Состав коллекторов пласта месторождения. Типы коллекторов нефти и газа

Залегание нефти, воды и газа в месторождении. Состав коллекторов, формирование и свойства. Гранулометрический состав пород, пористость, проницаемость. Коллекторские свойства трещиноватых пород. Состояние остаточной воды в нефтяных и газовых коллекторах.

Рубрика Геология, гидрология и геодезия
Вид учебное пособие
Язык русский
Дата добавления 09.01.2010
Размер файла 3,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Файл не выбран
РћР±Р·РѕСЂ

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

, (1.51)

или

, (1.52)

С другой стороны, удельную поверхность можно выразить через гидравлический радиус ?:

или , (1.53)

Гидравлический радиус, как известно, равен отношению площади порового канала к его периметру и для поры с круглым сечением, с радиусом R

Тогда можно написать

, (1.54)

Подставляя значение R из формулы (1. 19), получи

, (1.55)

где k -- проницаемость в м2; S -- удельная поверхность в м23. Если выразить проницаемость в дарси, то получим удельную поверхность в м23:

, (1.56)

Из формул (1. 56) и (1. 54) следует, что чем меньше радиус поровых каналов и проницаемость породы, тем больше ее удельная поверхность.

13) Механические свойства коллекторов

Упругость, прочность на сжатие и разрыв, пластичность -- наиболее важные механические свойства горных пород, с которыми приходится сталкиваться при разработке и эксплуатации нефтяных месторождений. Перечисленные механические свойства пород влияют на ряд процессов, происходящих в пласте в период разработки и эксплуатации месторождения.

Так, например, упругие свойства горных пород совместно с упругостью пластовых жидкостей влияют на перераспределение давления в пласте при эксплуатации месторождения. Запас упругой энергии, освобождающейся при снижении давления, может служить значительным источником движения нефти по пласту к забоям скважин. Действительно, если пластовое давление снижается, то жидкость -- вода и нефть -- расширяется, а поровые каналы сужаются. Упругость пород и жидкостей очень мала, но вследствие огромных размеров пластовых водонапорных систем в процессе эксплуатации значительное количество жидкости (упругий запас) дополнительно вытесняется из пласта в скважину за счет расширения объема жидкости и уменьшения объема пор при снижении пластового давления.

Не менее существенный эффект упругости жидкости и пласта представляет не мгновенное, а постепенное перераспределение давления в пласте после всякого изменения режима работы скважины, после ввода новой или остановки старой скважины. Таким образом, при большой емкости пласта и высоком пластовом давлении с самого начала эксплуатации пласт будет находиться в условиях, для которых характерны длительные неустановившиеся процессы перераспределения пластового давления. Скорости этих процессов в значительной мере определяются упругими свойствами пород и жидкостей. Оказывается, что по скорости перераспределения давления при известных упругих свойствах пород и жидкости можно судить о проницаемости и других параметрах.

В процессе эксплуатации месторождения весьма важно знать также и прочность пород на сжатие и разрыв. Эти данные наряду с модулем упругости необходимы при изучении процессов искусственного воздействия на породы призабойной зоны скважин (торпедирование, гидроразрыв пластов), широко применяемых в нефтепромысловом деле для увеличения притока нефти.

Весьма важно также знать пластические свойства пород.

Известно, что породы пластов в естественном состоянии находятся в упруго-сжатом состоянии под действием веса вышележащих отложений. При проведении горных выработок это состояние всестороннего сжатия нарушается и создаются условия «вытекания» пород в выработку. Очевидно, что при этом нарушается существовавшее ранее естественное поле напряжений в районе выработки и при проведении гидравлического разрыва пластов, при торпедировании, при исследовании процессов разрушения призабойной зоны необходимо исходить из новых условий напряженного состояния пород в районе выработки, обусловленных соответствующим горным давлением, величина которого, кроме всех прочих свойств пород, как мы увидим дальше, зависит также и от пластичности породы, в которой проведена выработка.

Из сказанного следует, что физико-механические характеристики горных пород чрезвычайно важно знать при разработке месторождения и проведении различных мер воздействия на призабойную зону скважин.

При рассмотрении физических свойств горных пород следует учитывать, что в зависимости от условий залегания механические свойства породы могут резко изменяться.

Основные факторы, определяющие физико-механические свойства породы, следующие:

1) глубина залегания породы, определяющая величину давления, испытываемого породой от веса вышележащей толщи (горное давление);

2) тектоника района, определяющая характер и степень интенсивности испытанных породой деформаций;

3) стратиграфические условия залегания;

4) внутрипластовое давление и условия насыщения пор жидкостями.

