнечной энергии. Подобные формы жизни могут быть не только на Земле, но и на больших спутниках Юпитера, например, на дне океанов Европы, которые с поверхности скованы толстым слоем льда.

Зоны спрединга срединно-океанических хребтов подразделяются на быстроспрединговые (более 21 см/год), промежуточные со скоростью растяжения от 8 до 21 см/год и медленноспрединговые (от 2 до 8 см/год). К первым относится хребет Хуан-де-Фука, Восточно-Тихоокеанское поднятие, часть зоны спрединга Индийского океана, Галапагосский рифт. К зонам спрединга с низкими скоростями спрединга относится, прежде всего, Срединно-Атлантический хребет, а также часть зон Индийского океана, включая Аденский залив. Это говорит о том, что поток тепла идущий из недр (из мантии) ко дну океанов неодинаков в разных морях. Не потому ли Охотское море относится к холодным морям, а Берингово море, несмотря на то, что расположено севернее Охотского, к более теплым. Поток тепла ко дну Охотского моря из недр Земли меньше, чем поток тепла к дну Берингова моря.

Температура океана сильно изменялась во времени.

Изучая изотопы некоторых раковин, главным образом микроскопических фораминифер, живших в поверхностном слое океана и на его дне, можно (при некоторых правдоподобных допущениях) оценить температуры поверхностных и донных вод этого океана. Последние исследования подобного рода показывают, что в середине мелового периода среднегодовая температура поверхностных вод вблизи экватора была близка к современной (26-28°С) или даже на 3-4° была выше современной. Вблизи 60° южной широты она в то время колебалась от 10 до 18° (сейчас здесь она колеблется от 0 до 6°), а на полюсах, как предполагается, температура в начале мелового периода даже зимой на поверхности была не выше 0°С (сейчас она заметно ниже). Температура донных вод мирового океана вблизи 60° южной широты в начале мелового периода составляла около 16-19°С и только к концу мелового периода повсеместно снизилась до 10-16°.

Современое состояние земной коры представляет полную или почти полную консолидацию и "сжатие альпийского типа более невозможно в условиях такой консолидации" [13, с. 205].

Масштабный спрединг в океанах более невозможен при достигнутом тепловом балансе, когда снова стали возможными оледенения, а интенсивность магнитного поля начала снижаться.

Этот вывод и следует считать главным результатом статистического анализа океанов, избавляющим от неопределенности в представлениях о дальнейшей эволюции Земли.

Раздел III. Противоречия в гипотизе мобилизма и концепции зон спрединга

3.1 Историко-геологические аргументы

Согласно концепции тектоники литосферных плит их образование происходит в осевой части срединно-океанического хребта; плиты движутся от него в обе стороны, а затем погружаются в мантию.

Посмотрим, подтверждают ли геологические материалы три постулата плитотектоники:

а) спрединг в осевой части срединного хребта;

б) перемещение коры в сторону от него;

в) субдукцию у океанических желобов.

Бурение показало, что в пределах южной части Срединно-Атлантического хребта в палеогене и неогене существовала обширная впадина, напоминающая платформенную синеклизу. О том, что под впадиной находится гранито-гнейсовый фундамент, свидетельствуют обломки гранитов и гнейсов в базальтовых потоках на островах Вознесения и Тристан-да-Кунья.

Перейдем к центральной части Срединно-Атлантического хребта. Восточнее его сочленения с зоной разломов Романш обнаружена мощная (более 4 км) мел-палеогеновая осадочная толща, верхняя часть которой сложена палеоцен-эоценовыми грубозернистыми кварцевыми песчаниками - продуктами размыва располагавшихся где-то неподалеку гранитных пород (Бонатти, 1996). На той же широте в осевой части хребта, севернее на 20 с. ш. драгирование в приосевой зоне хребта наряду с базальтами (60% пробы) принесло карбонатные породы позднемелового возраста (маастрихт) и обломок углистого сланца (Удинцев, 1990).

Как в 20 км от сейсмически и вулканически активного рифтового ущелья накапливались осадки с возрастом около 70 млн. лет и как там оказался углистый сланец, возникший в торфянике, содержащий споры маастрихта - эоцена?

Бурением вблизи оси срединного хребта (230 с. ш.) вскрыты метаморфизованные породы в коренном залегании - метагаббро, метатроктолиты, габбро-гранулиты, которые секутся жилами трондъемитов и метадолеритов. Возраст цирконов из метагабброидов 1.6-1.7 и 0.3 млрд. лет. Больше всего находок древних пород в пределах Азоро-Бискайского поднятия (40-е градусы с. ш.), расположенного на западном продолжении Средиземноморского геосинклинально-складчатого пояса. Р. Фюрон еще в 1949 г. описал поднятые там кварциты и кремнистые сланцы с фауной кембрийских трилобитов. Позже там собраны метапелиты, гнейсы, граниты, чарнокиты и другие континентальные породы. Многочисленны находки гранитов и гранулитов и в Северной Атлантике (50-600 с. ш.). Хотя приверженцы тектоники плит всех их объясняют ледовым разносом, среди них есть и заведомо местные, например на Исландско-Фарерском пороге и на подводном плато Роколл.

Существование континентальной коры под Северной Атлантикой подтверждают и сейсмические данные - мощность коры такая же, как и на шельфах, окружающих Британские острова.

Таким образом, геологические данные свидетельствуют, что на всем протяжении Срединно-Атлантического хребта нет свидетельств существования механизма спрединга (раздвижения в стороны новообразующейся базальтовой коры). Южная и Северная Атлантика - это опустившиеся части древне платформы, а в Центральной Атлантике, вероятно, расположен рифей-фанерозойский складчатый пояс, погрузившийся в кайнозое.

