Карстовые породы

Сущность и основные факторы, провоцирующие развитие карст-процессов в природе, их результаты. Характеристика карстовых пещер, стадии их развития, классификация и разновидности. Карстовые колодцы, шахты и пропасти. Условия, возможности образования карста.

Рубрика Геология, гидрология и геодезия
Вид курсовая работа
Язык русский
Дата добавления 24.11.2010
Размер файла 921,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Пропасти и шахты по происхождению Б. Гезе (1953) делит на пять категорий:

1. Тектонические пропасти - образовались в результате расширения водой диаклазов и трещин напластования.

2. Провальные пропасти - возникли над расширенными неглубоко находящимися подземными галереями с водой.

3. адсорбирующие пропасти - возникли в результате просачивания вод по трещинам, часто на контакте карстующихся и некарстующихся пород.

4. Пропасти восходящих карстовых вод.

5. Шахты-трубки эквилибристы, извергающие и поглощающие воду по сезонам.

В районах, которые претерпели опускание, иногда бурением вскрывают карстовые колодцы и шахты, совершенно заполненные песком или другими отложениями (т.е. погребённые).

2. Условия образования карста

2.1 Карстующиеся горные породы и обстановки их образования

Среди карстующихся горных пород выделяют: карбонатные (известняки, доломитизированные известняки, доломиты, писчий мел, мраморизованные известняки и доломиты, мраморы), сульфатные (гипсы, ангидриты, переходные разности), соли (карналлит, сильвин, сильвинит и др.). Карстообразование протекает по-разному, в зависимости от мощности карстующихся пород, площадей, которые они занимают, от углов наклона этих отложений, химического состава и степени чистоты пород. Эти особенности в значительной степени зависят от тектонической обстановки образования карстующихся пород. Различают такие основные обстановки образования, распространения и условий залегания карстующихся горных пород: I - геосинклинальная, II - переходная - краевых прогибов, III - платформенная; в особых группах IV - континентальная, и V - морская.

В складчатых зонах она характеризуется различной дислоцированностью, мощностью и химическим составом карстующихся отложений.

Карбонатные отложения

1. Известняки (и доломиты) в результате длительного непрерывного накопления образуют мощные толщи на значительных площадях. Большей частью характеризуются, за исключением отдельных слоёв, сравнительной однородностью химического состава и мощностью в сотни метров (до 2 - 3 км). Пример: массивные известняки нижней Перми, верхнего и нижнего карбона западного склона Урала, некоторые мощные толщи карбона Средней Азии и юры Крыма, Кавказа, верхнеэоценовые известняки Крыма.

2. Известняки (и доломиты) в условиях длительного накопления при значительных колебательных движениях земной коры образуют толщу меньшей мощности на значительных площадях. В зависимости от условий осадконакопления толщи характеризуются большей или меньшей мощностью и разнообразием состава и свойств. Пример: карбонатные толщи докембрия, древнего палеозоя, девона и Перми Урала, средней Азии, мощные карбонатные толщи триаса и верхней юры на Северном Кавказе, третичные известняковые тощи Кавказа и другие.

3. Кольский тип. Мраморизованные известняки и доломиты, представляющие толщи незначительной мощности, развиты на ограниченных площадях. Образовались в результате спорадического накопления карбонатных осадков среди других толщ и последующего складкообразования и метаморфизации. Пример: известняки и доломиты докембрия на Кольском полуострове и в Финляндии, некоторые силурийские и девонские известняки восточного склона Урала.

4. Известняки рифовых массивов различной мощности, развитые на ограниченных площадях. Отличаются неправильной формой, невыдержанностью пород по простиранию и часто отсутствием слоистости. Обычно эти известняки массивны и плотны, нередко характеризуются биоморфной структурой (являются археоциатовыми, водорослевыми или содержат скелетные остатки других организмов). Встречаются и химически чистые разности известняков. Пример: кембрийские известняки Тувы.

Гипсы и ангидриты

1. Пласты и пластообразные залежи мощностью до 100 м, реже - до 200 м, иногда разделённые пропластками некарстующихся пород, залегающие со значительными углами падения. Пример: титонские гипсы Кавказа, триасовые гипсы Альп и Апеннин.

Каменная и другие соли

1. Галит в виде пластов, залежей небольшой мощности. Пример: третичные отложения Кавказа.

II. Переходная обстановка краевых прогибов (с пологим, местами относительно крутым залеганием пород)

Карбонатные отложения

5. Известняки и доломиты среди мощных слоистых некарбонатных толщ, образовавшиеся в условиях не особенно длительного осадконакопления. Толщи карбонатных отложений характеризуются не очень значительной мощностью и разнообразием состава и свойств. Пример: пермские карбонатные отложения Предуральского краевого прогиба в западной части Уфимско-Соликамской депрессии.

6. Карбонатные рифовые массивы различной мощности, развитые на ограниченных площадях. Пример: пермские рифы Уфимско-Соликамской и Бельской депрессий.

Гипсы и ангидриты

2. Пласты и пластообразные залежи мощностью в 10-20 м и до 100 м с пологими углами падения, залегающие как на значительных, так и на небольших площадях. Пример: гипсы и ангидриты пермского возраста Уфимско-Соликамской депрессии.

3. Гипсовые шляпы соляных куполов краевых прогибов, развитые на небольших площадях. Пример: Предтаймырский краевой прогиб.

Каменная и другие соли

2. Пласты и пластообразные залежи солей, развитые как на значительных, так и на небольших площадях. Пример: пермские соли Предуральского краевого прогиба.

3. Соляные куполы краевых прогибов с крутыми углами падения. Пример: Предуральский (южная часть), Предтаймырский и Предпамирский краевые прогибы.