Горные породы, налегая друг на друга, находятся в определенном напряженном состоянии, вызванном собственным весом пород и определяющимся глубиной залегания и характером самих пород. До нарушения условий залегания пород скважиной внешнее давление от собственного веса вышележащих пород и возникающие в породе ответные напряжения находятся в условиях равновесия.

Составляющие этого нормального поля напряжений имеют следующие значения:

по вертикали

где ? -- вертикальная составляющая напряжений в н/м2; ? -- удельный вес породы в н/м3; Н -- глубина залегания пласта в м; ?-- плотность породы в кг//м3; g -- ускорение силы тяжести в м/сек2.

по горизонтали

где п -- коэффициент бокового распора.

Величина п для пластичных и жидких пород типа плывунов равна единице (и тогда горизонтальное напряжение определяется гидростатическим законом), а для плотных и крепких пород в нормальных условиях, не осложненных тектонически, коэффициент бокового распора выражается долями единицы.

Величина коэффициента бокового распора и горизонтального давления может быть приближенно оценена из следующего [35].

Выделим элементарный объем горной породы (рис. 21). Относительная деформация, которую это тело получило бы, например, вдоль оси х при сжатии его тремя взаимно-перпендикулярными, равномерно распределенными силами, выраженными главными напряжениями (;), была бы равна

, (1.59)

где E -- модуль Юнга в н/м2; ?-- коэффициент поперечной деформации (коэффициент Пуассона).

Eсли принять, что в процессе осадконакопления происходило только сжатие пород в вертикальном направлении, а в горизонтальном направлении деформаций не происходило, то

Тогда, исходя из уравнения (1.59), получим

, (1.60)

т.е. коэффициент бокового распора

Если принять для пород значение коэффициента Пуассона равным ? = 0,3, то получим [13]

? = 0,43·? z , (1.61)

Формула (1. 60) выведена для условий, когда справедливо предположение об отсутствии деформаций пласта в горизонтальном направлении и когда не учитывается пластичность горных пород. В условиях реальных пластов эти предположения не всегда справедливы, и в них поэтому возможны более сложные напряженные состояния горных пород.

При достаточно больших давлениях на значительных глубинах, по-видимому, происходит выравнивание напряжений вплоть до величин, определяемых гидростатическим законом, так как предполагается, что за длительные геологические периоды породы испытывают пластические деформации. Однако чаще всего вследствие интенсивных тектонических процессов, происходивших в земной коре в течение геологических периодов, горные породы многократно деформировались, что, по-видимому, сопровождалось возникновением значительных различий между главными напряжениями.

В областях, где в результате тектонических процессов происходили боковое сдавливание пород и образование надвигов, наибольшим должно быть горизонтальное напряжение, которое, по-видимому, может иногда в 2--3 раза превышать вертикальное горное давление. В зонах возникновения обычных сбросов, не сопровождающихся боковым сжатием, вертикальные напряжения пород должны значительно превышать горизонтальные.

С появлением скважины изменяется напряженное состояние пород, так как происходят возмущения в естественном поле напряжений. В глубине пластов породы всесторонне сжаты, а по мере приближения к скважине они будут находиться в условиях, близких к одноосному сжатию. В результате пластичные породы (некоторые глины и глинистые сланцы) частично выдавливаются в скважину и удаляются в процессе бурения. В результате вертикальное горное давление на породы нефтяного пласта в районе скважины оказывается частично уменьшенным. При этом в районе скважины в простом естественном поле напряжений появляется зона аномалий. В горном деле установлено, что область аномалий, имеющая практическое значение, невелика; она только в несколько раз превосходит размеры горной выработки.

Из сказанного следует, что горные породы в продуктивных пластах могут находиться в условиях различного напряженного состояния. Это надо учитывать при работах, связанных с воздействием на пласт с целью разрушения пород призабойной зоны и образования искусственной трещиноватости, проводимых для улучшения притока нефти в скважины.

14) Электрические и радиоактивные свойства горных пород. Определение коллекторских свойств пластов геофизическими методами

Изучение коллекторских свойств пласта по данным анализа кернов не дает полного представления о породах нефтесодержащих пластов вследствие неполного выноса керна и нарушения свойств пород при извлечении их на поверхность.

