Анализ ремонтно-изоляционных работ в условиях УПНП и КРС
Физико-химические и коллекторские свойства горных пород. Виды и причины обводнения скважин. Оборудование, применяемое при ремонтно-изоляционных работах. Расчёт процесса изоляционных работ. Характеристика геологического строения эксплуатационного объекта.
Рубрика | Геология, гидрология и геодезия |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 25.06.2010 |
Размер файла | 3,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
3) тампонажного цемента 1 г, воды 265 л, смолы ФР-12 150 л, формалина 85 л (ТатНИИ).
При цементировании с возможным последующим удалением цемента (например, при цементировании дополнительной колонны - летучки) можно применять карбонатный цементный раствор, полученный путем затворения 1 т тампонажного цемента, 560 кг мраморного порошка и 30 кг поваренной соли, растворенной в 560 л воды. Мраморный порошок должен проходить через сито с отверстиями 0,25 мм2 в количестве не менее 80%. Этот раствор образует цементный камень, легко растворимый в соляной кислоте.
Выбор жидкостей для глушения скважин при проведении РИР
Жидкость для глушения, скважин (ЖГС) должна удовлетворять определенным требованиям, основным из которых является плотность. Именно по ее величине выбирают жидкости для глушения каждой конкретной скважины.
Технологическая схема глушения нефтяных скважин определяется способом их эксплуатации. Так, в фонтанных скважинах ЖГС, как правило, закачивают по НКТ. В скважинах, оборудованных УЭЦН и ШГН, при наличии устройств для слива жидкости ЖГС также закачивается по НКТ, при отсутствии их - через затрубное пространство.
Величина необходимой плотности ЖГС может быть рассчитана в зависимости от принятой технологической схемы глушения.
Для нефтяных и нагнетательных скважин с закачкой ЖГС по НКТ используются следующие соотношения:
а) с подливом ЖГС в процессе подъема глубинного оборудования
б) без подлива.
Как правило, продуктивные пласты в нефтяных скважинах обладают исключительно низкой приемистостью, что ограничивает использование технологической схемы глушения с задавкой скважинной жидкости в пласт лишь единичными скважинами.
Ограниченное использование может иметь и технологическая схема глушения с вытеснением скважинной жидкости применяемой ЖГС за счет различия их плотностей, так как большинство скважин к настоящему времени обводнено и в процессе замещения одной жидкости другой происходит их перемешивание со снижением плотности ЖГС, поэтому для глушения необходима многократная закачка ЖГС, определяющая большой ее расход,
В настоящее время в качестве ЖГС используют пластовую воду, водные растворы СаСl2 плотностью соответственно до 1190 и 1380 кг/м3 (практически до 1350 кг/м3) и утяжеленные глинистые растворы.
Как показывает опыт проведения ремонтных работ с глушением скважин, утяжеленные глинистые растворы в большинстве случаев не удовлетворяют основным требованиям к ЖГС,
Установлено, что требованиям к ЖГС в наибольшей степени удовлетворяют гомогенные жидкости, не содержащие взвешенных частиц. При этом основными свойствами жидкостей, определяющими возможность их использования для глушения, являются плотность и влияние на проницаемость призабойной зоны. Кроме того, жидкости для глушения скважин не должны вызывать коррозию оборудования, оказывать вредного влияния на процесс подготовки нефти (загрязнение добываемой нефти механическими примесями, повышение устойчивости эмульсии, образование нефтесодержащих твердых отходов и т.д.). Процессы приготовления и применения ЖГС должны быть технологичными и предотвращающими загрязнение окружающей среды, безопасными в обращении, не дефицитными и недорогими.
Актуальность задачи глушения скважины обусловила постановку и проведение широких исследований по изысканию жидкостей, удовлетворяющих перечисленным требованиям.
Исходя из основных требований к ЖГС - отсутствие взвешенных частиц и высокая плотность, сама возможность проведения ремонтных работ с глушением скважин ограничивается перечнем химических соединений с большой молекулярной массой, находящихся в жидком состоянии или обладающих высокой растворимостью в жидкостях. Перечень таких соединений невелик и идея использования подавляющего большинства из них в качестве ЖГС уже давно известна.
Бесперспективными с точки зрения применения в качестве ЖГС являются все органические жидкости (дибутилэтан, дихлорэтан, четыреххлористый углерод, бромоформ и другие галоидопроизводные углеводороды), хотя идея использования некоторых из них в качестве ЖГС запатентована. Все они отличаются высокой токсичностью и пожароопасностью, многие из них чрезвычайно дороги и дефицитны.
Наиболее удобными для применения в качестве ЖГС являются жидкости на водной основе. При этом задача глушения скважин жидкостями плотностью до 1190 кг/м3 почти повсеместно успешно решается при использовании пластовой высокоминерализованной воды.
Выбор жидкостей плотностью выше 1190 кг/м3, удовлетворяющих требованиям к ЖГС, более чем ограничен как по ассортименту, так и по величине плотности - около 2000 кг/м3.
Практически же выбор на сегодня ограничивается реальной возможностью - использованием водных растворов СаС12 плотностью до 1380 кг/м3. По своим свойствам растворы СаС2 близки к пластовым минерализованным водам многих нефтяных месторождений, содержащим его в большом количестве.
В настоящее время растворы СаС12 широко используют при проведении ремонтных работ с глушением скважин практически во всех нефтедобывающих районах страны.
Для приготовления ЖГС применяют СаС2 выпускаемый в твердом виде, а также в жидком -- водные растворы плотностью 1382-1383 кг/мЗ (при 20°С). Жидкий СаС12 поставляется в цистернах, твердый - в оцинкованных металлических барабанах (глыба, мелкокристаллический продукт) или в полиэтиленовых и бумажных пятислойных мешках с двумя внутренними битуминизированными слоями.
Водные растворы из твердого CaCl2 готовят гидравлическим перемешиванием с применением гидромониторного устройства и центробежных насосов. Более удобным для этих целей является порошкообразный СаС12, наиболее неудобным - глыба. Применение жидкого СаС12 при отсутствии специальных баз сопряжено с трудностями хранения его.
Насыщенный при 20°С раствор СаСl2 имеет плотность 1382-1383 кг/мЗ. В промысловых условиях плотности растворов, приготовленных из твердого СаСl2 на пресной и минерализованной водах, составляют соответственно 1350 и 1260-1270 кг/мЗ. Дальнейшее увеличение содержания СаСl2 в растворе приводит к образованию пересыщенных растворов, применение которых при глушении может привести к снижению проницаемости продуктивного пласта. Для восстановления продуктивности пласта ведут дополнительные длительные промывки.