IIІ. Платформенная обстановка (с толщами осадочного плаща, образующими пологие структуры с почти горизонтальным залеганием)

Карбонатные отложения

7. Известняки и доломиты в виде мощных толщ, развитых на значительных площадях. Они образовались в мало изменяющихся условиях седиментации, но несут следы колебательных движений земной коры в виде перерывов в осадконакоплении с сутурами, ститолитами и древними поверхностями карстования. Карбонатные отложения этих толщ отличаются мощностями, измеряемыми сотнями метров, и сравнительно малой изменчивостью химического состава. Пример: пермские и каменноугольные известняки востока Русской платформы в Прикамье и Башкирии, карбонатная верхнепротерозойская свита Трансвааль мощностью до 1 км в Южной Африке и др.

8. Известняки и доломиты, образующие толщи сравнительно малой мощности вследствие чередования их с обломочными породами: отдельные слои, различные по мощности и составу. Пример: силурийские известняки Эстонии и Ленинградской области, Девонские Главного девонского поля в Воронежской области, известняки карбона Московской синеклизы, третичные известняки Причерноморской впадины, Тарханкутского, Ставропольского поднятий и др.

9. Известняки и доломиты рифовых массивов платформ. Характеристика их в общем сходна с отложениями 6-го типа. Пример: нижнепермские рифы Уфимского вала, верхнетретичные среднесарматские рифы юго-запада Русской платформы в Приднестровье.

10. Писчий мел, образует пласты мощностью до 100 м, развит на сравнительно больших площадях. Пример: Воронежская и Белорусская антеклиза, западный склон Украинского щита и др.

Гипсы и ангидриты

4. Пласты и пластообразные залежи осадочного плаща платформ. Пример: третичные гипсы Подольско-Литовской, девонские Балтийской, пермские Московской и Глазовской синеклиз и др.

5. Гипсовые шляпы соляных куполов синеклиз и других отрицательных структур платформ. Пример: Прикаспийская, Украинская и др. синеклизы.

Каменная и другие соли

4. Пласты и пластообразные залежи в покровных отложениях платформ, главным образом в синеклизах и других отрицательных структурах. Пример: залежи соли Прикаспийской, Московской и др. синеклиз.

5. Соляные куполы покрова платформ, развитые главным образом в синеклизах. Пример: Прикаспийская, Украинская, Вилюйская синеклизы, Убсанурская впадина.

IV. Современные поверхностные образования континентов

В эту группу выделяют современные поверхностные карстующиеся породы, образовавшиеся в четвертичный период и не всегда прошедшие полностью стадию диагенеза. Как правило, имеют небольшую площадь распространения и весьма малую мощность.

Карбонатные отложения

11. Известковые туфы холодных источников. Образуют довольно рыхлые пористые известняки. Площадь их невелика. Максимум десятки квадратных метров. Развиты довольно широко. Пример: Пермская область.

12. Карбонатные травертины термальных источников. Значительно менее распространены. Обычно развиты на большей площади. Пример: травертины района Кавказских минеральных вод, которые местами закарстованы.

13. Современные континентальные карбонатные образования - береговые известняки Австралии.

Гипсы

6. Отложения гипсовых озёр засушливой зоны.

Каменная соль

6. Отложения соляных озёр засушливой зоны.

Природная сода

1. Отложения содовых озёр засушливой зоны.

V. Современная морская обстановка

14. Карбонатные образования современных морей и океанов в виде коралловых рифов.

2.2 Водопроницаемость карстующихся пород

Водонепроницаемые горные породы карстуются только с поверхности. Но большая часть горных пород, попав в зону выветривания, становится трещиноватой. По трещинам в массив проникают воды и атмосферный воздух, которые взаимодействуют с растворимыми породами, вызывая ряд химических и минералогических процессов. Трещины возникают на всех этапах жизни карстующейся осадочной толщи. Начиная с превращения осадка в породу при процессах диагенеза, при складкообразовании, выветривании.

Литогенетические (первичные) трещины - возникают преимущественно при диагенезе. Наиболее важные физические изменения - потеря воды и уплотнение отложений путём уменьшения их влажности и пористости. Эти процессы растянуты по времени и распространяются на глубину 150-200 м. На большей глубине осадки полностью переходят в плотные осадочные породы, которые в дальнейшем крайне медленно отдают воду и уплотняются. Распространение таких трещин наиболее чётко выражено в областях с горизонтальным или слабонарушенным залеганием пород. Там, где породы смяты в складки и испытали интенсивные тектонические движения, первичные трещины в осадочных породах бывают часто замаскированы более поздней тектонической трещиннноватостью. Первичные трещины не пересекают мощных толщ пород, а тесно связаны с отдельными пластами или небольшими пачками пластов. Обычно трещины заканчиваются на границах отдельных пластов, образующих слоистость. По отношению к слоистости трещины располагаются перпендикулярно. Косо, параллельно, имеют неправильную сложную форму. Положение их зависит от литологического состава пород. Замечено, что перпендикулярные слоистости трещины характерны для известняков и доломитов, разбивают эти породы на параллелепипедные отдельности. В различных участках одного и того же пласта присутствуют трещины разных простираний. Относительно правильные отдельности приурочены к породам однородного состава. Степень заполнения трещин зависит в первую очередь от циркуляции водных растворов. Частота трещин зависит от мощности и состава пород. В гипсах, ангидритах, каменной соли они менее развиты. При залегании на некоторой глубине от земной поверхности эти породы не карстуются и даже являются водоупором. Когда движения земной коры выводят их на дневную поверхность, карст начинает интенсивно развиваться.

Тектонические трещины образуются под влиянием тектонических сил, проявляющихся в земной коре в процессе её развития. Возникающие при этом в горных породах деформации почти всегда сопровождаются трещинами, образующимися на различных площадях. Трещины обладают выдержанностью (как по простиранию, так и по падению) и развиваются по одному плану в породах различного состава. Они делятся на трещины с разрывом сплошности пород и кливаж. Первые возникают при появлении в породах нормальных и касательных напряжений, превышающих пределы прочности. При нормальных напряжениях перпендикулярно главной оси растяжения происходит отрыв пород и образуются трещины отрыва. В направлении максимальных касательных напряжений развиваются трещины скалывания. Они широко распространены на участках, нарушенных взбросами и сдвигами, которые происходят в условиях сжатия земной коры или при перемещениях одного её участка относительно другого под действием пары сил. Однако раньше. Чем напряжения, вызываемые сжатием или сдвигом, сконцентрируются на одной поверхности разрыва и вызовут перемещение вдоль неё, в горных породах произойдёт образование трещин скалывания. Эти трещины составляют обычно два ряда, образующие с осью сжатия угол несколько меньше 45°. В отличие от трещин скалывания, кливаж не нарушает сплошности пород. Кливаж - способность горных пород делиться по параллельным или почти параллельным поверхностям на тонкие пластинки. Это свойство в механическом смысле выражается в образовании поверхности скольжения или срезывания, по которым частицы в процессе пластической деформации смещаются по отношению друг к другу.