Важную роль в установлении коллекторских свойств пород играют методы их изучения, основанные на исследовании работы скважин. Вместе с тем промысловые методы определения коллекторских свойств нефтесодержащих пластов дают общие осредненные значения пластовых параметров, относящиеся ко всему разрезу эксплуатируемой пачки пластов. Эти данные весьма удобны для проведения гидродинамических расчетов, но в процессе эксплуатации месторождения, а иногда и каждой скважины возникает необходимость в изучении коллекторских свойств пласта по всей его мощности более детально. Подробно изучить геологические разрезы месторождения можно методами промысловой геофизики, представляющими мощное средство бескернового изучения пород призабойной зоны скважин. Эти методы дают возможность изучить физические свойства пород в условиях залегания в природных коллекторах. Известно, что при отборе керна часто нарушается его структура, а вследствие понижения давления до атмосферного при подъеме с глубин более 2000 м пористость образцов может возрастать до 6% и проницаемость до 50% от их значений в пластовых условиях.

Установлено, что между физическими свойствами горных пород-- электрическими, радиоактивными, тепловыми, магнитными, с одной стороны, и нефте-, водо- и газонасыщенностью, пористостью и проницаемостью, с другой стороны, -- существуют количественные связи, которые позволяют широко использовать геофизические методы исследования для изучения коллекторских свойств пород.

15) Состояние остаточной (связанной) воды в нефтяных и газовых коллекторах

Состояние остаточной воды и начальное распределение нефти, газа и воды в пористой среде пласта определяются многочисленными свойствами пористой среды и пластовых жидкостей -- структурой пор и составом пород, физико-химическими свойствами пород и пластовых жидкостей, количеством и составом остаточной воды и т. д.

Начальное распределение нефти, остаточной воды и газа в пористой среде пласта имеет чрезвычайно важное значение в процессах движения нефти в пористой среде и вытеснения ее водой из пласта. В зависимости от количества, состава и состояния остаточных вод находится молекулярная природа поверхности нефтяного коллектора. Если остаточная вода находится в пласте в виде тонкой пленки, покрывающей поверхность поровых каналов, то поверхность твердой фазы остается гидрофильной. Если же свойства фаз таковы, что пленка воды отсутствует, то нефть непосредственно соприкасается с твердой поверхностью и вследствие адсорбции поверхностно-активных веществ нефти поверхность нефтяного коллектора становится в значительной степени гидрофобной. Следовательно, формы существования остаточной воды необходимо учитывать во всех процессах, в которых молекулярная природа поверхности твердой фазы имеет существенное значение. Это относится прежде всего к нефтеотдаче пласта.

Существенное влияние распределения остаточной воды в поровом пространстве оказывает на фазовые проницаемости породы для нефти, воды и газа. Многие другие явления, происходящие в пласте, как-то: смачиваемость пород вытесняющими жидкостями, интенсивность капиллярных процессов, количество и формы существования нефти, остающейся в поровом пространстве пласта после истощения пластовой энергии, и др., во многом также зависят от первоначального распределения жидкостей в пласте.

По распространенной гипотезе о происхождении нефтяных месторождений предполагается, что породы большинства нефтяных и газовых коллекторов были вначале заполнены и смочены водой, а нефть, по-видимому, появилась в пласте в более поздний период. Как отмечалось, вода, первоначально заполнявшая породу, не могла быть удалена полностью из пласта при образовании залежи и часть ее оставалась в виде остаточной.

По вопросу о том, в каком виде остаточная вода находится в пористой среде и других дисперсных телах, различные исследователи высказывают не одинаковое мнение. Однако большинство из них приходит к заключению о существовании:

1) капиллярно связанной воды, находящейся в узких капиллярных каналах, где интенсивно проявляются капиллярные силы;

2) адсорбционной воды, удерживаемой молекулярными силами у поверхности твердого тела и прочно связанной с частицами пористой среды; молекулы адсорбированной воды ориентированы; по свойствам адсорбированная вода значительно отличается от свободной;

3) пленочной воды, покрывающей гидрофильные участки поверхности твердой фазы;

4) свободной воды, удерживаемой капиллярными силами в дисперсной структуре, захваченной механически; ограничивается менисками на поверхностях раздела вода -- нефть, вода -- газ.

При анализе кернового материала в образце породы обычно определяется общее количество остаточной воды без количественной оценки различных ее видов. Это объясняется неопределенностью условий существования и классификации остаточной воды и сложностью раздельного их определения, так как недостаточно хорошо известно распределение воды и нефти в пористой среде.