В пределах Срединно-Атлантического хребта в кайнозое действительно происходили трещинные излияния базальтов, отличных от платобазальтов океанических котловин. Но они не покрывали всю его поверхность, и поэтому возможно установить его предшествовавшую тектоническую структуру, не отличавшуюся от структур материков.

Сторонники тектоники плит продолжают утверждать, что глубоководное бурение подтвердило возраст дна океанов, вычисленный по номеру магнитной аномалии. [24, c. 56-63]

Г.Ф. Макаренко (1993), проанализировав материалы бурения по всем океанам, показала, что базальтовые плащи на дне океанов, как и на континентах, возникли в результате пяти общепланетарных импульсов, приходящихся по времени к границам геологических периодов (Р2-Т, Т3-J1, J3-K1, K2-p1, p1-N1). Два последних импульса имели линейный характер, захватив полосу, где возникли срединно-океанические хребты. Только в этом и проявился более молодой возраст базальтов в осевой части океанов по сравнению с их периферией.

Результаты глубоководного бурения свидетельствуют, что в основании осадочного чехла океанов залегают мелководные и континентальные, свидетельствуя, что ранее на месте океанов располагались континенты (Рудич, 1983, Удинцев, 1987).

Е.М. Рудич показал, что размещение мелководных отложений на акватории Атлантического и Индийского океанов противоположное тому, которое следовало бы ожидать при реализации модели спрединга. В рамках этой модели мелководные осадки должны становиться все более древними в направлении от срединно-океанического хребта к континентам. В действительности картина обратная - в направлении к побережьям возраст мелководных осадков становится все более молодым.

Историко-геологические данные не подтверждают и субдукцию. Б.И. Васильев, обобщивший геологический материал по дну Тихого океана, заключает: "…все глубоководные желоба как морфоструктуры сформировались в одно и то же время - в позднем кайнозое".

Об этом свидетельствуют следующие факты.

1. Мелководные отложения в основании островных склонов глубоководных желобов по палеонтологическим данным имеют возраст до раннего плиоцена включительно. Плейстоценовый возраст имеют также турбидиты, залегающие в днищах желобов и в депрессиях-ловушках на склонах.

2. Мощность, структура и состав осадочной толщи до плиоцена включительно совершенно одинаковы как на океанических склонах, так и на прилегающих к ним участках океанических котловин, что свидетельствует об одинаковых условиях осадконакопления.

3. На склоне желоба Пуэрто-Рико на глубине 3860 м обнаружен плейстоценовый коралловый риф. Мелководные карбонатные отложения плиоцена с бентосными фораминиферами обнаружены в основании островного склона Идзу-Бонинского желоба на глубине 5-5.2 км, а крупные колонии отмерших губок - на склоне Курило-Камчатского желоба на глубине до 6500 м.

4. Сбросы на склонах желобов, формирующие их ступенчатый профиль, секут осадочные отложения до плиоцена включительно, поэтому возраст их не древнее плейстоцена

5. Толщина железо-марганцевых пленок "подводного загара" на скальных породах, обнажающихся в тектонических уступах на склонах желобов, не превышает 0.5-1.0 мм, что при скорости их нарастания 1-4 мм/млн. лет дает возраст менее 1 млн. лет.

6. В желобах наблюдаются подводные долины, переходящие с островных склонов на океанические и прослеживающиеся на расстояние до 300-500 км от осевых зон желобов.

Они заполнены плиоцен-плейстоценовыми отложениями, несогласно перекрывающими разновозрастные образования, вплоть до акустического фундамента. Образование долин произошло, когда глубоководные желоба еще не существовали.

7. К югу от Алеутского желоба в пределах Алеутской абиссальной равнины располагается огромный конус выноса Зодиак, шириной 450-550 км, поверхность которого понижается с севера на юг от 4600 до 4800 м, вблизи желоба до 5000 м.

Поверхность конуса прорезана многочисленными подводными долинами, расположенными веерообразно. Вершина "веера", из которой расходятся эти долины, находится к северу от желоба на континентальном склоне в районе пролива Шелихова. Это свидетельствует о том, что желоб образовался уже после образования конуса выноса, т. е. в плейстоцене.

Плиоцен-плейстоценовый возраст Японского, Марианского и Центрально-Американского желобов подтверждается также данными бурения.

По мнению Васильева (1982), "нет ни одного фактического доказательства этого процесса".

Наоборот, все имеющиеся факты свидетельствуют о том, что субдукции вообще не существует:

1. Сравнительно небольшая часть (42%) периметра тихоокеанской мегавпадины. занятая глубоководными желобами;

2. Позднекайнозойский возраст желобов и отсутствие в зоне перехода их палеоаналогов;

3. Горизонтальное залегание осадочных отложений в осевых зонах желобов и на их океанических склонах;

4. Ступенчатый характер склонов, обусловленный нормальными сбросами, что свидетельствует о растяжении, а не о сжатии;

5. Одинаковое строение обоих склонов некоторых желобов и их сейсмическая пассивность;

6. Однотипность и синхронность формирования всех Тихоокеанских желобов как в западном, так и в восточных полушариях, удаленных друг от друга на 15-18 тыс. км и находящихся в совершенно различных, с точки зрения плитотектоники, геодинамических условиях: западная окраина Тихого океана представляет собой, с точки зрения этой концепции, край древней (юрско-меловой) тихоокеанской плиты, а восточная - края кайнозойских плит на юге и фрагменты Восточно-Тихоокеанского поднятия на севере.

