Свойства грунтов

Предельные абсолютные и относительные деформации пучения фундамента. Физико-механические характеристики мерзлых грунтов. Классификация мёрзлых грунтов по гранулометрическому составу, льдистости и засоленности. Свойства просадочных грунтов лёссовых пород.

Рубрика Геология, гидрология и геодезия
Вид курсовая работа
Язык русский
Дата добавления 07.06.2009
Размер файла 558,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Многолетний опыт исследований лёссов показывает, что одним из основных факторов, определяющих просадочность этих пород, является их специфическая структура, то есть размер и форма твердых (минеральных) структурных элементов, строение порового пространства и особый характер структурных связей (взаимодействий между частицами).

Как уже отмечалось, лёссы - это пылеватые породы, которые не менее чем на 50% состоят из пылеватых частиц с размерами 0,005 - 0,05 мм. Для большинства лёссов характерно высокое, иногда до 15 - 20%, содержание карбонатов, преимущественно кальцита (CaCO3), и присутствие до 3 - 5% растворимых солей (сульфаты, хлориды). Важной особенностью структуры лёссовых пород является ее высокая агрегированность, когда пылеватые и глинистые частицы образуют изометричные агрегаты с размерами 0,01 - 0,25 мм. Фотография такого глинисто-пылеватого агрегата, полученная с помощью растрового электронного микроскопа (РЭМ), показана на рис.4а. Специфическое строение имеют песчаные и крупные пылеватые зерна, названные глобулами. Как показали наблюдения в РЭМ, в центре глобулы размещается ядро, состоящее из отдельных кварцевых микроблоков. Поверх ядра располагается дырчатая оболочка кальцита, которая в свою очередь перекрывается глинистой "рубашкой" (непрерывной пленкой частиц глинистых минералов), пропитанной оксидами железа и аморфным кремнеземом (SiO2). Пример такой искусственно разрушенной глобулы показан на рис.4б, где в центре виден хорошо ограненный микрокристалл кварца со следами кальцитовой оболочки на поверхности. Специфический характер твердых структурных элементов в лёссах обусловливает формирование в них так называемых агрегативных, или зернистых, микроструктур. Пример агрегативной микроструктуры показан на рис.5а, где А - глинисто-пылеватый агрегат изометричной формы. Пористость просадочных лёссов обычно изменяется от 42 до 46%. При этом поровое пространство лёссовых пород характеризуется присутствием трех типов пор: макропор, межзерновых и межагрегатных микропор, внутриагрегатных микропор. Наиболее крупными являются макропоры, имеющие трубчатую форму с диаметром 0,05 - 0,5 мм (рис.5а,

3). Они обычно хорошо видны невооруженным глазом и пронизывают лёссовую породу в вертикальном направлении. Макропоры являются одним из важнейших диагностических признаков структуры просадочных лёссов. Некоторые ученые считают, что макропоры - следы корней растений. Однако сейчас существует мнение, что большая часть макропор представляет собой своеобразные магистральные каналы, образовавшиеся в результате преимущественно вертикальной миграции воды и газов. Об этом свидетельствует наличие значительных выделений солей на стенках макропор.

Наиболее важными в структуре лёссовых пород являются межагрегатные и межзерновые микропоры (рис.5а,

2). Эти микропоры обычно имеют изометричную форму, а их размер изменяется от 0,008 до 0,05 мм. Электронномикроскопические исследования показывают, что подобные микропоры слагают основную часть порового пространства и относятся к категории так называемой активной пористости, которая и определяет величину просадочной деформации породы. Подчиненную роль в поровом пространстве играют более мелкие внутриагрегатные микропоры (рис.4а; 5а,