Трещины в зоне выветривания многообразны. Выветривание расширяет первичные, тектонические и д.р. трещины, развитые в верхней части земной коры. При выветривании породы теряют свою монолитность. В них появляется сеть трещин. Вызывающая распадение крупных блоков на отдельные обломки. Распадение пород при выветривании происходит главным образом за счёт раскрытия и расширения ранее существовавших в них трещин и образования новых - трещин выветривания. Основные причины этого: разрывное действие замерзающей воды; изменение температуры в течение суток (инсоляция); разрывное действие солей и минералов, выкристаллизовывающихся в порах породы; разрывное действие корней растений; биохимические реакции и химические процессы, связанные с разложением неустойчивых минералов в зоне выветривания и образованием устойчивых минералов. Частота и характер трещин выветривания зависят от состава, текстуры и структуры пород, от строения и ориентировки поверхности обнажения, также действующими агентами выветривания, их интенсивностью. Степень разрушения пород выветриванием с глубиной уменьшается. Обычно трещины распространены на глубину до 10-15 м, а иногда в карбонатных породах они достигают глубины 30-50 м. Замечено, что на южных склонах сеть трещин выветривания значительно гуще, чем на северных., что объясняется большим различием между расширением и сжатием пород, вызванных суточными колебаниями пород на южных склонах. При прочих равных условиях, в вертикальных обнажениях породы всегда менее выветрелые, чем в горизонтальных. Трещины могут быть заполнены продуктами выветривания, гипсом, глиной. Часто на стенках присутствуют корочки гидроокислов железа.

Трещины отслаивания - следствие разгрузки внутреннего напряжения пород, вызываемой эрозией и другими факторами денудации. Развиваются параллельно обнажённой поверхности, становятся менее ясными с глубиной. В осадочных породах на ориентировку трещин оказывает влияние слоистость.

Трещины бортового отпора (отседания, откоса) - развиты в бортах долин. Рек, оврагов, врезанных в различные скальные, полускальные породы. Бывают наклонены под углом 30-50° в сторону долины, в глубину распространяются до уровня реки. Простирание совпадает с современными либо древними долинами. Обычно бывают открытыми: захватывая наибольшую часть массива пород у земной поверхности, выходят на поверхность склона. Величина их раскрытия зависит от упругих свойств пород, высоты и крутизны склона. Общая конфигурация трещин параболическая, но часто нарушена анизотропностью пород относительно сопротивления разрыву, слоистостью - поэтому они нередко ступенчатые. Происхождение их связывают с нарушением эрозией равновесия в распределении силы тяжести пород, слагающих склоны, путём уничтожения бокового сопротивления. Такие трещины благоприятны для развития карста.

Трещины карстовых провалов образуются над карстовыми подземными полостями и пещерами. Пример: в Кунгурско-Иренском карстовом районе в начальной стадии наблюдается система трещин, образующих замкнутый полигон. Число сторон многоугольника не менее 6, до 249 приближен к кругу). Эти системы образуются на горизонтальных или наклонных поверхностях с крутизной не более 45-50°. Длина сторон не более 1-1,5 м. Ширина трещин до 3-5 см, глубина до 1 см. В начальной стадии очерчены слабо, в дальнейшем выделяются и по ним происходит смещение 9 амплитуда обычно 1-2 см). Затем идёт катастрофическая стадия - окончательный отрыв и провал участка с образованием воронки.

Трещины гидратации ангидрита образуются в перекрывающих их породах. Если это карбонатные породы, в результате проникновения воды карстуется весь массив.

Антропогенные - трещины оседания кровли над подземными выработками. От взрывов и др. Возникающие при провалах трещины лишены признаков минерализации, имеют свежий вид. По простиранию и падению невыдержанны.

В зоне выветривания существует и противоположный процесс - заполнение трещин. Поступающие с поверхности воды вносят в трещины глинистые и другие частицы. Которые могут заполнить расселины. В известняках в трещинах образуется кальцит, в гипсах - гипс (селенит). Это приостанавливает карстовый процесс.

Поры и каверны карстующихся горных пород также могут быть путями передвижения вод. Пористые доломиты карстуются своеобразно - до доломитовой муки и песка. [3.]

Одной из загадок подземного мира является «холодное кипение», или процесс кавитации (от латинского «cavitas» - пустота). Вода при обычном давлении (1 атм.) кипит при 100?С. Но если понизить давление до 0,006-0,043 атм., то кипение возможно в диапазоне температур 0-30 °С. На поверхности обтекаемых движущейся водой или движущихся в ней предметов образуются каверны - пузырьки, наполненные парами воды. Образуясь в зоне пониженного давления и исчезая (конденсируясь, растворяясь) там, где давление выше, пузырьки меняют характер течения. Вызывая большие потери энергии, шум и кавитационную эрозию обтекаемых поверхностей. Особенно агрессивны пузырьки в момент исчезновения («схлопывания»), которое происходит практически мгновенно. Частицы жидкости, окружающей пузырёк. С огромной скоростью устремляются в освободившееся пространство. Ударяясь друг о друга. На этих участках давление повышается до 100 тысяч атм. Исчезновение пузырьков напоминает взрыв микроскопической мины. Если обтекаемые поверхности могут растворяться, то возникает кавитационная коррозия: парциальное давление СО2 в пузырьках воздуха, растворённых в воде, выше, чем в атмосфере.