Итак, на примере наиболее исследованного срединно-океанического хребта видно, что спрединг в Атлантике не обнаруживается.

Прослеживание одновозрастных платобазальтов с континентов на дно океана, одинаковый их геологический возраст и на суше, и на акваториях свидетельствует, что возникли эти базальты не путем спрединга, а в результате площадных излияний. [16, c. 83-85]

Характер распределения мелководных отложений на дне океанов противоречит модели спрединга. В геологическом строении глубоководных желобов нет свидетельств субдукции.

Что касается перенесения плитотектонических идей на континентальную геологию, то здесь целесообразно обратиться к критическим статьям О.А. Мазаровича, Д.П. Найдина, В.М. Цейслера (1988, 1989, 1991) и В.Ф. Белого (2001), показавших противоречивость мобилистских построений.

3.2 Анализ геофизических материалов

Рассмотрим геофизические аргументы за и против тектоники плит.

Прежде всего, остановимся на методах, какие использовались ее сторонниками для подтверждения защищаемых ими глубинных процессов. Их два:

а) палеомагнитный метод, позволяющий, как они считают, определить время, величину и направление былого горизонтального перемещения материков и их частей;

б) метод определения возраста передвигающейся океанической коры по номеру магнитной аномалии.

Палеомагнитный метод был предложен в 50-е годы XX в. Напомним о двух исходных постулатах, положенных в его основу.

1. Геомагнитное поле, осредненное за сравнительно малый в геологическом масштабе промежуток времени, является полем центрального осевого магнитного диполя, ось которого совпадает с осью вращения Земли;

2. Горные породы могут намагничиваться по направлению внешнего магнитного поля, соответствующего времени и месту образования намагниченности, и эта намагниченность может сохраняться достаточно долго.

Очевидно, что предложенный метод может быть использован для палеонтологических реконструкций лишь в том случае, если эти два "фундаментальные предположения" будут подтверждены какими либо независимыми аргументами (фактами).

Начнем с предположения, что геомагнитное поле прошлых геологических эпох всегда являлось полем центрального осевого магнитного диполя, всегда совпадавшего с осью вращения Земли. Отметим, что у планеты Уран ось дипольного магнитного поля образует с осью вращения планеты угол около 550. До 250составляет угол между осью вращения и магнитной осью у других планет: у Марса 15-200, у Юпитера 15-240, а на Меркурии диполь смещен относительно центра планеты. А.В. Долицкий (1998) показал, что в прошлом и у Земли траектории перемещения географического и магнитного полюсов подчинялись разным закономерностям.

Таким образом, несовпадение оси вращения и магнитной оси у планет очевидно. Это исключает возможность использования палеомагнитных данных для определения горизонтальных смещений материков и их частей.

Столь же неопределенно и второе "фундаментальное предположение".

С каждым годом растет число случаев, когда доказывается перемагничивание горных пород вследствие термального или иного на них воздействия. Поэтому нет уверенности, что замеренное направление вектора намагниченности отвечает направлению на полюс в момент образования породы. К тому же нередки и ошибки в определении возраста пород (особенно по изотопным данным). [38, c. 32-54]

Все это делает палеомагнитный метод крайне ненадежным (если не сказать порочным) при попытках определения им смещения и поворотов материков и их частей. Если геолог все же считает возможным учитывать палеомагнитные построения, то он обязан контролировать их геологическими данными.

Однако в последнее время все чаще публикуются статьи, где палеомагнитным построениям отводится ведущая роль, а об историко-геологических материалах забывают.

Например, Е.В. Скляров и др. (2000) перемещают и вращают отдельные части (Алданский и Ангарский блоки), которые в позднем рифее разъехались и развернулись один относительно другого, а к венду оба повернулись на 900. Между тем структурное единство Сибирской платформы в течение всей ее истории подтверждает Акитканский приразломный прогиб (пояс), протягивающийся вдоль ее юго-восточного ограничения более чем на 500 км, выполненный специфическими вулканогенно-осадочными отложениями. Этот гигантской протяженности прогиб, отделяющий Сибирскую платформу от байкальской складчатой области, возник 1700-1600 млн. лет назад и свидетельствует, что расположенная к северо-западу от него платформа за это время не раскалывалась и не перемещалась.

Другой метод, порожденный плейттектоникой - определение возраста океанической коры по номеру линейной аномалии (Вайн, Меттьюз, 1963). Этот метод вместе с постулатами тектоники плит - основа всей плейттектонической концепции.

Исходя из представления о линейном спрединге дна океанов, авторы этой гипотезы предположили, что термоостаточная намагниченность, приобретаемая базальтами новообразованной литосферы, подобно записи на магнитной ленте, хранит информацию о прошлой эволюции намагничивающего поля. Это помогает определять скорость спрединга и возраст океанического дна.

Уже к середине 70-х годов стало очевидным, что полосовидная модель в своей канонической форме не в состоянии объяснить многие особенности структуры магнитоактивного слоя. Глубоководное бурение обнаружило переслаивание прямо и обратно намагниченных толщ и вертикальную изменчивость намагниченности.

Оказалось, что роль базальтов в формировании магнитного поля невелика, вследствие этого в магнитный слой стали "включать" подстилающие породы третьего слоя океанической коры. Чтобы избежать противоречий между постулируемой и наблюдаемой допускается, что внедрение базальтов не локализовано в рифтовой зоне, а осуществляется по системе подводящих каналов - "даек", нормально распределенных относительно центра спрединга.

Таким образом, объяснялись зоны с переходной намагниченностью, разделяющие прямо и обратно намагниченные блоки канонической модели. Д.М. Печерский и др. (1993) показали, что длительность образования носителей источников магнитных аномалий исключает возможность привязки этого процесса к конкретным эпохам прямой или обратной полярности.