На практике до 50-70% объема растворов СаСl2 используют повторно. При этом в процессе первичного использования происходит разбавление раствора СаС12, вследствие чего повторно растворы СаС12 применяются в скважинах с меньшим пластовым давлением.
Вместе с тем, как было показано, имеется значительное число скважин, требующих для своего глушения ЖГС намного большей плотности. Во многих из них при проведении ремонтных работ почти повсеместно используют утяжеленные глинистые растворы плотностью до 1700 кг/мЗ и выше.
Наличие в растворах твердой фазы и их нестабильность значительно усложняют как проведение самой операции глушения, так и ремонтных работ в целом, а также процесс подготовки нефти.
Нестабильность глинистых растворов обусловливает необходимость неоднократного задавливания скважины в процессе проведения ремонтных работ в ней. При этом помимо роста самих затрат на глинистый раствор значительно увеличиваются сроки проведения ремонтных работ, потребность в оборудовании (автоцистерны, насосные агрегаты) и т.д.
Выделение твердой фазы из глинистых растворов приводит к ее оседанию в виде плотного осадка или корки на забое скважины, стенках труб и скважинного оборудования. Последнее приводит к необходимости проведения специальных и трудоемких работ по удалению осадка и очистке оборудования от плотной корки. Резко снижается эффективность РИР в скважине, часты случаи выхода из строя УЭЦН.
Проникновение твердых частиц глинистых растворов (глина, утяжелители) приводит к резкому снижению проницаемости призабойной зоны пласта. Производительность скважин после их глушения глинистыми растворами снижается в 2-3 раза и более.
Кроме того, при использовании в качестве ЖГС утяжеленных глинистых растворов происходит загрязнение прискважинной территории в результате перелива жидкости из скважины при разложении раствора, образование большого количества нефтесодержащих отходов на установках подготовки нефти и т.д.
В некоторых скважинах ремонтные работы вынужденно проводят с частичным переливом жидкости в обваловки или с закачкой её в коллектор. Иногда в скважинах из-за высокого пластового давления ремонтные работы, несмотря на необходимость, не проводят в течение продолжительного времени и не могут быть проведены с глушением вообще.
Как уже было сказано, ремонтные работ, и в частности РИР, являются одним из основных средств реализации проектов разработки нефтяных месторождений. Исходя из этого, возможность и условия проведения РИР должны быть, обоснованы еще при установлении основных показателей разработки, т.е. в процессе составления проекта разработки нефтяного месторождения.
Одной из возможностей проведения ремонтных работ в скважинах с повышенным пластовым давлением является снижение его ограничением (или прекращением) закачки воды в нагнетательные скважины. Способ этот - универсальный. Вместе с тем использование его зачастую сдерживается неизбежными потерями в закачке воды и добыче нефти и отсутствием на сегодня методики определения их величин и учета при планировании объемов добычи нефти и закачки воды.
Изоляция пластовых вод цементными растворами
Цементные растворы на водной или углеводородной основе в настоящее время широко распространены как тампонирующие материалы при проведении водоизоляционных работ на месторождениях Татарии. В течение последних пяти лет использование цементных растворов несколько сократилось за счет применения полимерных и других нецементных тампонирующих материалов. Однако доля цементных растворов в общем количестве изоляционных материалов очень высока - около 75%.
При выборе скважин для анализа проведения изоляционных работ исключались скважины:
- эксплуатирующие угленосные горизонты и обводненные водой этих горизонтов;
- где плотность воды была ниже 1,18 г/см3,
После отбрасывания скважин указанных категории, для анализа были взяты материалы изоляционных работ по ЖЛ скважинам.
Цементные растворы, как на водной, так и на углеводородной основе общеизвестны. Отметим лишь, что цементные растворы на водной основе приготавливают смешением обычного тампонажного цемента с пресной технической водой. Водоцементный фактор растворов колеблется в пределах 0,45--0,5.
Растворы на углеводородной основе на промыслах Татарии приготавливают, смешивая дизельное топливо с обычным тампонажным цементом. В качестве ПАВ применяют дисолван, добавляя его до 2% объема к смеси.
Цементные растворы закачивают в пласт по насоснокомпрессорным трубам, при этом цементный раствор на водной основе закачивают последовательно за пластовой водой и продавливают ею же, а при закачке цементного раствора на углеводородной основе применяют жидкости-разделители до и после цементного раствора. Объем разделительной жидкости берут в пределах 0,5--1,0 м3, что предотвращает преждевременное затвердение цементного.
При задавливании цементных растворов в пласт использовались давления, значительно превышающие допустимое давление на эксплуатационную колонну. Поэтому в большинстве случаев закачки цементного раствора проводили по заливочным трубам, оборудованным пакером, предохраняющим эксплуатационную колонну от действия избыточного давления. В связи с этим около 70% изоляционных работ проводят с использованием пакеров высокого давления.
Тщательное изучение материалов водоизоляционных работ показывает, что наряду с различными способами задавливания цементных растворов в пласт существуют два отличных друг от друга способа изоляции путей водопритоков.
По первому способу закрытие путей водопритоков достигается перекрытием цементным мостом фильтра скважины, эксплуатирующей нижний пласт, частично обводненный. Метод, применяется для изоляции как нижней, так и подошвенной воды - неселективная изоляция вод.
По второму способу изоляция вод достигается за счет перекрытия обводненной части пласта цементным мостом, закрытия путей водопритоков, вследствие кольматации их частицами цементного раствора или под действием других сил при выполнении операции по задавливанию цементного раствора. Данный способ применяется при изоляции нижней и подошвенной воды. Работы по изоляции выполняются как с применением пакера, так и без него и складываются из следующих операций.
При изоляции подошвенной воды:
-- перекрывается фильтр предполагаемой обводненной части пласта цементным мостом, а нефтеносная часть пласта вскрывается снова;
цементный мост разбуривается до нижних перфорационных отверстий старого фильтра, и дополнительно вскрывается кровля нефтеносной части пласта;
цементный мост после изоляционных работ устанавливается ниже старого фильтра и дополнительно вскрывается нефтеносная часть пласта.
При изоляции нижних вод:
-- цементный мост устанавливается на уровне нижних перфорационных отверстий нижнего нефтеносного пласта и последний вскрывается снова;
-- цементный мост устанавливается глубже нижних перфорационных отверстий нижнего нефтеносного пласта, а нефтеносный пласт вскрывается снова.