Кавитация наблюдается на лопастях быстро вращающихся гребных винтов, турбин, насосов, в водоводных тоннелях электростанций. Опыты показали, что для её возникновения нужны скорости потока более 6 м/с. В пещерах отмечены местные скорости до 10 м/с. Так возникает самовозбуждающийся процесс: сперва начинается кавитационная коррозия. Затем зарождаются микровпадины и гребешки, усиливающие её. Возможна кавитация и при падении капель воды. Фотосъёмка со скоростью 1000 кадров в секунду показала, что в момент «приземления» капля сначала сплющивается, а затем растекается со скоростью, достаточной для возникновения кавитации. Кавитация может возникать и при отсутствии движения. Если в жидкости, омывающей неподвижные поверхности, вследствие сейсмических или иных причин возникают ультразвуковые волны, то во впадинах формируются пузырьки газа, исчезающие на гребнях. Сильная кавитация отмечена также в морских пещерах, находящихся в зоне прибоя, а также - во фреатических полостях при движении воды через каналы, разделённые перемычками. [1.]

Трещинноватость, сочетающаяся с пористостью, также возможна. Например, писчий мел, где есть и пористость до 40-45%, обладает ничтожной водопроницаемостью по порам. При отсутствии трещин мел - это водоупор; при появлении их становится водоносным и карстуется. Т.е карст развивается, прежде всего, по трещинам, а поры играют роль резервуара, из которого подземные воды поступают в трещины.

2.3 Движение вод в карстовых массивах

Наличие движущейся воды - третье обязательное условие существования карста. В результате движения карстовых вод возникает водообмен. Интенсивность его характеризуется коэффициентом водообмена, представляющим отношение годового расхода всех карстовых источников и вод, разгружающихся непосредственно в реки, озёра или моря (а также другие водоносные горизонты) к общему объёму подземных вод карстующегося массива или его части. Численная величина коэффициента водообмена зависит от водопроницаемости пород, условий дренажа и питания карстовых вод, климатических условий и других факторов. Наиболее интенсивный водообмен имеет место при расчленённом рельефе. В карстовых районах, при наличии долин магистральных транзитных рек или на берегах морей, возможны следующие гидродинамические зоны:

В зоне поверхностной циркуляции вода стекает по поверхности карстового массива, образуя конусообразные расширения поноров и коррозионно-эрозионные воронки, расширяя устья карстовых шахт (превращая их в пропасти). В карстовых воронках, где понор заилен, стекающие по поверхности воды образуют постоянные или временные озёра, питающиеся атмосферными осадками и талыми водами.

Зона вертикальной нисходящей (периодической) циркуляции, или зона аэрации. Здесь периодически после выпадения осадков или таяния снега происходит движение воды вниз по вертикальным трещинам и пустотам. Мощность зоны определяется толщей карстующихся пород, рельефом и климатом. На слабо расчленённых возвышенных участках с равнинным рельефом она составляет 30-100 м и более, а в горных районах достигает 1-2 км. Выделяют подзону подвешенных карстовых вод - на участках развития местных водоупоров (часто прослои кремнистых известняков). Этим обусловлено наличие источников, вытекающих на склонах значительно выше уровня воды транзитных рек или дна карстовых котловин и польев. Воды подвешенного горизонта могут низвергаться в долины из канала, находящегося на высоте десятки метров; при менее расчленённом рельефе встречаются карстовые потоки, текущие на разных уровнях.

Зона колебания уровня карстовых вод (переходная) с чередованием вертикальной и горизонтальной циркуляции за счёт сезонных колебаний уровня карстовых вод. При подъёме уровня здесь, как и в нижележащей зоне, с которой она сливается, наблюдается горизонтальное движение в направлении дрены. При спаде она включается в вышележащую зону вертикальной циркуляции. Амплитуда колебаний уровня карстовых вод и мощность зоны различна, от первых метров до 100-109 м. Мощность в в 2-3 м указывает на сильную закарстованность известняков. Амплитуда годовых колебаний уровня карстовых вод достигает 20-25 м и даже 30-40 м. Мощность зоны зависит от климатических условий, количества осадков, рельефа. Она уменьшается по мере увеличения закарстованности и роста объёма подземных карстовых пустот. Нижняя граница и мощность переходной зоны изменяются по многолетним периодам. Ниже переходной границы находится ряд зон полного насыщения пустот карстовыми водами.

В зоне горизонтальной циркуляции происходит свободный сток безнапорных вод к магистральным речным артериям или к окраине карстующегося массива.

Зона сифонной циркуляции с каналами в виде перевёрнутого сифона характеризуется напорными водами, которые движутся от водораздельных пространств в подрусловые каналы магистральных рек. В условиях русского и среднеевропейского типов карста воды несут из понор, карстовых воронок и каналов обломочный материал, который заполняет подрусловые пустоты, а из трещин путём растворения пород образуются новые полости. В горных районах при отсутствии магистральных речных долин воды каналов сифонной циркуляции разгружаются на окраине карстующегося массива в виде наземных, а у морей - частично и подводных источников.

В продольном профиле магистральной речной артерии подрусловые пустоты образуют зону подрусловой циркуляции, составляющую одну из важных особенностей циркуляции подземных вод в карстовых районах. Если карстующаяся толща большой мощности распространена значительно ниже дренирующей район транзитной речной артерии, при несколько замедленной глубинной эрозии и преобладании боковой, то по обоим берегам реки наблюдаются только долины временных потоков (овраги, балки, лога), дно которых усеяно карстовыми воронками с понорами, в которые стекают талые и дождевые воды. Вода, которая стекла в поноры или профильтровалась в них, не даёт источников по берегу реки. Источники во многих случаях появляются только тогда, когда местность испытывает поднятие, и глубинная эрозия вскрывает расширенные карстовыми водами трещины и карстовые пустоты, или за счёт наличия рассмотренных ранее местных водоупоров. В результате разбуривания речных долин при проектировании плотин и железнодорожных мостов, а также для водоснабжения, было установлено, что многие реки в областях гипсового и известнякового карста обладают подрусловыми пустотами, часто с карстовым потоком. В речной долине, в русле и под ним могут иметь место комбинации «этажей» стока. В районах, где карстующиеся породы развиты значительно ниже уровня реки, могут быть три основных пути карстовых вод в поперечной зоне сифонной циркуляции: в русловой аллювий; в подрусловые подстилающие пустоты; в подрусловые пустоты, находящиеся на глубине 20-30 м и более под рекой.