В.М. Гордин отметил, что даже в осевых частях срединно-океанических хребтов магнитоактивному слою свойственна не строго линейная, а квазилинейная структура. По мере удаления от осей хребтов возрастает неоднозначность трассирования полосовых аномалий.

В.М. Гордин опровергает заключение плейттектонистов о совпадении "независимых" определений возраста литосферы по магнитным аномалиям и данным бурения - все возникающие расхождения устраняются путем коррекции датировок и деформации используемых шкал инверсий (сжатием и растяжением шкалы с амплитудами, существенно превосходящими длительность идентичных геомагнитных эпох).

Магнитостратиграфическая шкала оказалась "резиновым" эталоном, растягивающимся так, чтобы концы сходились с концами.

Таким образом, оба метода, на которых выросла концепция тектоники плит, нельзя считать надежными: при их создании были введены постулаты, которые при проверке не оправдались.

Уникальный по своим масштабам и результатам сейсмический эксперимент - Анголо-Бразильский геотраверс разрушил всю концепцию спрединга, ибо оказывается, что под Срединно-Атлантическим хребтом нет астеносферы в том понимании, как постулирует тектоника плит - мантия на всю исследованную глубину (до 90 км) состоит из блоков, резко различающихся по физическим свойствам, по числу инверсионных слоев и их толщины. Если бы многочисленные сторонники тектоники плит попытались сопоставить эти результаты с постулатами плитотектоники, то им пришлось бы пересмотреть свои взгляды. [8, c. 273-277]

Установлено, что под всеми континентами до глубины в 300-400 км прослеживаются высокоскоростные аномалии ("корни" континентов). Если бы континенты передвигались, то должна была бы двигаться вместе с корнями не литосфера, мощность которой 200 км, а вся верхняя мантия. Модель жесткой литосферы и ослабленной астеносферы не подтвердилась.

По данным глубинного сейсмического зондирования литосфера реологически расслоена (Павленкова, 1989), а вместо астеносферы наблюдаются отдельные линзы (астенолиты).

Геофизические данные столь же определенно свидетельствуют против плитотектоники, как и геологические. Оба метода, основанные на магнетизме горных пород, на которые опирается тектоника плит, в лучшем случае малонадежны.

Сейсмологические данные (изучение механизма землетрясений) не согласуется с представлением о субдукции литосферы в мантию.

Сейсмические данные о структуре верхней мантии свидетельствуют, что она состоит и блоков, различающихся по физическим свойствам (скорости, плотности) и конвекция такой гетерогенной модели невозможна.

Геохимическая информация о составе верхней мантии также противоречит гипотезе о ее конвекции - мантия состоит из обогащенных и обедненных резервуаров, положение которых оказывается стабильным в течение миллиардов лет.

Утверждение идеи мобилизма требует пересмотра многих, ставших традиционными среди многих поколений геологов-осадочников, представлений. Одно из важнейших среди них - представление о геологическом разрезе. В привычном фиксистком понимании смена осадочных пород, наблюдающаяся в вертикальном разрезе, отвечает неподвижному фиксированному положению точки разреза в геологическом прошлом. Смена отложений, например, от отложений тропической зоны на отложения умеренной или ледовой, во времени истолковывается как смена климатических зон, но не как смена географического положения самой точки разреза, которая происходила в геологическом прошлом при движении точки разреза вместе с плитой. При этом движении происходит перемещение в соответствии с вектором движения плиты, определенная последовательность смены соответствующих зон.

С этих позиций разрушается основа всей исторической геологии - представление о геологическом разрезе как о фактическом материале, информирующем о событиях прошлого. Стратиграфы категорически возражают против попыток исказить основной документ геолога - стратиграфический разрез.

В результате внедрения принципов плитотектоники в практику геологического картирования вместо объективного изучения геологического разреза геологу-съемщику предлагается интерпретировать изучаемые им горные породы с четко определенным заданием - искать в пределах картируемого им планшета зоны субдукции, спрединга, коллизии и т. п.

Концепция тектоники плит практически разрушает методы количественной оценки происходивших на планете процессов. В 40-е годы В. В. Белоусов предложил использовать осадочные отложения как мерило тектонических движений земной коры. Его последователь А.Б. Ронов разработал метод изучения тектонических движений путем оценки объемов накопившихся осадков.

В начале 50-х гг. он привлек к этим работам В.Е. Хаина, и ими был количественно оценен размах тектонических движений в течение герцинского этапа эволюции Земли. Позже А.Б. Ронов и В.Е. Хаин руководили составлением литолого-палеогеографических карт в глобальном масштабе. Это позволило разработать методы количественного анализа геохимических процессов и в итоге предложить химическую модель земной коры.

Утверждение плейттектонической парадигмы, согласно которой не только в мезозое-кайнозое, но и в палеозое, и в докембрии существовали зоны субдукции, где материал земной коры затягивался в мантию, практически исключает возможность применения количественных методов при реконструкции прошлого Земли.

Тектоника плит ставит крест на все возможные подсчеты для прошлых эпох и по существу закрывает историческую геохимию как науку - ни о каком геохимическом балансе в этом случае не может быть и речи.

Тектоника плит крайне ограничивает металлогенические исследования. С ее позиций мы не можем оценить вклад рудообразующих процессов в докембрии, ибо большая часть докембрийской да и палеозойской коры "ушла" обратно в мантию.

С позиций тектоники плит вся кора океанов новообразованная, и дно океанов бесперспективно для поисков тех рудных месторождений, какие в изобилии известны в гранито-гнейсовом слое континентов.