Данный случай в отличие от первого будем называть селективной изоляцией вод.
Рис. 1 Закрытие путей водопритоков с использованием цементного раствора: а -- в скважине, обводненной нижней водой; Б -- в скважине, обводненной подошвенной водой; а -- перекрытие обводненного пласта цементным мостом; б -- наращивание искусственного забоя; в -- перекрытие цементным мостом обводненной части пласта; г -- создание цементной оторочки в зоне ВНК или заполнение затрубного пространства цементным раствором.
Неселективный и селективный методы изоляции нижних и подошвенных вод схематически показаны на рис 1.
При селективной изоляции подошвенной воды успешность работ выше, чем при изоляции нижней воды, с использованием цементного раствора как на водной, так и на углеводородной основе. При неселективной изоляции успешность работ в случае изоляции нижней воды с использованием цементного раствора на водной основе выше, чем на углеводородной.
Следует отметить, что после проведения изоляционных работ достигается снижение обводненности на некоторую величину, т. е. происходит частичная изоляция вод.
При неселективной изоляции нижних вод с использованием цементного раствора на водной основе дебит нефти более чем в 3 раза выше дебита до изоляционных работ и при изоляции подошвенной воды -- примерно в 2 раза. В случае использования цементного раствора на углеводородной основе прирост дебита нефти при изоляции подошвенной воды выше, чем при изоляции нижней воды, и отмечается значительное снижение обводненности с использованием цементного раствора на водной основе (по 30 скважинам более чем в 2 раза).
Значительное снижение обводненности отмечается при изоляции нижней воды с использованием цементных растворов на водной и углеводородной основе.
Периодом восстановления обводненности называется тот промежуток времени после проведения изоляционных работ, в течение которого содержание воды в продукции при эксплуатации скважины становится равным зафиксированному перед изоляционными работами.
Сравнительно короткий период восстановления обводненности при использовании цементных растворов на углеводородной основе, очевидно, связан с явлением медленного отверждения этого раствора. Вследствие этого при создании определенной депрессии на забой происходит прорыв воды, что приводит к резкому восстановлению обводненности до величины, которая отмечалась перед изоляционными работами.
Водоизолирующий состав на основе жидкого стекла
В последние годы создано несколько водоизолирующих составов на основе силикатов щелочных металлов, в частности жидкого стекла (R2O * nSiO2), где R означает калий или натрий.
Особенностью силикатов щелочных металлов является способность их взаимодействовать с ионами поливалентных металлов и другими коагулирующими агентами и образовывать гелеобразные системы или твердый тампонирующий материал. Составы на основе жидкого стекла можно применять в коллекторах любой, в том числе и низкой проницаемости, поскольку последние закачиваются в пласт в виде маловязких растворов, а образование тампонирующего материала происходит непосредственно в пласте. Нами для высокотемпературных скважин разработано два состава на основе жидкого стекла.
В условиях высоких температур для проведения водоизоляционных работ целесообразно использовать жидкое стекло как наиболее фильтрующийся материал. При давлениях 0,1-3 МПа оно в течение длительного времени сохраняет свои свойства при температурах до 200 °С. При этих условиях жидкое стекло практически не вступает в химическое взаимодействие с породами пласта, но обладает адгезией к ним.
Жидкое стекло (силикат натрия Na2SiO3), получаемое из силикат-глыбы обработкой паром в автоклавах, является неорганическим полимером. Модуль жидкого стекла регулируется щелочью и не превышает 2,8-3,0; концентрация водорастворимых силикатов 50%, плотность 1280-1400 кг/м3. В буровой практике жидкое стекло применяется в качестве структурообразователя, крепящей добавки и ингибитора в буровых растворах и ускорителя схватывания тампонажной смеси.
Нитрат аммония (NH4NO3) представляет собой бесцветные кристаллы, хорошо растворимые в воде (50 г/100 г при t=10 °С), применяется при обработке пластов как ингибитор коррозии.
Параформ (параформальдегид) -- смесь полиоксиметилгликолей (СН2О)n, где n=8-10, представляет собой бесцветные кристаллы, содержит 91-98% формальдегида, в холодной воде растворяется медленно, в горячей - быстро, образуя растворы формальдегида.
При взаимодействии нитрата аммония и параформа образуется азотная кислота, а при взаимодействии жидкого стекла с кислотой (изменения рН среды) происходит образование закупоривающей массы.
При изучении изолирующей способности композиции для дальнейших исследований был взят состав на основе жидкого стекла и 12,5%-ной азотной кислоты при объемном соотношении 1:1.
Результаты эксперимента показали, что закупоривающая способность композиции достаточна для того, чтобы состав на основе Na2SiO3 и 12,5 %-ной HNO3, полученной из параформа и NH4NO3, рекомендовать к практическому использованию.
Второй состав включает в себя жидкое стекло и спиртовый раствор хлорида кальция. Для эксперимента были выбраны следующие реагенты: хлорид кальция 6-водный (СаС12*6Н2О), спирт этиловый (С2Н5ОН) или метиловый (СН3ОН), жидкое стекло (Na2SiO3) с концентрацией растворимых силикатов 50%. Процент содержания СаС12*6Н2О в спирте варьировал от 3 до 10%; объемное отношение спиртового раствора СаС12*6Н2О:Na2SiO3 - от 1:1 до - 1:0,5.
При разработке нефтяных залежей с одновременным снижением обводненности добываемой продукции достигается повышение гидродинамического сопротивления в зоне наибольшей проницаемости, расширяется область воздействия закачиваемым реагентом и вовлечение в разработку низкопроницаемых нефтенасыщенных пропластков.
РИР с использованием синтетических смол на основе сланцевых фенолов.
В настоящее время практически РИР всех видов ведутся с применением синтетических смол на основе сланцевых фенолов ТСД-9 и ТС-10. Наибольшее распространение указанные смолы получили при: отключении отдельных обводненных интервалов пласта; исправлении негерметичного цементного кольца; отключении отдельных пластов; ликвидации нарушений в обсадных колоннах.
Отключение отдельных обводненных интервалов пласта является наиболее сложным видом РИР. При этом имеются в виду пласты, характеризующиеся по геофизическим данным как монолитные. Принципиальная возможность ограничения притока воды при отключении обводненных интервалов в подобных пластах обосновывается возможным наличием в них непроницаемых прослоев, не выделяемых геофизическими методами исследования.