По мере заполнения подрусловых карстовых пустот в зависимости от местных геологических и других условий подрусловой поток либо исчезает, либо перемещается на другой участок поперечного профиля в новые пустоты, образовавшиеся за счёт выщелачивания. Так как подземный поток перемещается в горизонтальном направлении медленнее, чем меандрирующая река, то он может быть не только под руслом реки, но и под поймой и террасами. Подрусловый поток наблюдается не по всему течению рек. В местах, где за счёт фациальных изменений, строения или разрывных нарушений карстующиеся породы под руслом замещаются некарстующимися, подрусловой поток выходит в реке или близ её русла в виде восходящего источника. Зимой над местом выхода более тёплых подрусловых вод лёд не образуется.

Зона глубинной циркуляции ниже речных долин и подрусловых пустот характеризуется движением карстовых вод по структурам в направлении базисов разгрузки континентов и морей. Движение обычно происходит весьма медленно и зависит от разности отметок области питания и области разгрузки, проницаемости и др.

В горных складчатых сооружениях с современных или недавним вулканизмом карстовые явления могут быть вызваны также выщелачиванием пород восходящими глубинными - термальными и другими водами, поступающими главным образом по разломам. В местах, где прекратилось поступление глубинных вод, наблюдаются арагонитовые сталагмитообразные «гейзеровые капельники». При отложении их в отличие от обычных сталагмитов воды поступают не сверху, а снизу. Таким образом, это скорее своеобразные перевёрнутые сталактиты, представляющие собой конусы диаметром до 16 м и высотой 0,1-2 м, с каналом внутри и кратером, иногда развиты «паразитические» конусы. Так появляется гейзерный сталагмит новой генерации. Изучение родниковых кратеров показывает, что из воды минералы выпадают в следующей последовательности: лимонит, вад, арагонит, силикокарбонат. Глубинные растворы обуславливают скопление в карстовых пустотах различных полезных ископаемых.

Своеобразна и малоизученна циркуляция вод в рудном карсте. Сульфидные залежи, попав в обстановку выветривания, окисляются. Просачивающиеся с поверхности дождевые и талые воды, обогащённые серной кислотой, интенсивно закарстовывают известняки, вмещающие руды.

Характер движения подземных водотоков может быть ламинарным и турбулентным. При турбулентном движении струйки жидкости пересекаются, быстро теряя энергию - в отличие от ламинарного. Турбулентное движение возникает в жидкости тем быстрее, чем выше её плотность, меньше вязкость, больше скорость и диаметр потока. В карстовых полостях происходит непрерывная смена видов движения: и в пространстве (вниз по течению реки), и во времени (в высокую и малую воду).

Формы существования воды, в т.ч. и под землёй, многообразны. Парообразная влага может передвигаться независимо от потока воздуха, перемещаясь из зон с большей абсолютной влажностью к зонам с меньшей влажностью, при их равенстве - из зоны с большей температурой воздуха (t, ?С) к меньшей. По микроклиматическим данным, в тёплый период времени абсолютная влажность под землёй на 1-7 мм рт.ст. ниже, чем на поверхности. Возникает устойчивый поток влаги из атмосферы в карстовые пещеры и шахты, где и происходит её конденсация. Гидрогеологические данные свидетельствуют о существовании небольших, но постоянных источников близ горных вершин, перевалов, на изолированных возвышенностях - останцах, где питание дождевыми осадками близко к нулю; давно замечено, что карстовые реки не пересыхают всё лето. Эксперименты по получению влаги в специальных установках с различным заполнителем (глыбы, щебёнка, галька, песок), проведённые в разных климатических зонах, показали, что каждые 5 м? заполнителя генерируют в среднем 1 литр воды. Конденсация происходит и в летний, и в зимний периоды, причём интенсивность её увеличивается с понижением температуры воздуха на поверхности. Например, в Крыму в холодный сезон температура воздуха под землёй составляет +10?С, абсолютная влажность - 9.0 мм рт.ст., а на поверхности -10?С и 2,2 мм рт.ст. Таким образом, в этот период происходит вынос влаги из карстового массива. Но парообразная влага из глубины массива, поднимаясь вверх, конденсируется в верхней, охлаждённой части и на нижней поверхности покрывающего её снега и в виде капели поступает по трещинам и полостям обратно в глубину массива. Таким образом, летняя конденсация - это прибавка в водном балансе карстовых массивов, а зимняя - «двигатель» коррозионных процессов в приповерхностной зоне. Конденсационная влага в момент зарождения обладает нулевой минерализацией и очень высокой агрессивностью - способностью растворять горную породу. Это определяет роль конденсации в холодном (образование микроформ на стенах, разрушение натёков) и горячем (образование пещер-шаров над поверхностью термальных вод) спелеогенезе. Конденсационное происхождение могут иметь сталактиты, коры, кораллиты, геликтиты, цветы и пр.

Капель и струйки гравитационной воды, стекая по стенам, образуют на дне пещер подземные озёра. Согласно классификации Г.А. Максимовича, они могут иметь коррозионно-котловинное, аккумулятивно-котловинное, плотинное или сифонное происхождение. Котловинные озёра в основном «подвешенные», располагаются выше уровня подземных вод. Образуются за счёт растворяющей деятельности воды или в результате накопления на дне пещеры песчано-глинистых отложений. Пополняются они во время паводков и, так как под землёй почти нет испарения, имеют слабо меняющиеся уровни, которые иногда фиксируются оторочками кальцита. Они могут терять воду, которая уходит в трещины, открывающиеся после землетрясений, или прорывают пробку глины на дне. Тогда только по оторочкам на стенах залов можно сказать, что здесь некогда была вода. Объём таких озёр невелик (редко более первых сотен м?). Плотинные озёра возникают в руслах подземных рек у скоплений обрушившихся со сводов камней или у натечных плотин, вырастающих в потоке при ритмичном отложении карбоната кальция. Они существуют довольно долго и исчезают при пропиливании рекой плотины. Их объёмы невелики (100-500 м?). Сифонные озёра заполняют U-образные каналы, часто неизвестной глубины и протяжённости. Пещерные озёра, возникающие на уровне карстовых вод, иногда имеют огромные размеры (до 1-2 гектаров).