Вначале предполагалось, что остаточная вода вследствие гидрофильных свойств нефтесодержащих пород покрывает всю поверхность каналов пористой среды. Исследования М. М. Кусакова и Л. И. Мекеницкой показали, что закономерности распределения связанной воды имеют более сложный характер. Состояние остаточной воды в нефтяном и газовом пластах определяется физико-химическими свойствами жидкостей. Чаще всего сплошная пленка воды между нефтью и твердой фазой отсутствует и большая часть остаточной воды находится в капиллярно удержанном состоянии. При этом свойства воды имеют решающее влияние на состояние связанной воды. Увеличение концентрации солей в жесткой остаточной воде, первоначально заполнявшей керн, приводит в последующем к увеличению степени гидрофобизации твердой фазы нефтью вследствие десольватирующего (т. е. разрушающего сольватные соли) действия ионов солей. Устойчивые пленки воды на поверхности твердого тела возникают только при очень низком значении поверхностного натяжения между водой и нефтью, при слабой минерализации воды. На этом основании можно предполагать, что в пластах, содержащих высокополярные нефти и слабо минерализованные сильно щелочные остаточные воды, последние находятся в капиллярноудержанном и пленочном состоянии.

Опытами М.М. Кусакова также доказано, что сильно минерализованные остаточные воды в газовом коллекторе также не образуют равновесной смачивающей пленки. Это также объясняется десольватирующим действием ионов солей, находящихся в остаточной воде. Средняя равновесная толщина слоя слабо минерализованной воды на поверхности кварца на границе с воздухом составляет 5-10-6 см (50 нм)

Общее количество различных форм остаточной воды в породе зависит от состава и физических свойств пород и пластовых жидкостей.


Подобные документы

  • Классификация коллекторов терригенного и карбонатного состава. Гранулометрический состав пород. Трещины диагенетического происхождения. Закономерности в расположении и ориентировке трещин в горной породе. Методы определения остаточной воды в пластах.

    контрольная работа [30,2 K], добавлен 04.01.2009

  • Коллектор - горная порода с высокой пористостью и проницаемостью, содержащая извлекаемые количества нефти и газа. Классификационные признаки коллекторов. Типы пород и залежей. Фильтрационные и емкостные свойства нефтяных и газовых пластов. Типы цемента.

    курсовая работа [2,0 M], добавлен 27.01.2014

  • Классификация, механические и тепловые свойства пород-коллекторов. Характеристика и оценка пористости, проницаемости и насыщенности пустотного пространства жидкостью и газом. Условия залегания пород-коллекторов в ловушках нефти и газа в Западной Сибири.

    реферат [1,6 M], добавлен 06.05.2013

  • Физические свойства горных пород-коллекторов нефти и газа. Типы осадочных пород: терригенные, хемогенные и органогенные. Гранулометрический состав как содержание в горной породе зерен крупности, выраженное в % от массы или количества зерен, его изучение.

    презентация [2,5 M], добавлен 17.04.2015

  • Анализ неорганической и органической теорий происхождения нефти и газа. Залегание нефти и газа в месторождении, состав коллекторов, их формирование и свойства. Проблемы коммерческой нефте- и газодобычи на шельфе Арктики, устройство ледостойких платформ.

    презентация [3,5 M], добавлен 30.05.2017

  • Основы увеличения нефте- и газоотдачи пластов. Физические и механические свойства горных пород нефтяных и газовых коллекторов. Методы анализа пластовых жидкостей, газов и газоконденсатных смесей. Характеристика природных коллекторов нефти и газа.

    презентация [670,8 K], добавлен 21.02.2015

  • Типы пород-коллекторов нефти, газа и воды, их разнообразие по минералогическому составу, геометрии пустотного пространства и генезису. Типы нефтяных залежей. Пористость, проницаемость и удельная поверхность горных пород, лабораторные методы их измерения.

    курсовая работа [463,4 K], добавлен 20.03.2013

  • Геолого-физическая и гидродинамическая характеристика месторождения, продуктивных коллекторов, вмещающих пород и покрышек. Запаси, состав и свойства нефти, газа, конденсата и воды. Обработка скважин соляной кислотой и осложнения при их эксплуатации.

    курсовая работа [421,9 K], добавлен 17.01.2011

  • Общие сведения, геолого-физическая характеристика Мишкинского месторождения. Физико-гидродинамическое описание продуктивных коллекторов. Свойства и состав нефти газа, конденсата и воды, оценка их запасов. Пути повышения эффективности проведения ОПЗ.

    дипломная работа [4,0 M], добавлен 23.08.2008

  • Физико-химические свойства нефти и газа. Принципы и показатели классификации видов нефти и применение тригонограмм. Макроскопическое описание осадочных горных пород. Особенности пород-коллекторов и покрышек. Аспекты построения геологического профиля.

    методичка [379,3 K], добавлен 25.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.