Исходя из этого, РИР данной группы проводят по схеме селективной изоляции. Как правило, при проведении таких РИР должны быть решены одновременно несколько задач: выявление в разрезе пласта нефтенасыщенных интервалов, непроницаемых прослоев и исключение из разработки в данной скважине уже обводненных интервалов.
Технология РИР с использованием смол ТСД-9 и ТС-10 во всех случаях аналогична технологии этих работ с применением тампонажного цемента.
"Успешность" проведенных РИР оценивают в соответствии с существующей методикой, основанной на сопоставлении величин дебита нефти и содержания воды в добываемой продукции до и после проведения РИР.
К категории успешных отнесены РИР, обеспечившие: увеличение или сохранение дебита нефти при снижении объема добываемой воды; значительное снижение притока воды при небольшом снижении дебита нефти.
Оценка экономической эффективности проводимых РИР с применением смол, равно как и с любым другим изоляционным материалом, затруднена.
Выбор смолы ТСД-9 для применения ее в скважинах определен величиной температуры продуктивных пластов до 40°С.
Объекты проведения РИР различаются между собой по вязкости пластовой нефти, степени неоднородности, условиям выработки и обводнения, стадии разработки и т.д. Месторождения девона и нижнего карбона характеризуются упруговодонапорным режимом и разрабатываются с поддержанием пластового давления заводнением. Залежи нефти в известковых рифовых массивах пермского возраста характеризуются режимом газовой шапки, который постепенно переходит к режиму растворенного газа, а затем к гравитационному.
В некоторых НГДУ смолу используют эпизодически в единичных скважинах и, по сути дела, проводимые работы не выходят из стадии опытно-промышленных, поскольку за указанный период на некоторых месторождениях изменились условия проведения РИР: приобщены дополнительные горизонты, повышены пластовое давление, степень обводнения и т.д.
Указанные обстоятельства в значительной степени обусловили низкую успешность проведенных работ - в среднем 52,6%. Смолу применяют в скважинах с наиболее сложными условиями, при отсутствии четких представлений о путях поступления изолируемой воды в скважину и часто после безрезультатного применения всего перечня имеющихся других методов РИР. Бессистемность проведения РИР затрудняет отработку и совершенствование одной из основных их составляющих - технологии, а ограниченность масштабов вносит элемент случайности в оценку их эффективности.
Отключение обводненных интервалов пласта проводится по нескольким технологическим схемам.
Полностью по схеме селективной изоляции - закачка раствора смолы по всему интервалу перфорации с перекрытием его мостом, последующее разбуривание стакана и перфорация пласта в прежнем интервале - работы проведены в 56 скважинах. Из них в семи скважинах для перекрытия ствола мостом использовали цементный раствор, который закачивали непосредственно вслед за раствором смолы ТСД-9.
Назначение применяемого цементного раствора - предупреждение выноса раствора смолы ТСД-9 из изолируемого интервала в ствол скважины до начала отверждения смолы.
Указанные работы проведены в скважинах с высоким содержанием воды (90% и более). Успешность их в среднем по 49 скважинам без цементного раствора и по семи скважинам с цементным раствором составляет соответственно 40 и 42,8%.
В девяти скважинах указанный метод был применен при наличии сведений об обводнении подошвенной части пласта, которая была отключена мостом из отверженной смолы. В восьми случаях проведенные работы оказались успешными (88,9%). Сохранение и даже увеличение притока нефти в них подтверждают селективное проникновение неселективных изоляционных материалов в обводненные части пласта, обладающие большей проницаемостью.
Это со всей очевидностью подтверждено, и результатами применения метода в двух нагнетательных скважинах для регулирования закачки воды по толщине пласта. Причем, в обеих скважинах смолу закачивали по всей толщине заводняемого пласта при наличии в нем открытых трещин. Обе скважины освоены под закачку воды непосредственно после разбуривания моста из отвержденной смолы. При этом была снижена приемистость интервалов, содержащих трещины.
Наконец, в пяти скважинах смолу ТСД-9 использовали для создания водоизолирующего экрана в заданном интервале пласта дополнительно вскрывавшегося ПК-103 или ГПП в пределах существующего интервала перфорации. Смолу закачивали по всей толщине пласта через НКТ с пакером. В двух скважинах пласт перекрывали цементным мостом.
Исправление негёрметичного цементного кольца с использованием смолы ТСД-9 проводят по двум описанным технологическим схемам с закачкой раствора смолы в нарушения через существующий интервал перфорации - схема селективной изоляции; с закачкой раствора смолы через специальные отверстия. При проведении работ по любой из схем интервалы перфорации пласта и специальных отверстий перекрывают мостом из отвержденной смолы или цементного раствора, закачиваемого вслед за смолой.
При закачке смолы через специальные отверстия в интервале между ними и перфорацией продуктивного пласта устанавливают пакер и вызывают затрубную циркуляцию.
В среднем успешность этого вида РИР составляет 49,1%, причем при использовании стакана из цемента цель проводившихся РИР ни в одном случае не была достигнута. Причиной этого может быть разбавление смолы или ее вытеснение из нарушений в процессе срыва и подъема пакера и контрольной срезки цементного раствора.
Отключение пласта. Во всех случаях при, отключении верхних пластов, нижние перекрываются песчаной пробкой или цементными мостами, при отключении нижних - верхние пласты перекрываются закачкой цементной суспензии.
Трудность этого вида работ обусловливается высокими величинами пластового давления и различием их величин в пластах.
Кроме того, при закачке смолы по всей толщине пласта она поглощается лишь отдельными наиболее проницаемыми его интервалами и при этом проницаемость значительной части пласта сохраняется.
Закачка цементного раствора после раствора смолы для предупреждения его выдавливания в ствол скважины повышает успешность проводимых РИР.
Расход смолы ТСД-9 при РИР. Смолу ТСД-9 используют при решении большого перечня задач. Успешность их решения определяется степенью заполнения отвержденной смолой пористой среды в пределах толщины отключаемых пластов или отдельных их интервалов, каналов, трещин и нарушений в призабойной зоне пласта, цементном кольце и теле труб.
Попытка выявления связи между расходом смолы и толщиной интервалов вскрытия пласта перфорацией (расход смолы на 1 м толщины) для РИР по отключению пластов и отдельных их интервалов, а также исправлению негерметичного цементного кольца обосновывается закачкой смолы при проведении всех видов РИР по схеме селективной изоляции. Однако по анализируемым данным на сегодня такой связи не установлено, возможно, из-за ограниченности объема проведенных РИР.