3. ПЕЩЕРНЫЕ ОТЛОЖЕНИЯ

В пещерах присутствуют практически все осадочные и кристаллические образования, известные на поверхности, но представлены они специфическими формами.

1. Остаточные отложения. В карстующихся породах в небольших количествах (1 - 10%) обязательно содержится примесь песка или глины, состоящая из SiO2, Al2O3, Fe2O3. При растворении известняков или гипсов нерастворимый остаток накапливается на стенах трещин, сползает на дно галерей. Смешивается с другими пещерными отложениями. К примеру, из 1 м? юрских известняков (около 2,7 т) образуется 140 кг глины, которая сложена минералами иллитом, монтмориллонитом, каолинитом, полевым шпатом, кварцем. От их соотношения зависят свойства глин: часть из них набухает при увлажнении, закупоривая мелкие трещины, часть, напротив, легко отдаёт воду и быстро осыпается со стенок. Иногда в образовании налётов глины принимают участие и бактерии: некоторые виды микробов способны получать углерод непосредственно из известняка - так на стенах образуются червеобразные или округлые углубления («глинистые вермикуляции»).

2. Обвальные отложения подразделяют на три группы разного происхождения.

- термогравитационные образуются только у входа в пещеру, где велики суточные и сезонные колебания температур. Их стены «шелушатся», присводовая часть полости растёт, на полу накапливается щебень и мелкозём. Количество этого материала, его состав, размеры, форма частиц, число их рёбер и граней хранят зашифрованную информацию об изменениях климата района на протяжении десятков тысяч лет.

- обвально-гравитационные отложения формируются на всём протяжении пещер, особенно обильно - в зонах тектонической трещинноватости. Щебёнка, дресва, небольшие глыбы, упавшие со сводов, дают представление о геологическом строении залов, которое сложно изучить непосредственно.

- провально-гравитационные отложения: при обвале на дне галереи только тот материал, который имеется в самой пещере; при провале свода в неё поступает материал с поверхности, а при обрушении междуэтажных перекрытий возникают огромные залы. Эти отложения представлены блоками и глыбами весом в сотни тысяч тонн. Красновато-бурая поверхность известняков покрыта белыми «звёздами» - следами ударов упавших камней. Слагающие пещеру известняки сами падают под углом 30?, поэтому при отрыве пласта в своде зала он смещается шарнирно, с поворотом и переворотом. Кроме блоков и глыб, наблюдаются поваленные натечные колонны. Сильные землетрясения вызывают обрушение сводов, и ориентированные поваленные колонны иногда уверенно указывают на эпицентры. Натечные колонны также - «минералогические» отвесы, в которых зафиксировано положение геофизической вертикали данной местности на протяжении всего её роста. Если после падения на них нарастают сталагмиты или сталактиты, то по их возрасту можно определить возраст колонны.

Обратная связь карста и сейсмологии заключается в том, что при провале свода пещеры образуются блоки весом до 2-3 тысяч тонн. Удар о пол при падении с высоты 10-100 м высвобождает энергию, равную 1·! 013 - 1015 эрг, что соизмеримо с энергией землетрясений. Локализуется она в небольшом объёме породы, но может вызвать ощутимое местное землетрясение силой до 5 баллов.

3. Водные механические отложения - источник сведений об условиях развития карстовых полостей. Если состав отложений соответствует составу минералов вмещающих пород, то пещера сформирована местными потоками. Крупность таких отложений - от метровых валунов (в пещерах, сформированных ледниками), до тончайшей глины. Зная площадь поперечного сечения хода и диаметры отложившихся частиц, оценивают скорости и расход древних потоков, в какой гидродинамической зоне закладывалась пещера.

4. водные хемогенные отложения. Термины «сталактит» и «сталагмит» (от греческого «сталагма» - капля) ввёл в литературу в 1655 г. датский натуралист Олао Ворм. Эти образования связаны с капельной формой движения воды - раствора, содержащего различные компоненты. Когда в основании обводнённой трещины формируется капля раствора, это не только борьба силы поверхностного натяжения и силы тяжести. Одновременно начинаются химические процессы, приводящие к выпадению на контакте раствора и горной породы микроскопических частиц карбоната кальция. Несколько тысяч капель, сорвавшихся с потолка пещеры, оставляют после себя на контакте порода / раствор тонкое полупрозрачное колечко кальцита. Следующие порции воды уже будут образовывать капли на контакте кальцит / раствор. Так из колечка формируется всё удлиняющаяся трубочка (брчки - достигают 4-5 м в пещере Гомбасек, Словакия). Таким образом, химическая основа процесса - обратимая реакция

CaCO3 + Н2О + CO2<=>Ca2+ + 2HCO3- (1)

При растворении известняка реакция идёт вправо, с образованием одного двухвалентного иона Ca и двух одновалентных ионов HCO3. При образовании натёков реакция идёт влево и из этих ионов образуется минерал кальцит. Реакция (1) идёт в несколько стадий. Сначала вода взаимодействует с углекислым газом:

H2O + CO2 = H2CO3 <=> H+ + HCO3- (2)