1) с размером менее 0,008 мм. Специфический состав и условия формирования лёссовых пород приводят к образованию у них разнообразных по своей природе структурных связей, которые во многом определяют особенности деформирования этих пород при увлажнении. Основную роль в структурном сцеплении (связности) лёссовых пород играют контакты между зернами и глинисто-пылеватыми агрегатами, осуществляемые через глинистые "рубашки" или глинистые "мостики". В физико-химической механике дисперсных систем такие контакты называются переходными. Их прочность обусловлена ионно-электростатическими силами. Характерной особенностью переходных контактов является их обратимость по отношению к воде. При увлажнении они быстро теряют прочность и трансформируются в слабопрочные коагуляционные контакты. Помимо переходных, в просадочных лёссовых породах могут также существовать фазовые контакты цементационного типа, обусловленные выделением легко растворимых солей в приконтактных зонах при испарении поровой влаги. Рассматривая механизм просадочности лёссов, можно сказать, что присутствие обратимых переходных контактов повышает просадочность благодаря их быстрому разрушению при увлажнении породы. Наличие же более прочных фазовых контактов цементационного типа может приводить к увеличению прочности всей структуры и, соответственно, снижению величины просадки. Для подобных пород характерны медленные послепросадочные деформации, которые во много раз могут превысить величину самой просадки при кратковременном увлажнении. И, наконец, при рассмотрении процесса просадочности лёссов нельзя не принять во внимание присутствие в этих породах сил поверхностного натяжения воды, так называемых капиллярных сил, о которых часто забывают многие ученые. Точные экспериментальные исследования показывают, что по мере заполнения пор водой, то есть при исчезновении капиллярных менисков, связывающих отдельные зерна и агрегаты, при увлажнении лёсса происходит слишком быстрое и резкое снижение его прочности, которое нельзя объяснить только разрушением переходных и цементационных контактов. Силы поверхностного натяжения воды вполне могут играть роль своеобразного спускового механизма, обусловливающего начало процесса просадки. Подводя итог, можно сказать, что в основе просадки лежат два взаимосвязанных явления, развивающихся при увлажнении лёссов и воздействии внешней нагрузки. Во-первых, происходит резкое снижение энергии взаимодействия структурных элементов на контактах, потеря структурной прочности вследствие преобразования переходных контактов в коагуляционные и исчезновение сил поверхностного натяжения. Во-вторых, происходит распад глинисто-пылеватых агрегатов, сопровождаемый формированием своеобразных дефектов в микроструктуре лёссов, и возникают условия для взаимного смещения структурных элементов. Таким образом, в результате просадки происходит смыкание части макропор и большинства крупных межагрегатных микропор и формируется более плотная и однородная микроструктура, аналогичная показанной на рис.5б. Одновременно возрастает содержание мелких межагрегатных и внутриагрегатных микропор (рис.5б, 2 и 1 соответственно).

Способы борьбы с просадочностью лёссовых пород.

В связи с широким распространением лёссовых пород на территории России и стран СНГ проблема борьбы с просадочностью этих пород в основаниях инженерных сооружений становится весьма актуальной. Ведь при промачивании лёсса происходит просадка и резкое уменьшение прочности грунта (под грунтом понимают любую горную породу, являющуюся предметом инженерной деятельности человека). При этом наблюдается потеря устойчивости основания, его интенсивная осадка и часто выдавливание водонасыщенного лёссового грунта из под фундамента сооружения, что обычно приводит к полному или частичному разрушению зданий, плотин, дорог и т.д. По оценкам специалистов, до 45% стоимости работ по строительству гражданских и промышленных объектов на лёссовых грунтах тратится на комплекс мероприятий, предотвращающих деформацию сооружений из-за просадочности. Познание природы просадочности лёссовых пород позволило разработать эффективные инженерные методы борьбы с этим грозным явлением. В основном эти методы сводятся к воздействию на неустойчивую специфическую структуру лёсса и трансформации ее в устойчивое недеформируемое состояние. При этом, исходя из описанного механизма просадки, стремятся повысить плотность лёссового грунта (снизить его активную пористость) и увеличить прочность контактов между минеральными частицами (перевести менее прочные, обратимые по отношению к воде, переходные контакты в более прочные - фазовые). Существует несколько способов борьбы с просадкой лёссов. Наиболее распространенным является механическое уплотнение лёссовых грунтов тяжелыми трамбовками, вес которых может достигать 10 т, а иногда и более. Обычно трамбовки многократно (до 10 - 16 раз) сбрасываются на уплотняемый участок грунта с высоты 4 - 8 м. Данный метод позволяет уплотнить толщу лёссового грунта на глубину до 3,5м. Если необходимо ликвидировать просадочные свойства лёссовых грунтов на глубину до 25 м, то проводят их глубинное уплотнение грунтовыми набивными сваями или энергией взрыва. Иногда для ликвидации просадочных свойств производят предварительное промачивание лёссового массива. При этом происходит спровоцированная просадка грунта, после чего он уплотняется, теряет просадочность и переходит в стабильное состояние. Одним из способов борьбы с просадочностью является термическое закрепление лёссовых грунтов, при котором через грунт с помощью специальных приспособлений пропускают раскаленный воздух или газы при температуре 300 - 800 њC. Под действием высокой температуры происходит оплавление и спекание минералов на контактах между отдельными частицами и агрегатами частиц и формируются прочные фазовые контакты кристаллизационного типа, устойчивые по отношению к воздействию воды. В результате существенно повышается прочность лёссового грунта и он становится непросадочным. Просадочность многих типов лёссовых отложений может быть также существенно уменьшена с помощью метода силикатизации. При этом в грунт через перфорированные трубы с одной стороны нагнетают раствор силиката натрия (жидкого стекла), а с другой - раствор хлористого кальция. При соединении обоих растворов в порах просадочного грунта образуется водонерастворимый гель кремниевой кислоты, который цементирует грунт и делает его непросадочным. К сожалению, данный метод в некоторых случаях может приводить к сильному химическому загрязнению закрепляемых пород, и поэтому в настоящее время он применяется очень редко.