В то же время в одних и тех же условиях проведения РИР, выполненные с закачкой больших объемов растворы смолы, оказываются безуспешными. Наиболее распространенной причиной этого является продавка раствора смолы далеко в глубь пласта или потеря способности растворов к отверждению за счет дополнительного их разбавления. Вероятность первой и второй причин может быть уменьшена при использовании растворов смолы ТСД-9 с минимальным сроком отверждения, ограниченным лишь временем закачки растворов за обсадную колонну.
Увеличение объема закачиваемого раствора смолы без сокращения времени начала их отверждения в сложных гидродинамических условиях скважин может оказаться малоэффективным.
РИР по исправлению негерметичного цементного кольца (в том числе и перекрытие перетоков закачиваемой воды в непродуктивные пласты) с использованием смолы с малым сроком отверждения проведены в шести скважинах и все они оказались успешными.
Объединение Татнефть. Первые работы по ограничению притока воды с применением смолы ТСД-9 в скважинах объединения Татнефть были проведены с участием БашНИПИнефть. В последующем эти работы вели сами НГДУ, а с организацией специализированного Лениногорского управления по повышению нефтеотдачи пластов и капитальному ремонту скважин (ЛУПНП и КРС) масштабы применения смолы резко увеличились.
Основными объектами проведения РИР были скважины девонских залежей Ромашкинского, Ново-Елховского и Бондюжского месторождений. Наиболее типичным в указанной группе является Ромашкинское месторождение, в скважинах которого проведено наибольшее количество РИР с применением смолы ТСД-9.
Основным эксплуатационным объектом Ромашкинского месторождения является горизонт Дг пашийских отложений нижнефранекого подъяруса, залегающих на глубине 1700 м. Залежь нефти приурочена к терригенным породам, имеющим исключительно сложное геологическое строение. В разрезе горизонта Д, выделены шесть песчано-алевритовых пластов, отличающихся между собой как по толщине и коллекторским свойствам, так и по характеру их распространения по площади.
Нефти девонских залежей относятся к легким нефтям; величина их вязкости в пластовых условиях в пределах различных месторождений Татарии изменяется от 0,2 до 0,6 мПа-с при температуре 40°С. Величина пластовой температуры колеблется в пределах 35-40°С.
Все месторождения характеризуются упруговодонапорным режимом и разрабатываются с поддержанием пластового давления заводнением. Залежь нефти Ромашкинского месторождения разрезана на ряд площадей, разрабатывающихся самостоятельно. Все пласты эксплуатируются через общий фильтр.
Исправление негерметичного цементного кольца. Трудности проведения этого вида РИР обусловливаются сложными гидродинамическими условиями: наличием как минимум двух пластов с различным пластовым давлением и, как следствие этого, перетоком жидкости из одного пласта в другой.
Подавляющее большинство РИР выполнено с закачкой раствора смолы ТСД-9 по следующим технологическим схемам:
через интервал перфорации продуктивного пласта - по схеме селективной изоляции;
через интервал специальных отверстий в кровельной части пласта-обводнителя для ликвидации нарушений в цементном кольце и исключения, из разреза скважины водоносного пласта как коллектора вообще;
через интервал специальных отверстий в кровельной части пласта-обводнителя с отключением продуктивного пласта или его интервала (перенос фильтра),
При проведении РИР по второй и третьей схемам продуктивный пласт предварительно изолируют цементным раствором. Затем перфорируются специальные отверстия, через которые закачивают раствор смолы при посаженном между ними и продуктивным пластом пакера.
По всем схемам интервалы специальных отверстий и продуктивного пласта перекрывают мостом из смолы или цементного камня. Затем при проведении РИР по первым двум схемам мост разбуривают в интервале продуктивного пласта полностью, и пласт перфорируют в прежних интервалах. По третьей схеме мост разбуривают лишь в пределах интервала пласта, назначенного для перфорации. При переходе на другой пласт мост из смолы или цементного камня в пределах прежнего интервала перфорации можно не вскрывать.
В целом успешность проведенных работ также низка: из 62 скважиноопераций успешными оказались 25, или 40,3%.
Отключение продуктивного пласта. В объединении Татнефть это наиболее многочисленная группа РИР, выполняемых с использованием смолы ТСД-9 - 139 скважиноопераций. Средняя успешность проведенных работ - 61,2%.
В зависимости от расположения отключаемого пласта РИР этого вида делятся на две группы:
- отключение верхних и средних (промежуточных) пластов;
- отключение нижних пластов.
Технологически эти работы осуществляются по двум схемам:
- закачкой раствора смолы в интервал перфорации отключаемого пласта;
- установкой "летучки" и герметизацией ее растворами смолы. При отключении верхних пластов нижние, как правило, перекрывают песчаными пробками или цементными мостами, которые затем вымывают или разбуривают. При отключении нижних пластов верхние пласты предварительно изолируют закачкой цементного раствора для предупреждения проникновения в них растворов смолы.
3.5 Оборудование применяемое при ВИР
Цементировочная арматура
Для цементирования с заливочными трубами применяют цементировочную арматуру типа АЦ1-150, АЦ2-160 конструкции Азинмаша, цементировочную головку грозненского типа или нижнюю часть фонтанной арматуры. Это же оборудование используют при химическом тампонаже скважин, гидравлическом разрыве пласта, кислотной обработке призабойных зон, при определении места дефекта в эксплуатационной колонне пакером и других работах. Цементировочная арматура герметизирует кольцевое пространство между колонной заливочных труб и эксплуатационной колонной. Это позволяет выполнять прямую и обратную промывку, а также продавку жидкости в фильтр скважины через заливочные трубы или кольцевое пространство. На промыслах объединения Грознефть широкое распространение получила цементировочная головка грозненского типа. Она может быть установлена на 168-лш и 219-лш эксплуатационных колоннах. В средней части корпуса головки имеется патрубок, к которому присоединяют манометр для замера давления в затрубном пространстве. Герметизация затрубного пространства в головке грозненского типа осуществляется с помощью двух шарнирных колец, уплотняющего резинового элемента и резиновой зажимной гайки. Резиновый элемент головки (цилиндрической формы) разрезан так, что его можно надеть на колонну труб, спущенных в скважину. Каждая цементировочная головка имеет набор шарнирных колец и резиновых элементов для труб диаметром от 48 мм до 114 мм.
Цементировочная головка грозненского типа рассчитана на работу при давлении в колонне до 200 атм., она позволяет в процессе работ (при наличии давления в затрубном пространстве) расхаживать заливочные трубы в интервале, равном длине верхней трубы.