Но угольная кислота слабая, поэтому диссоциирует на ион водорода Н+ и на ион HCO3- Ион водорода подкисляет раствор, и только после этого начинается растворение кальцита. В формуле (1) только один ион HCO3 поступает из породы, а второй не связан с нею и образуется из привнесенных в карстовый массив воды и углекислого газа. Это на 20-20% уменьшает расчётную величину активности карстового процесса. Например, пусть сумма всех ионов, находящихся в воде, составляет 400 мг/л (в т.ч. 200 мг/л HCO3). Если мы используем анализ для оценки питьевой воды, то в расчёт включаются все 400 мг/л, но если по этому анализу рассчитывать интенсивность карстового процесса, то в расчёт следует включать сумму ионов минус половина содержания иона HCO3 (400-100=300 мг/л). Также необходимо учитывать, какой перепад парциальных давлений CO2 имеется в системе. В 40-50 гг. считалось, что карстовый процесс идёт только за счёт CO2, поступающего из атмосферы. Но в воздухе его всего 0, 03-0,04 объёмных % (давление 0,0003-0,0004 мм рт.ст.), и колебания этой величины по широте и высоте над уровнем моря незначительны. Но замечено, что более богаты натёками пещеры умеренных широт и субтропиков, а в пещерах высоких широт и больших высот их совсем мало. Изучение состава почвенного воздуха показало, что содержание CO2 в нём 1-5 объёмных %, т.е. на 1,5-2 порядка больше, чем в атмосфере. Немедленно возникла гипотеза: сталактиты образуются при перепаде парциального давления CO2 в трещинах (такое же, как и в почвенном воздухе) и воздуха пещер, имеющего атмосферное содержание CO2. Таким образом, сталактиты образуются в основном не при испарении влаги, а при наличии градиента парциального давления CO2 от 1-5% до 0,1-0,5%(воздух в пещерах). Пока питающий канал сталактита открыт, по нему регулярно поступают капли. Срываясь с его кончика, они образуют на полу одиночный сталагмит. Происходит это десятки-сотни лет. Когда питающий канал зарастёт, будет забит глиной или песчинками, в нём повышается гидростатическое давление. Стенка прорывается, и сталактит продолжает расти за счёт стекания плёнки растворов по внешней стороне. При просачивании воды вдоль плоскостей напластования и наклонных трещин в своде возникают ряды сталактитов, бахрома, занавеси, каскады. В зависимости от постоянства водопритока и высоты зала под капельниками образуются одиночные сталагмиты-палки высотой 1-2 м (до десятков метров) и диаметром 3-4 см. При срастании сталактитов и сталагмитов образуются колонны - сталагнаты, высотой до 30-40 м и диаметром 10-12 м. В субаэральных условиях (воздушной среде) образуются антодиты (цветы), пузыри (баллоны), кораллы (кораллоиды, ботриоиды), геликтиты (спирали до 2 м высотой) и пр. Отмечены субаквальные формы. На поверхности подземных озёр образуется тонкая минеральная плёнка, которая может прикрепиться к стенке. Если уровень воды колеблется, то образуются уровни нарастания. В слабо проточной воде образуются плотины-гуры (от нескольких см до 15 м высотой), пещерный жемчуг. Необъяснимо пока происхождение только «лунного молока».

Рис. 10. Геохимические обстановки образования водных хемогенных отложений пещер. Породы и отложения: а - известняки, б - доломиты, в-гипс, г - каменная соль, д - рудное тело, е - глина, ж - гуано, з - почвы; воды: и - почвенные, к - инфильтрационные, л - термальные; м - классы минералов (1 - лёд, 2 - сульфаты, 3 - нитраты, 4 - галоиды, 5 - фосфаты, 6 - сернистые, 7 - карбонаты, 8 - оксиды, 9 - металлы карбонатов, 10 - сульфиды); н - особые условия образования (наличие: 1 - пирита, 2 - бактерий, 3 - колоний летучих мышей, 4 - гидротермальных растворов, 5 - пирита и марказита); о - минеральные виды и формы их выделения (1 - ледяные сталактиты; 2 - дендриты эпсомита, мирабилита, тенардита; 3 - коры эпсомита и мирабилита; 4 - кристаллы гипса, барита, целестина; 5 - различные кальцитовые образования; 6 - лунное молоко; 7 - соляные формы; 8 - гидрокальцит; 9 - фосфаты алюминия; 10 - нитрофосфаты; 11 - минералы цинка и железа; 12 - оксиды сульфидов; 13 - ванадинит, флюорит; 14 - оксиды железа и свинца; 15 - лимонит, гётит; 16 - церуссит, азурит, малахит; 17 - сталактиты опала; 18 - гемиморфит; 19 - кристаллы кварца)

5. Криогенные. Вода в виде снега и льда характерна для пещер с отрицательными температурами. Скопления снега образуются только в подземных полостях с большими входами. Снег залетает в пещеру или накапливается на уступах шахт. Иногда формируются снежные конусы объёмом десятки-сотни м? на глубине 100-150 м под входным отверстием. Лёд в пещерах имеет различный генезис. Чаще происходит уплотнение снега, который превращается в фирн и глетчерный лёд. Реже образуется подземный ледник, ещё реже отмечается сохранение льда, образованного в условиях многолетней мерзлоты или затекание наземных ледников. Второй путь образования льда - попадание в холодные (статические) пещеры талой снеговой воды. Третий путь - охлаждение воздуха в ветровых (динамических) пещерах и четвёртый - образование сублимационных кристаллов атмогенного происхождения на охлаждённой поверхности горной породы или на льду. Наименее минерализованный (30-60 г./л) - сублимационный и глетчерный лёд, наиболее (более 2 г/л) - лёд из гипсовых и соляных пещер. Пещеры со льдом чаще всего встречаются в горах, на высоте от 900 до 2000 м. Лёд образует все формы, свойственные обычным натёкам.

6. Органогенные: гуано, костяная брекчия, фосфориты, селитра. Выделяют также антропогенные отложения.

7. Гидротермальные: ангидрит, арагонит, анкерит, барит, гематит, кварц, киноварь, рутил. Также некоторые разности зональных отложений кальцита - мраморные ониксы. Такие образования имеют специфические формы выделения: часты хорошо огранённые кристаллы, пересекающиеся перегородки (боксворки), «гейзермиты»… Известны карстовые месторождения свинца и цинка, сурьмы и ртути, урана и золота, бария и целестина, исландского шпата и бокситов, никеля и марганца, железа и серы, малахита и алмазов.