В настоящее время приводятся аргументы в пользу того, что третий слой коры океанов - это опустившийся на 4-5 км гранито-гнейсовый слой щитов древних платформ, следовательно, под океанами содержатся гигантские объемы руд, и общие потенциальные их запасы возрастают в 3 раза.

Тектоника плит мешает успешному развитию нефтегазовой геологии, поскольку она не объясняет, каким путем в пределах континентов возникают такие гигантские осадочные бассейны, как в зоне Персидского залива или в Прикаспии.

Образование Прикаспийской впадины - ни спрединг, ни субдукция объяснить не могут. Очевидно, что здесь имело место утонение коры снизу и изостатическое опускание, давшее возможность накопиться гигантской толще осадков, ставших коллекторами для нефти и газа.

Выводы

В данной курсовой работе я постарался привести и проиллюстрировать основные концепции мобилизма и зон спрединга характерных для Мирового океана.

Актуальность изучения мобилизма и зон спрединга дна Мирового океана подтверждается как экономической составляющей (добыча на внутренних морях и шельфах нефти и газа, большие залежи железо-марганцевых конкреций, устилающих дно на глубинах от 2 до 6 км, которые являются важным стратегическим запасом железа, марганца, меди, никеля и кобальта; так же со дна морей добываются высококачественные пески для стекольной промышленности), так и важностью для развития геологической науки в целом, особенно для познания процессов формирования и направленности развития коры и верхней мантии Земли.

Изучение мобилизма и зон спрединга дна морей и океанов важно во многих отношениях. Характер рельефа влияет на циркуляцию вод и развитие органического мира. Положение морей относительно суши, степень их связи с океаном определяют их соленость, количество поступающего обломочного материала, циркуляцию вод и развитие органического мира. Все это очень важно для выяснения условий осадконакопления.

Спрединг в какой-то мере отражает геологическое строение дна, а иногда однозначно определяется геологическим строением, следовательно, дает в руки исследователей богатый материал для суждений о происхождении морей и океанов.

Результаты исследований дна морей и океанов за последние десятилетия привели к настоящей революции в представлениях не только о дне, но и о геологическом строении всей планеты. Было установлено, что спрединг дна морей и океанов по своей сложности мало чем отличается от рельефа суши, а нередко интенсивность вертикального расчленения дна больше, чем поверхности материков.

Обрисованная выше последовательность основных событий в истории земной коры, формирование океанов и материков не укладываются в рамки широко распространенного представления о том, что континенты прогрессивно растут за счет океанов.

Таким образом, в ходе эволюции земной коры в верхней мантии (т. е. сферы Земли, охватываемой тектоническими процессами) возрастала неоднородность коры, определившая различия между океаническим и континентальным полушариями Земли, при этом проявлялся наиболее общий закон развития нашей планеты -- шло усложнение вещественного состава и структуры земной коры, усиливалась дифференциация и разновременность протекания глубинных процессов в течение геологической истории.

Конечно, наука идет вперед, совершенствуются и наши представления о прошлом, столь необходимые как для понимания современных геологических процессов, так и для прогноза на будущее.

Современое состояние земной коры представляет полную или почти полную консолидацию и сжатие альпийского типа более невозможно в условиях такой консолидации.

Масштабный спрединг в океанах более невозможен при достигнутом тепловом балансе, когда снова стали возможными оледенения, а интенсивность магнитного поля начала снижаться.

Этот вывод и следует считать главным результатом статистического анализа океанов, избавляющим от неопределенности в представлениях о дальнейшей эволюции Земли.

В результате написания этой курсовой работы я познакомился с историей исследования мобилизма и зон спрединга, с современными методами исследований и с исследованиями. Получил более глубокие знания о мобилизме и зонах спрединга, а также получил навыки реферирования научной литературы, освоение приёмов обобщения и краткого изложения научных знаний.

Словарь основных терминов

РИФТ - крупная линейная впадина в земной коре, образующаяся в месте разрыва коры в результате её растяжения или продольного движения. Существует две модели образования рифтов: модель Вернике и модель Маккензи. В последнее время геологи чаще используют смешанную модель.

СПРЕДИНГ - геодинамический процесс растяжения, выражающийся в импульсивном и многократном раздвигании блоков литосферы и в заполнении высвобождающегося пространства магмой, генерируемой в мантии, а также твердыми протрузиями мантийных перидотитов.

РИФТОВАЯ ДОЛИНА - крупное рифтовое образование рельефа.

БАТИМЕТРИЧЕСКАЯ КАРТА - карта глубин

СРЕДИННО-ОКЕАНИЧЕСКИЙ ХРЕБЕТ - сеть хребтов, расположенных в центральных частях всех океанов. Возвышаются над абиссальными равнинами на 2--3 км. Общая протяжённость хребтов более 60 тыс. км. В этих структурах происходит образование новой океанической коры и процесс спрединга.

КОТЛОВИНА - отрицательная форма рельефа, замкнутая впадина.

ТЕКТОНИКА - раздел геологии, предметом изучения которого является структура (строение) твёрдой оболочки Земли.

АСТЕНОСФЕРА - верхний пластичный слой верхней мантии Земли.

ЛИТОСФЕРА - твёрдая оболочка Земли. Состоит из земной коры и верхней части мантии, до астеносферы.

ЖЕЛОБ - глубокая и длинная впадина на дне океана (5000-7000 м и более).

РИФТИНГ - раскалывание литосферных плит.

ТРАНСФОРМНЫЕ РАЗЛОМЫ - тип разлома, который располагается вдоль границы литосферной плиты. Относительное движение плит является преимущественно горизонтальным в одинаковом или противоположном направлениях.