Заливочные трубы
При цементировании в качестве заливочных труб применяют насосно-компрессорные трубы диаметром от 60 мм и выше, бурильные трубы с высаженными наружу концами диаметром от 60 мм и выше и бурильные трубы с высаженными внутрь концами диаметром от 89 мм и выше. В 114-мм эксплуатационной колонне в виде исключения применяют 48-мм заливочные трубы. Применение в качестве заливочных труб 73-мм бурильных труб с высаженными внутрь концами связано с риском забить трубы цементным раствором.
На промыслах объединения Азнефть для цементирования применяют двухступенчатую колонку заливочных труб. Ее верхнюю ступень составляют из 114-мм насосно-компрессорных труб, а нижнюю ступень из 73-мм труб. В глубоких скважинах применяют трехступенчатую колонну труб, состоящую из 73-мм и 114-лш насосно-компрессорных труб и 89-мм бурильных труб (из стали марки Е).
На промыслах объединения Грознефть обычно используют двухступенчатую колонну заливочных труб. Нижняя ее часть состоит из десяти-пятнадцати 60-мм насосно-компрессорных труб, соединенных между собой муфтами со снятой фаской; эту часть колонны называют хвостовиком. Верхнюю часть колонны составляют из 89-мм бурильных труб. Многолетняя практика изоляционных работ подтвердила безопасность применения 89-мм бурильных труб в верхней части колонны при цементировании в скважинах глубиной 1000-2500 м.
Пакеры
При изоляционных работах применяют цементировочные пакеры, которые устанавливают на нижнем конце колонны заливочных труб. Назначение пакера - изолировать участок эксплуатационной колонны ниже башмака заливочных труб от кольцевого пространства между этими трубами и колонной.
По характеру изоляции кольцевого (затрубного) пространства цементировочные пакеры делятся на две группы. К первой группе относятся извлекаемые пакеры (поднимаемые из скважины вместе г колонной заливочных труб). Вторую группу составляют неизвлекаемые пакеры. По окончании цементирования они отделяются от колонны заливочных труб и остаются в скважине. При необходимости пакеры второй группы могут быть удалены из скважины путем фрезерования.
Извлекаемые пакеры
На промыслах Советского Союза в качестве цементировочных пакеров применяют пакеры, сконструированные для гидравлического разрыва пласта и эксплуатации скважин.
С начала внедрения цементирования с пакером применяют пакеры с опорой на забой конструкции ГрозНИИ, АзНИИ, типа ПМ конструкции ОКБ по бесштанговым насосам. Достоинством пакеров с опорой на забой является простота их устройства и легкость уплотнения в скважине. Однако для установки пакера необходимо иметь твердый забой на определенной глубине. Кроме того, при цементировании с пакерами этой конструкции возможен прихват хвостовика цементом. Пакеры висячего типа (без опоры на забой) могут быть установлены в любой точке ствола скважины. Для цементирования применяют шлипсовый пакер ПШ и гидравлический модернизированный пакер ПГ-500 конструкции ОКБ по бесштанговым насосам, шлипсовый пакер ЦРМЗ Грознефти и самоуплотняющийся (автоматический) пакер АзНИИ.
Рис. 6. Схема гидравлического модернизированного пакера ГП-500
Гидравлический модернизированный пакер ПГ-500 (см. рис.) состоит из головки 1, к верхней части которой присоединяется гидравлический якорь и колонна заливочных труб, а к нижней части шток 5 и опорное дюралюминиевое кольцо 2. На шток надеты ограничитель 4 с ограничительной манжетой 3, упор 6 и гидравлическая манжета 7., К нижней части штока присоединен корпус 8 фонаря закрытого типа. Фонарь 9 имеет три башмака, расположенные под углом 120° по окружности корпуса. Каждый башмак подпирается изнутри тремя цилиндрическими пружинами, находящимися в глухих отверстиях корпуса фонаря 8. Верхнее и нижнее упорные кольца предотвращают выпадение башмаков. К нижней части корпуса крепится клапан пакера с дроссельным штуцером 10. Для уплотнения пакера ПГ-500 в колонну заливочных труб закачивают жидкость с расходом 2-2,5 л/сек. При этом в штуцере возникает перепад давления 3,5-5 атм. Через отверстия в корпусе фонаря 8 жидкость проходит во внутреннюю полость гидравлической манжеты 7 и расширяет ее до сопротивления со стенкой колонны. Под влиянием перепада давления сжимается пружина клапана, открываются его прямоугольные окна и жидкость проходит в пространство под пакером. При дальнейшем повышении давления под пакером гидравлическая манжета расширяется и окончательно уплотняет затрубное пространство. В результате создания высокого давления под пакером он выталкивается вверх вместе с колонной заливочных труб, в связи, с чем нарушается его уплотнение. Для удержания пакера на месте применяют гидравлический якорь, который устанавливают непосредственно над пакером. На промыслах Советского Союза наибольшее распространение получили гидравлические якори конструкции ОКБ по бесштанговым насосам.
Указанные пакеры, применяемые в качестве цементировочных, обладают рядом недостатков. Они изготовляются из стали, вследствие чего в случае прихвата цементом их очень трудно фрезеровать. Пакеры не имеют циркуляционных клапанов, которые соединяют пространство выше и ниже пакера, в результате при срыве пакера уплотняющий элемент действует как поршень, что усиливает отдачу пласта.
Пакеры ПШП конструкции ОКБ по бесштанговым насосам и ПШУ-65/8" конструкции ЦРМЗ Грознефти имеют циркуляционный клапан для соединения пространства выше и ниже пакера. В пакере ПШУ-65/8// конструктивно соединены шлипсовый пакер и механический якорь. Уплотнение пакера достигается при натяжении заливочных труб вверх. Пакер состоит из муфты У, ствола, к верхнему концу которого прикреплен фонарь, а к нижнему -- конус циркуляционного клапана с манжетами. В корпусе фонаря укреплены плашки фонаря, плашки пакера и конус. К последнему в свою очередь прикреплены перфорированная труба, уплотнительная резиновая манжета и седло циркуляционного клапана.
Пакер спускают на заливочных трубах, которые затем поворачивают вправо на 1-2 оборота. При этом штифт выходит из зацепления с замком. Корпус фонаря удерживается плашками в эксплуатационной колоне, а их конус при подъеме заливочных труб тоже поднимается вверх. Теперь уже плашки удерживают корпус фонаря в колонне. При дальнейшем натяжении заливочных труб конус сжимает манжету и герметизирует кольцевое пространство скважины. Поток жидкости при обратном промывке проходит через перфорированную трубу, по кольцевому пространству внутри пакера, через открытый циркуляционный клапан входит в конус, ствол и поступает в заливочные трубы. Поскольку площадь сечения этого кольцевого пространства равна площади сечения заливочных труб в свету, давление при прохождении жидкости через пакер не повышается.