Заключение

Карст очень широко распространён на поверхности Земли и в приповерхностной зоне земной коры. Наблюдается исключительно большая специфичность и универсальность карстовых форм и гидрологических явлений. В большинстве случаев на поверхности Земли преобладает ванновый рельеф, если не считать останцового тропического карста (который сам по себе универсален), но и в тропиках на равнинах ванновый рельеф распространён достаточно широко, к тому же он часто сочетается с останцовым. Карры встречаются не во всех типах карста, но как только карстующаяся порода обнажается на поверхности, они появляются. В различных геолого-геоморфологических и физико-географических условиях карстовые формы представлены неодинаковыми разновидностями, но основные типы форм и гидрологических явлений налицо всюду. Универсальность карстовых форм и гидрологических явлений - это следствие ведущего процесса в образовании карста: процесса выщелачивания растворимых горных пород. Можно подчеркнуть приоритет геологической основы в развитии карста, карстового рельефа и карстового ландшафта. Также влияние на развитие карста оказывает физико-географическая обстановка, с которой связана широтная и высотная зональность карстовых явлений. Карстовый рельеф, карстовые ландшафты и происходящие в них процессы настолько специфичны, что ни одно серьёзное хозяйственное мероприятие на закарстованной территории не может быть выполнено без их учёта и часто без специального изучения. Карст оказывает глубокое влияние на ландшафт как физико-географический комплекс. Он влияет на сток, карстовые формы рельефа - на микроклимат и распределение почвенно-растительного покрова, карстующиеся породы, их состав - на почвы и растительность, химический состав карстовых вод, на ландшафт в целом и т.д. Дренирующая способность карста усиливает недостаток влаги в засушливых областях и, наоборот, создаёт более благоприятные условия для развития ландшафтов в областях, избыточно увлажнённых. Карст ведёт к деградации вечной мерзлоты, также заметно улучшая природные особенности территории. О степени влияния карста на географический ландшафт можно судить исходя из морфолого-генетического типа карста.

Наблюдения в пещерах позволяют выявить карстовую тектонику. Пещеры не только дают палеонтологическую и археологическую датировку, а также амплитуду неотектонических движений, но и позволяют установить новейшие разрывные нарушения.

Список литературы

1. Дублянский В.Н. Занимательная спелеология. - Урал LTD, 2000. - 500 с.

2. Гвоздецкий Н.А. Карст. - М.: Мысль, 1981. - 212 с.

3. Максимович Г.А. Основы карстоведения, том I. - Пермь, 1963.

4. Короновский Н.В., Якушова А.Ф. Основы геологии. - М.: Высш. шк., 1991. - 416 с.

5. Тимофеев Д.А., Дублянский В.Н., Кикнадзе Т.З. Терминология карста. - М.: Наука, 1991. - 260 с.

6. Дублянский В.Н. Карстовые пещеры. - М: Знание, 1977. - 50 с.


Подобные документы

  • Понятие, формы и классификация карста, изучение вопроса о его районировании. Методика исследований и факторы карстообразования. Химический состав горных пород и их структура. Причины аккумуляции минеральных веществ в карстовых фациях, полезные ископаемые.

    курсовая работа [1,3 M], добавлен 24.11.2010

  • Изучение сущности и происхождения карста (карстовых явлений) - ряда явлений, вызванных растворением (выщелачиванием) некоторых горных пород. Отличительные черты карстовых явлений в Ново-Афонской пещере на Кавказе. Особенности пещерной фауны, спелеофауны.

    реферат [25,7 K], добавлен 02.06.2010

  • Классификация карста, его состав и структура. Исследованием карста в Горном Алтае (современные методы и средства). Полевые, стационарные и лабораторно-экспериментальные исследования, картографирование карста. Геофизический и количественный методы.

    курсовая работа [1,9 M], добавлен 12.08.2012

  • О понятии "карст" и состояние проблемы его изучения. Виды карста и особенности их распространения. Факторы и условия карстообразования, влияние почв, климата и стока. Основные формы рельефа и особенности карстового процесса окрестностей озера Баскунчака.

    курсовая работа [3,5 M], добавлен 29.08.2013

  • Понятие карста и описание основных подземных и поверхностных карстовых форм рельефа. Факторы, влияющие на развитие карстового процесса и формирование карстовых форм рельефа. Характеристика основных карстовых областей в пределах Красноярского края.

    дипломная работа [2,1 M], добавлен 24.10.2009

  • Условия развития карста: наличие растворимых пород, растворяющая способность воды. Особенности распространения карста на земле. Анализ структуры карстовых ландшафтов, типы геохимических барьеров. Характеристика ландшафтной картосхемы плато Кырктау.

    курсовая работа [4,9 M], добавлен 25.04.2012

  • Основные литологические типы карста. Условия залегания карстующихся пород. Геофизические методы исследования в карстовых районах. Геологические предпосылки постановки геофизических методов на карст. Методики электроразведки и сеймсразведки карста.

    реферат [28,0 K], добавлен 31.05.2012

  • Понятие и факторы карста, причины его развития. Техногенные факторы и условия возникновения и основные закономерности развития карста. Роль карста при инженерно-геологической и меры борьбы. Оценка воздействия разработки карстового комплекса пещеры Хэйтэй.

    реферат [34,7 K], добавлен 18.07.2011

  • Классификация водоносных горизонтов. Состав и гидрогеологические свойства пластов водопроницаемых горных пород. Условия залегания водоносной породы. Изучение и учет дебита источников из горных выработок в районах развития склоновых процессов, карста.

    реферат [35,5 K], добавлен 08.12.2014

  • Гидрологические объекты, поверхностные и подземные формы карста. Изучение процесса растворения карбонатных и агрессивность горных пород. Геологические условия развития и географические условия карста. Применение полезных ископаемых в строительстве.

    курсовая работа [108,1 K], добавлен 17.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.