Список литературы

1. Грунтоведение. Под ред. акад.Е.М. Сергеева М.: 1983.

2. Кригер Н.И. Лёсс, его свойства и связь с географической средой. М.: Наука, 1965.

3. Ларионов А.К. Инженерно-геологическое изучение структуры рыхлых пород. М.: Недра, 1986.

4. Вялов С.С. Реологические основы механики мёрзлых грунтов. М.: Высш. школа, 1978.447 с.

5. ГОСТ 25100-95 Классификация.

6. ГОСТ 12248-96 Грунты. Методы лабораторного определения характеристик прочности и деформируемости.

7. Ершов Э.Д., Хрусталёв Л.Н., Дубиков Г. И, Пармузин С.Ю. Инженерная геокриология. М.: Недра, 1991.439 с.

8. Инженерная геокриология. Под ред. Э.Д. Ершова-М.: Недра, 1991.,439 с.

9. Основы геокриологии. Под ред. Э.Д. Ершова, Ч.1., М.: Изд-во

10. МГУ, 1995.368 с.

11. Кудрявцев В.А., Достовалов В.Н., Романовский Н.Н., КондратьеваК.А., Меламед В. Г Общее мерзлотоведение. М.: Изд-во МГУ, 1978.,464 с.

12. Цытович Н.А. Механика мёрзлых грунтов. М.: Высш. школа, 1973.448 с.

13. Шушерина Е.П. Сопротивление мёрзлых дисперсных пород разрыву в области низких температур (до -60°С) - Мерзлотные исследования, 1974, вып 14, с179-189.


Подобные документы

  • Характеристика крупнообломочных и песчаных грунтов. Анализ влияния состава, структуры, текстуры и состояния грунтов на их свойства. Инженерно-геологическая классификация грунтов. Характер связей между частицами в породах. Механические свойства грунтов.

    контрольная работа [27,9 K], добавлен 19.10.2014

  • Общее представление и классификация грунтов, их физико-механические свойства: прочность, деформируемость, изменчивость во времени. Генетический подход к грунтам – методологическая основа грунтоведения. Виды фракций и пород по гранулометрическому составу.

    презентация [8,6 M], добавлен 30.04.2014

  • Характеристики и свойства горных пород и их породообразующих минералов. Условия образования эоловых отложений. Составление инженерно-геологической характеристики грунтов. Описание подземных межмерзлотных вод, особенности их существования и движения.

    контрольная работа [588,9 K], добавлен 31.01.2011

  • Оценка инженерно-геологических условий строительной площадки. Расчет физико-механических свойств грунтов. Определение показателей текучести слоя, коэффициента пористости и водонасыщенности, модуля деформации. Разновидности глинистых грунтов и песка.

    контрольная работа [223,4 K], добавлен 13.05.2015

  • Физико-географическое описание и геолого-литологическая характеристика грунтов. Определение гранулометрического состава моренных грунтов. Аэрометрический метод определения состава грунтов - необходимое оборудование, испытание, обработка результатов.

    курсовая работа [1,1 M], добавлен 15.02.2014

  • Физико-географический обзор, геологическое строение и гидрогеологические условия Усть-Лабинского района. Проведение инженерно-геологических работ для проекта строительства компрессорной станции. Испытания просадочных грунтов статическими нагрузками.

    дипломная работа [994,9 K], добавлен 09.10.2013

  • Классификация обломков и частиц осадочных горных пород, принятая в дорожном строительстве. Геологическая деятельность моря. Влияние поглотительной способности грунтов на их строительные свойства. Определение угла естественного откоса песчаных грунтов.

    контрольная работа [32,2 K], добавлен 22.11.2010

  • Состав и строение грунтов, типы просадки. Методы устранение просадочности лессовых грунтов. Лессовые просадочные грунты западной Сибири. Изменения физико-механических характеристик лессовых грунтов г. Барнаула в зависимости от сроков эксплуатации зданий.

    реферат [633,7 K], добавлен 02.10.2013

  • Геологическое строение, стратиграфия, генезис отложений, тектоника территории района изысканий. Коррозионная активность грунтов и воды. Закономерности изменения и взаимовлияния физических характеристик специфических глинистых грунтов и давления набухания.

    дипломная работа [1,4 M], добавлен 16.02.2016

  • Породообразующие минералы и горные породы. Водно-физические свойства грунтов. Экзогенные процессы и вызванные ими явления. Геологическая деятельность атмосферных осадков. Геологическая деятельность озер, болот и водохранилищ. Особенности лессовых грунтов.

    курс лекций [1,8 M], добавлен 20.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.