Неизвлекаемые пакеры
На рис. 7 показана схема неизвлекаемого пакера конструкции Азинмаша с циркуляционным приспособлением.
Пакер изготовляется из легко разбуриваемого материала (например, из модифицированного чугуна). Циркуляционное приспособление устанавливается над пакером и соединяется с ним посредством переводника 3, имеющего' левую цилиндрическую или круглую резьбу. Пакер с циркуляционным приспособлением (без шарика 18) спускают в скважину на колонне заливочных труб. На устье скважины устанавливают цементировочную головку грозненского типа, а верхний конец заливочных труб подвешивают на вертлюге. Между вертлюгом и заливочными трубами устанавливают глухой переводник и крестовину с двумя отводами для закачки жидкости в трубы и боковым отверстием. После установки пакера на заданной глубине заливочные трубы поднимают на 0,5-1 м вверх. При этом утолщение трубы 1 садится на резиновое седло 2, вследствие чего циркуляционное приспособление закрывается. Скважину промывают прямой промывкой. Затем через боковое отверстие крестовины в заливочные трубы бросают шарик 18, который проходит по трубам и садится в гнездо клапана 17, закрывая его отверстие. В трубах поднимают давление. Жидкость под давлением проходит в отверстия 11 и расширяет резиновую манжету 10, плотно прижимая ее к стенке эксплуатационной колонны. При дальнейшем расширении манжета 10 передвигает вверх верхний конус 8. При этом срезаются винты 5 и 7, а верхние плашки 4 прижимаются к стенке эксплуатационной колонны, препятствуя движению пакера вверх. Когда давление в трубах поднимается еще больше, отрезается винт 19 и гнездо 17 выпадает из пакера. Бакелитовый шар 16 освобождается и вступает в действие обратный клапан. Для жидкости открывается проход через пакер. Затем заливочные трубы натягивают, в результате чего срезаются винты 12 и 13, а нижние плашки 14 прижимаются к стенке эксплуатационной колонны. Манжета 10 еще больше деформируется, а коническое стопорное кольцо 6 попадает в прорезь корпуса пакера 9. Пакер оказывается надежно укрепленным в эксплуатационной колонне на заданной глубине. Заливочные трубы опускают вниз на 0,5-1 м (чтобы открыть циркуляционный клапан) и закачивают в них цементный раствор и продавочную воду. Когда столб цементного раствора будет находиться на расстоянии 100-150 м от пакера, натягивают трубы, закрывая циркуляционный клапан. Цементный раствор продавливают в пласт под давлением 250-300 атм. После этого процесса снижают давление в заливочных трубах, при этом шар 16 садится на резиновое уплотнительное кольцо 15 обратного клапана. Выход цементного раствора из-под пакера прекращается. Заливочные трубы снова опускают на 0,5-1 м, чтобы открыть циркуляционный клапан. Обратной промывкой вымывают из заливочных труб излишний цементный раствор. Вращая трубы вправо, вывинчивают переводник 3 из пакера. Заливочные трубы поднимают из скважины и оставляют скважину на период затвердения цемента. В случае необходимости пакер удаляют из ствола скважины путем фрезерования.
На промыслах США применяют неизвлекаемые пакеры различных: конструкций. Наибольшее распространение получили неизвлекаемые пакеры (цементировочные фонари, ритайнеры) фирмы «Baker».
Цементировочные желонки
Для установки цементных пробок и изоляционных работ в скважинах с малой поглотительной способностью без заливочных труб применяют цементировочные желонки.
Клапан цементировочной желонки устроен так, что после соприкосновения с забоем он открывается и остается открытым при подъеме желонки вверх. Применяют желонки с клапанами и различных конструкций. Из них наиболее совершенной является цементировочная желонка с отпадающим пластмассовым дном и шарнирным клапаном конструкции Стрыйской конторы бурения треста Львовнефтегазразведка. Диаметр и длину желонки выбирают согласно табл. 3.
Таблица 3
Условный диаметр эксплуатационной колонны, мм |
Максимальный наружный диаметр желонки, мм |
Диаметр тартального каната, мм |
||
При длине 10-12 м |
При длине 18-25 м |
|||
114 |
73 |
60 |
16 |
|
146 |
89 |
60 |
16 |
|
168 |
102 |
89 |
19 |
|
194 |
114 |
102 |
19 |
|
219 |
141 |
114 |
19 |
|
273 |
168 |
- |
22 |
3.6 Технология ремонтно-изоляционных работ по скважинам
Основные положения проблемы ремонтно-изоляционных работ в скважинах.
Основное назначение РИР - обеспечение оптимальных условий работы продуктивного пласта (или нескольких пластов) для достижения запланированного (максимального) извлечения запасов нефти.
По номенклатуре РИР относятся к работам по капитальному ремонту скважин (КРС) и, как все ремонтные работы, проводимые в скважинах, являются одним из основных средств реализации проектов разработки нефтяных месторождений.
B зависимости от цели все РИР делятся на следующие виды:
1. Отключение отдельных обводненных (выработанных) интервалов пласта в нефтяных скважинах, независимо от их местоположения по толщине и характера обводнения (подошвенная вода, контурная, закачиваемая). Регулирование закачки воды по толщине заводняемых пластов в нагнетательных скважинах.
Необходимость проведения работ этого вида обусловливается неоднородным строением и неравномерными выработкой и обводнением продуктивных пластов по толщине. Работы проводят в слоистых пластах. Для обеспечения нормальных условий их выработки по всей толщине»
2. Исправление негерметичного цементного кольца (в том числе ликвидация межпластовых перетоков),
Необходимость проведения этого вида РИР обусловлена несоответствием качества цементирования обсадной колонны условиям эксплуатации скважины и является как следствием получения негерметичного цементного кольца и разрушения его в процессе эксплуатации скважины.
Отключение отдельных пластов. Необходимость проведения данного вида РИР возникает в нефтяных и нагнетательных скважинах, одновременно эксплуатирующих несколько пластов. Различие в геологическом строении пластов (толщина, коллекторские свойства) обусловливает разновременность их выработки (обводнения) и, следовательно, необходимость отключения каждого выработанного (обводненного) пласта с целью обеспечения нормальных условий выработки остальных.