МАНТИЯ - часть Земли (геосфера), расположенная непосредственно под корой и выше ядра.

МАГМАТИЗМ - термин объединяющий эффузивные (вулканизм) и интрузивные (плутонизм) процессы в развитии складчатых и платформенных областей. Под магматизмом понимают совокупность всех геологических процессов, движущей силой которых является магма и её производные.

МОБИЛИЗМ -- научное направление в геологии, концепция, допускающая значительные (до тысяч километров) горизонтальные перемещения участков земной коры илилитосферы, в том числе континентов. Существует несколько мобилистских гипотез и теорий. В их число входит широко известная и в настоящее время практически общепринятая теория тектоники плит

ГЕОДИНАМИКА - наука о природе глубинных сил и процессов, возникающих в результате планетарной эволюции Земли.

ГЕОХИМИЯ - наука о химическом составе Земли и планет (космохимия), законах распределения элементов и изотопов, процессах формирования горных пород, почв и природных вод.

ГЕОФИЗИКА - комплекс наук, исследующих физическими методами строение Земли. Геофизика в широком смысле изучает физику твердой Земли (земную кору, мантию, жидкое внешнее и твердое внутреннее ядро), физику океанов, поверхностных вод суши (озер, рек, льдов) и подземных вод, а также физику атмосферы (метеорологию, климатологию, аэрономию).

ЧЁРНЫЕ КУРИЛЬЩИКИ - гидротермальные источники срединно океанических хребтов.

Список использованных литературных источников

1. Верба В.В., Аветисов Г.П., Степанова Т.В., Шолпо Л.Е. Геодинамика и магнетизм базальтов подводного хребта Книповича (Норвежско-Гренландский бассейн) // Российский журнал наук о Земле. 2000. Т. 2. №4. С.303-312.

2. Галушкин Ю.И., Дубинин Е.П. Термический режим литосферы при перескоке оси спрединга хребта Математиков // Физика Земли. 2002. N 9. С. 59-69.

3. Галушкин Ю.И., Дубинин Е.П., Модель образования и развития магматической камеры рифтовых зон срединно-океанических хребтов // Докл. РАН. 1993. Т.322. №46. С. 497-500.

4. Галушкин Ю.И., Дубинин Е.П., Шеменда А.И., Термическая структура осевой зоны срединно-океанического хребта. Статья 1. Формирование и эволюция осевой магматической камеры // Изв. АН РАН. сер. Физика Земли. 2004. №5. С. 11-19.

5. Галушкин Ю.И., Дубинин Е.П., Свешников A.A. Нестационарная модель термического режима осевых зон СОХ: проблема формирования коровых и мантийных магматических очагов // Изв. РАН. Сер. Физика Земли. 2007. №2. С. 33-50.

6. Галушкин Ю.И., Дубинин Е.П., Свешников A.A. Реологическая расслоенность океанической литосферы в рифтовых зонных срединно-океанических хребтов // Докл. РАН. 2008. Т. 418. №2. С. 252-255.

7. Глебовский В.Ю., Каминский В.Д., Минаков А.Н. и др. История формирования Евразийского бассейна Северного Ледовитого океана по результатам геоисторического анализа аномального магнитного поля // Геотектоника. 2006. №4. С. 21-22.

8. Гончаров М.А., Талицкий В.Г., Фролова Н.С. Введение в тектонофизику. М.: КДУ. 2005. 496 с.

9. Гончаров М.А. Реальная применимость условий подобия при физическом моделировании тектонических структур // Геодинамика и тектонофизика. 2010. Т.1. №2. С. 148-168.

10. Грохольский А.Л., Дубинин Е.П. Экспериментальное моделирование структурообразующих деформаций в рифтовых зонах срединно-океанических хребтов // Геотектоника. 2006. №1. С. 76-94.

11. Грохольский А.Л., Дубинин Е.П., Шаповалова И.В., Структурообразование в областях нетрансформных смещений осевых зон спрединга (аналоговое моделирование) // Вестник МГУ. Сер. Геология. 2010. №3. С.32-40.

12. Гуревич Н.И., Астафурова Е.Г., Глебовский В.Ю., Абельская A.A. Некоторые особенности аккреции коры у оси западной части хребта Гаккеля, CJIO // Геол.-геоф. Хар-ки лит. Аркт. Региона. ВНИИОкеангеология. СПб, 2004. вып. 5. С. 35-47.

13. Гуревич Н.И., Меркурьев С.А. Влияние Исландского горячего пятна на осевую зону хребта Рейкьянес: особенности морфологических и геофизических характеристик // Вестник КРАУНЦ. 2009. №1. Вып. №13. С. 63-79

14. Гусев Е.А., Шкарубо С.И. Аномальное строение хребта Книповича // Российский журнал наук о Земле. 2001. Т. 3. №2. С. 165-182.

15. Дубинин Е.П., Свешников A.A. Эволюция литосферы палеоспрединговых хребтов (результаты математического моделирования) // Геотектоника. №3. 2000. С. 72-90.

16. Дубинин Е.П., Ушаков С.А. Океанический рифтогенез. М.: изд-во ГЕОС, 2001. 293 с.

17. Дубинин Е.П., Розова A.B., Свешников A.A. Эндогенная природа изменений рельефа дна рифтовых зон срединно-океанических хребтов со средней скоростью спрединга // Океанология. 2009. Т.49. №1. С. 1-17.

18. Дубинин Е.П. Строение океанической коры // Жизнь Земли. Сб. науч. Тр. Музея Землеведения МГУ. М. 2010. изд-во МГУ. С. 20-32.

19. Дубинин Е.П., Галушкин Ю.И., Свешников A.A., Глубинное строение литосферы рифтовых зон спрединговых хребтов // Жизнь Земли. Сб. науч. Тр. Музея Землеведения МГУ. М., 2010. изд-во МГУ. С. 32-53.

20. Кохан A.B., Дубинин Е.П., Грохольский А.Л. Геодинамические особенности структурообразования в спрединговых хребтах Арктики и Полярной Атлантики // Вестник КРАУНЦ. Науки о земле. 2012. №1. Выпуск №19. С. 59-77.

21. Кохан A.B., Дубинин Е.П., Грохольский А.Л., Абрамова A.C. Кинематика и особенности морфоструктурной сегментации хребта Книповича // Океанология. 2012. Т. 52. №5. С. 744-756.

22. Лобковский Л.И., Никишин A.M., Хаин В.Е. Современные проблемы геотектоники и геодинамики. М., изд-во Научный мир. 2004. 612 с.

23. Логачев H.A., Борняков С.А., Шерман С.И. О механизмах образования Байкальской рифтовой зоны (по результатам физического моделирования) // ДАН. 2000. Т. 373. №3. С. 388-390.

24. Мазарович А.О. Геологическое строение Центральной Атлантики: разломы, вулканические сооружения и деформации океанического дна // Тр. ГИН РАН. вып.530. М.: изд-во Научный мир, 2000. 176 с.

25. Мазарович А.О., Соколов С.Ю., Турко H.H., Добролюбова К.О., Рельеф и структура рифтовой зоны Срединно-Атлантического хребта между 5° и 7°18' с.ш. // Рос. Журн. Наук о Земле. 2001. Т.З. №5. С. 353-370.

26. Меркурьев С.А., ДеМетц Ч., Гуревич Н.И. Эволюция геодинамического режима аккреции коры у оси хребта Рейкьянес, Атлантический океан // Геотектоника. 2009. №3. С. 14-29

27. Мирлин Е.Г. Проблема вихревых движений в "твердых" оболочках Земли и их роли в геотектонике // Геотектоника. 2006. №4. С. 43-60.

28. Пейве A.A. "Сухой" спрединг океанической коры, тектоногеодинамические аспекты // Геотектоника. 2004. №6. С. 3-18.

29. Пейве A.A. Аккреция океанической коры в условиях косого спрединга // Геотектоника. 2009. №2. С. 5-19.

30. Пейве A.A., Чамов Н.П. Основные черты тектоники хребта Книпповича (Северная Атлантика) и история его развития на неотектоническом этапе // Геотектоника. 2008. №1. С. 38-57.

31. Пущаровский Ю.М. Глубоководные впадины Атлантического океана как тектонические структуры: черты строения, время и механизм образования. // Докл. РАН. 2003. Т. 389А. №3. 2003. С. 358-361

32. Соколов С.Ю. Тектонические элементы Арктики по данным мелкомасштабных геофизических полей // Геотектоника. №1. 2009. С. 23-38.

33. Соколов С.Ю. Тектоническая эволюция хребта Книповича по данным аномального магнитного поля // Докл. РАН. 2011. Т. 437. №3. С. 378-383.

34. Сущевская Н.М., Черкашов Г.А., Баранов Б.В., Томаки К. и др. Особенности толеитового магматизма в условиях ультрамедленного спрединга на примере хребта Книповича (Северная Атлантика) // Геохимия. 2005. №3. С. 254--274.

35. Сущевская Н.М., Пейве А.А., Беляцкий Б.В. Условия формирования слабообогащенных толеитов в северной части хребта Книповича // Геохимия. 2010. №4. С. 339-356.

36. Фроль В.В. Морфоструктура северной части Срединно-Атлантического хребта в связи с особенностями его сегментации // Новые и традиционные идеи в геоморфологии. V Щукинские чтения (Труды). М. изд-во Географического ф-та МГУ. 2005. С. 186-189.

37. Хаин В.Е., Ломизе М.Г. Геотектоника с основами геодинамики // М.: изд-во КДУ. 2005. 560 с.

38. Шипилов Э.В. Генерации спрединговых впадин и стадии распада вегенеровской Пангеи в геодинамической эволюции Арктического океана // Геотектоника. 2008. № 2. С. 32-54.

Приложения

Приложение А

Расположение континентов в геологическом прошлом, по А Вегенеру.

Приложение Б

Пермокарбоновое оледенение

А -- на современной географической карте;

Б -- на палеографической карте А. Вегенера

Приложение В

Распространение кайнозойских континентальных рифтовых зон и систем и океанических спрединговых поясов Земли

1 -- внутриокеанические спрединговые пояса;

2 -- Западно-Тихоокеанский окраинно-океанический спрединговый пояс;

3 -- активныеосевые зоны спрединговых поясов и пересекающие их крупнейшие трансформные разломы;

4 -- отмершие осевые зоны спрединговых поясов;

5 -- континентальные рифтовые зоны и системы;

6 -- стабильные ядра континентов -- древние платформы;

7 -- подвижныепояса разного возраста в пределах континентов и их окраин;

8 -- области дна океанов вне кайнозойских спрединговых поясов преимущественно с мезозойской корой океанского типа.

Приложение Г

Типы структуры континентальных рифтовых зон в поперечном разрезе

а -- грабен; б -- ступенчатый грабен; в -- клавиатура блоков; г -- асимметричный грабен; д -- полуграбен; е -- система из нескольких односторонне наклонённых блоков; ж -- система из односторонне наклонённых блоков, относительно смещённых по листрическим сбросам и "опирающихся" на субгоризонтальную поверхность срыва растяжения (детачмент).