Ликвидация нарушений обсадных колонн. Необходимость в проведении этих работ обусловлена нарушением герметичности обсадной колонны вследствие несоответствия конструкции скважины условиям ее эксплуатации: цементирование обсадной колонны не по всей длине, использование для заводнения сточных вод, повышение давления нагнетания и пластового давления и т.д.
5. Наращивание (доподъем) цементного кольца за обсадной колонной и кондуктором.
Необходимость проведения работ в первую очередь диктуется требованиями охраны недр и окружающей среды: предотвращение перетока пластовых и закачиваемых жидкостей из пласта в пласт и выхода их на поверхность.
Иногда эти работы проводят одновременно с ликвидацией нарушений обсадной колонны, которые в основном являются следствием отсутствия цементного кольца за колонной или плохого его качества.
6. Перевод скважин на другие пласты и горизонты, временная консервация и ликвидация скважин. Эти работы осуществляются в соответствии с действующими положениями о порядке перевода скважин на другие горизонты, временной консервации и ликвидации скважин.
Ликвидация скважин к РИР отнесена условно, поскольку в ряде случаев прямого отношения к разработке основного пласта в данной скважине она не имеет. Включение этих работ в основной перечень РИР обусловлено выполнением этих работ бригадами капитального ремонта и использованием методов РИР.
К основным методам относятся: установка моста, летучки, пакера; перекрытие интервала перфорации взрывным пакером; создание непроницаемого экрана в призабойной зоне пласта; перекрытие нарушений в цементном кольце и обсадной колонне с помощью тампонажных материалов и т.д.
Учитывая принципиальные различия в механизме закупоривания пористой среды, методы создания непроницаемого экрана делятся на селективные и неселективные.
Каждый метод изоляции, равно как и каждый изоляционный реагент или конструкция разобщающего устройства, имеет свои области более эффективного применения при проведении определенного вида РИР. Вместе с тем каждый из них с успехом может быть применен и при ведении нескольких видов РИР. Так, установкой пакера отключают обводненный пласт, а также интервалы нарушения обсадной колонны. Цементные растворы используют для установки мостов при отключении нижних пластов и их нижних интервалов, для исправления некачественного цементного кольца, ликвидации нарушений обсадной колонны и т.д.
Наконец, каждую операцию РИР, осуществляемую с помощью данного метода, выполняют по определенной технологии. Перечень мероприятий и строгий порядок их проведения обеспечивают достижение поставленной цели.
Метод РИР, изоляционный реагент, конструкция разобщающего устройства и технология РИР взаимно обусловливают и определяют друг друга. В каждом отдельном случае их выбирают с учётом большего комплекса показателей: геолого-физических особенностей продуктивного пласта или пласта-обводнителя, гидродинамических условий, существующего опыта проведения РИР на данном месторождении, оснащенности техникой, материалами и т.д.
Технологическая схема РИР может быть разработана применительно к условиям каждой конкретной скважины.
Назначение изоляционных работ
Изоляционные работы, проводимые при восстановлении скважин, преследуют разнообразные цели.
Первое, основное их назначение, исправление негерметичного цементного кольца с целью изоляции посторонней воды, поступающей к фильтру из нижележащих или вышележащих пластов.
Второе назначение изоляционных работ состоит в том, чтобы устранить в эксплуатационной колонне дефекты, которые могут не только обусловить поступление воды в ствол, но и явиться причиной нарушения нормальной эксплуатации скважины.
Подобные документы
Физико-химические свойства нефти, газа и воды, насыщающих продуктивные пласты. Динамика основных показателей скважин. Разработка и совершенствование методов и применение новых технологий ремонтных работ, внедрение их в скважинах месторождений Башкирии.
курсовая работа [2,4 M], добавлен 20.07.2010Коллекторские свойства продуктивных горизонтов. Особенности конструкции скважины. Физико-химические свойства нефти, газа и пластовой воды. Определение места притока вод в скважину. Требования, предъявляемые к подготовке скважины перед закачкой СНПХ-9633.
дипломная работа [287,2 K], добавлен 25.06.2010Характеристика геологического строения эксплуатационного объекта. Коллекторские свойства пластов. Физико-химические свойства пластовых флюидов. Природный режим залежи. Методы, улучшающие условия фильтрации за счёт первичного и вторичного вскрытия пласта.
курсовая работа [59,4 K], добавлен 25.06.2010Тектоническое строение островной части Сахалина. Геологические факторы, влияющие на обводнение скважин. Состав нефтеносных пластов. Методы определения источника обводнения. Механизм селективной изоляции водонасыщенных интервалов продуктивных горизонтов.
курсовая работа [577,5 K], добавлен 31.05.2015Общие сведения о месторождении, физико-химические свойства нефти, газа, коллекторские свойства горных пород. Применение зарезки второго ствола при капитальном ремонте нефтяной скважины. Крепление скважин обсадными трубам, оборудование для цементирования.
курсовая работа [189,2 K], добавлен 13.05.2016Применяемое буровое оборудование и режимные параметры при разрушении горных пород. Характеристика термодинамических параметров зарядов промышленных взрывных веществ. Расчет параметров взрывных работ для рыхления пород при бурении в блоках на карьере.
курсовая работа [494,0 K], добавлен 02.06.2014Характеристика Ромашкинского месторождения: орогидрография, стратиграфия, тектоника. Коллекторские свойства продуктивных горизонтов. Физико-химические свойства нефти, газа и пластовой воды. Причины низкой продуктивности скважин и пути их разрешения.
дипломная работа [76,5 K], добавлен 25.06.2010Характеристика геологического строения нефтяного месторождения. Коллекторские свойства продуктивных пластов и их неоднородность. Физико-химические свойства пластовых флюидов, нефти, газа и воды. Основы разработки низкопродуктивных глинистых коллекторов.
отчет по практике [293,0 K], добавлен 30.09.2014Исторический образ, обзор первобытной обработки камня. Залегания горных пород и их внешний вид. Структура, текстура горных пород Южного Урала. Способы и оборудование для механической обработки природного камня. Физико-механические свойства горных пород.
курсовая работа [66,9 K], добавлен 26.03.2011Геологическое строение эксплуатационных объектов и емкостно-коллекторские свойства продуктивных отложений. Состав и физико-химические свойства пластовых флюидов. Технико-эксплуатационная характеристика фонда скважин. Рекомендации по их эксплуатации.
курсовая работа [4,9 M], добавлен 15.02.2012