В пределах рифтовых впадин показаны заполняющие их отложения.

Приложение Д

Принципиальная модель глубинного строения "зрелой" континентальной рифтовой зоны в поперечном разрезе.

Горизонтальные стрелки показывают направление горизонтального растяжения коры и верхней мантии.

Вертикальные -- подъём верхней мантии и аномально повышенный тепловой поток под рифтовой зоной

Приложение Е

Блок-диаграмма строения фрагмента внутриокеанского спредингового пояса

1 -- астеносфера, 2-7 -- разновозрастные комплексы ультраосновных и основных пород океанской коры:

2 -- ультраосновные породы, образовавшиеся из нижней части магматического очага("кумулятивный комплекс"),

3 -- существенно основные породы (габброиды), образовавшиеся из верхней части магматического очага,

4 -- комплекс параллельных базальтовых даек,

5 -- комплекс базальтовых лав, частично пронизанных дайками,

6 -- возрастные генерации океанской коры, соответствующие разным стадиям спрединга,

7 -- ограниченное сбросами дно осевой рифтовой долины, сложенное базальтовыми лавами с подводными вулканическими аппаратами,

8 -- близповерхностный магматический очаг с расплавом основного состава в верхней части и ультраосновного в нижней;

9 -- конвективные течения магмы в очаге;

10 -- толща океанских осадков;

11 -- разновозрастные стратиграфические комплексы океанских осадков;

12 -- направления, по которым происходит расширение океанской коры на флангах спредингового пояса.

Приложение Ж

Диаграмма основных этапов эволюции рифтогенеза и спрединга в истории Земли.

Непрерывными линиями показаны периоды активного развития рифтовых зон (расхождение -- фазы растяжения коры, сближение -- фазы сжатия),

прерывистыми -- периоды покоя,

синим цветом -- периоды раздвижения зон спрединга,

красным -- фазы последующего сжатия

Приложение З

Дискриминационные диаграммы, основанные на различии состава современных вулканитов разных геодинамических обстановок.

I - по Дж. Пирсу и Дж. Канну (1973);

II - по Д. Буду и др. (1979). MORB - базальты срединно-океанских хребтов (N - нормальный тип; Р - над мантийными "плюмами");

IAT - островодужные толеиты;

CAB - известково-щелочные базальты;

WPB - внутриплитные базальты;

DPMB - базальты деструктивных границ, (островных дут и активных континентальных окраин).

Размещено на Allbest.ru


Подобные документы

  • Первые гипотезы о происхождении океанов: представления об образовании континентальной коры из океанской. Идеи Зюсса, Маршалла, Белоусова об "океанизации" ("базификации") континентальной коры. Гипотеза мобилизма Вегенера. Гипотеза спрединга Вайна–Мэтьюза.

    реферат [1,7 M], добавлен 12.12.2010

  • Гипотеза дрейфа континентов Вегенера. Становление теории тектоники литосферных плит. Установление существования пластичного слоя астеносферы и глобальной системы срединно-океанических хребтов и приуроченных к их вершинам зон океанического рифтогенеза.

    доклад [8,8 K], добавлен 07.08.2011

  • Современная геотектоника. Проблемы ранней стадии развития. Земли, происхождения океанов, палеомагнитных исследований. Фиксизм. Предположения о подвижности материков. Мобилизм. Успехи советского фиксизма. Искушение мобилизмом. Противостояние двух теорий.

    реферат [292,4 K], добавлен 25.12.2008

  • Краткая история изучения тектоники Республики Татарстан. Общие характеристики поднятий, разрывов, деформации литосферных плит. Описание современных движений земной коры и обусловливающих их процессов. Особенности наблюдения за очагами землетрясений.

    курсовая работа [5,7 M], добавлен 14.01.2016

  • Современное состояние тектоники плит. Дивергентные границы или границы раздвижения плит. Конвергентные границы. Трансформные границы тектонических плит. Внутриплитные процессы. Тектоника плит как система наук. Влияние перемещений плит на климат Земли.

    реферат [1,1 M], добавлен 28.05.2008

  • Содержание современной теории литосферных плит. Расхождение литосферных плит и образование в результате этого земной коры океанического типа. Семь наиболее крупных плит Земли. Пример плиты, которая включает как материковую, так и океаническую литосферу.

    презентация [2,3 M], добавлен 11.10.2016

  • Субдукционные зоны, их связь с зонами столкновения литосферных плит. Глобальный тектонический контроль магматизма, связанного с рудной минерализацией. Региональные следствия столкновения плит и их крутизны наклона. Локальный тектонизм и проницаемость.

    реферат [996,8 K], добавлен 06.08.2009

  • Понятие литосферы, ее сущность и особенности, структура и основные элементы, порядок их взаимодействия. Характеристика и отличительные черты океанической коры, история ее исследований и современные знания. Сущность и значение теории спрединга Гесса.

    реферат [15,7 K], добавлен 07.05.2009

  • История и методы исследования подводного вулканизма, его виды (островодужный, в зонах спрединга и субдукции, трансформных разломах, точках тройного сочленения). Распространение подводных вулканов в Тихом океане. Особенности черных и белых курильщиков.

    курсовая работа [3,4 M], добавлен 02.07.2012

  • Основные процессы, протекающие на конвергентных границах литосферных плит: субдукция, коллизия, обдукция. Механизм затягивания осадков в зону поддвига. Дегидратация океанической коры. Образование аккреционных призм, континентальной коры, окраинных морей.

    курсовая работа [2,2 M], добавлен 09.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.