Эффективность вытеснения нефти раствором поверхностно-активного вещества

Изучене возможности повышения эффективности разработки месторождений высоковязких нефтей с применением поверхностно-активных веществ (Неонол АФ9-12). Методы увеличения нефтеотдачи пластов терригенных пород. Механизм вытеснения нефти из пористой среды.

Рубрика Геология, гидрология и геодезия
Вид дипломная работа
Язык русский
Дата добавления 06.07.2012
Размер файла 5,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Известно, что на поверхности раздела между жидкостью и газом или несмешивающимися жидкостями происходит адсорбция благодаря тому, что ПАВ состоит из водо- и нефтерастворимой групп. Так как гидрофильная группа характеризуется большей растворимостью в воде, чем гидрофобная, молекулы ПАВ ориентируются на поверхности воздух - вода на нефтерастворимую группу в воздухе и водорастворимую в воде. В зависимости от эффективности ПАВ межфазовая поверхность превращается в контакт воздух - вода и нефть. При этом уменьшаются силы молекулярного притяжения и в итоге поверхностное натяжение.

Способность ПАВ к адсорбции на границе раздела между жидкостью и твердым веществом влияет существенным образом на смачиваемость породы. Этому факту можно дать следующее, достаточно широко распространенное объяснение. При воздействии катионных ПАВ положительная растворимая группа адсорбируется отрицательными частицами силикатов, при этом нефтерастворимой группе обеспечивается смачивание. При использовании анионных ПАВ отрицательно заряженная водорастворимая группа отталкивается отрицательно заряженными частицами силиката, в этом случае ПАВ незначительно адсорбируется на силикате (песок, глина).

Для карбонатных пород картина совершенно иная. Известняк характеризуется положительным зарядом поверхности при рН от 0 до 8 и отрицательным при рН > 9,5. Поэтому в основном известняки и доломиты имеют положительный поверхностный заряд. В случае применения анионоактивных ПАВ, имеющих отрицательный поверхностный заряд, водорастворимая группа должна адсорбироваться положительно заряженными карбонатными частицами. В результате нефтерастворимая группа оказывает влияние на смачиваемость.

Представляют интерес исследования, выполненные Т.Н. Максимовой с целью определения зависимости адсорбции НПАВ от длины пористой среды. Опыты проводились на насыпных водонасыщенных пористых средах с диаметром 1 см и длиной 1 и 3 м. В первой серии экспериментов использовался молотый кварцевый песок и ПАВ ОП-10, во второй - экстрагированный дезинтегрированный песчаник с размером зерен менее 0,22 мм, приготовленный из обломков кернового материала нескольких скважин Николо-Березовской площади и ПАВ Неонол АФ9-12.

Растворы НПАВ нужной концентрации готовились на модели воды с плотностью 1,10 г/см3. Объемный расход фильтрующейся жидкости составлял 6 см3/ч, температура опыта 23-25 °С. После достижения на выходе из пористой среды исходной концентрации НПАВ продолжали фильтрацию воды с целью изучения десорбции ПАВ.

Данные по адсорбции НПАВ, заимствованные из этой работы, приведены в Таблице 1.

Таблица 1 - Результаты определения адсорбции НПАВ

НПАВ

Массовая доля НПАВ в растворе, %

Длина модели пористой среды, м

1

3

Адсорбировалось НПАВ, мг/г

Десорбировалось НПАВ, мг/г

Адсорбировалось НПАВ, мг/г

Десорбировалось НПАВ, мг/г

1

2

3

4

5

6

ОП-10

Неонол АФ9-12

0,05

0,1

0,51

1,19

0,38

1,0

0,23

1,02

0,13

0,78

В обеих сериях опытов с увеличением длины пористой среды адсорбция НПАВ несколько снизилась. Передний фронт оторочки НПАВ проходит через более длинные пористые среды с некоторым опережением. Это, очевидно, свидетельствует о том, что на водонасыщенных пористых средах при небольших скоростях фильтрации процесс адсорбции НПАВ протекает в условиях, близких к равновесным, и длина пористой среды не играет существенной роли. Значение адсорбции, определенное при лабораторных исследованиях, будет значительно выше, чем в промысловых условиях.

Опыт закачки раствора ПАВ в пласты показывает, что фронт адсорбции реагента в пластах растянут. В этих условиях концентрация раствора ПАВ в скважинах будет возрастать медленно. Лабораторные исследования показывают, что при скоростях фильтрации, поддерживаемых при заводнении нефтяных залежей, зона адсорбции превышает область предельной адсорбции в 10 раз и более. В промысловых условиях зону адсорбции можно определить, пробурив оценочную скважину рядом с нагнетательной. Наблюдая за концентрацией раствора в оценочной и следующей за ней добывающей скважинах, можно по трем точкам установить изменения во времени концентрации ПАВ в водном растворе.

Провести специальные промысловые исследования по адсорбции весьма затруднительно, в этой связи представляют огромный научный интерес все материалы по данному вопросу.

Первые промысловые исследования адсорбции и десорбции ПАВ в промысловых условиях были проведены на Нагаевском Куполе Арланского месторождения в 1964 г. Здесь был создан очаг из пяти скважин, в центре - нагнетательная, добывающие находились от нее на расстоянии 100 м. Перед началом закачки 0,05%-ного водного раствора ПАВ ОП-10 скважины давали практически чистую нефть [76]. В первых же пробах воды было зафиксировано наличие ПАВ концентрацией до 5% от исходной, т. е. 0,0025%. После прокачки раствора ПАВ в количестве 2,4 объема пор заводняемого пласта концентрация достигла 10-30% от исходной. По этим данным расчетное значение адсорбции на породе не превышало 0,07 мг/г. Проведенные в 1968-1972 гг. промысловые эксперименты на Николо-Березовской площади в условиях более редкой сетки скважин показали содержание ПАВ в продукции добывающих скважин опытных участков до 2% от исходной концентрации. В отдельных случаях выходная концентрация ПАВ в продукции добывающих скважин составляет 30% от исходной. Расчетное значение адсорбции изменялось в пределах 0,01-0,02 мг/г породы [76, 88]. Приведенные сведения о раннем появлении ПАВ в добываемой продукции эксплуатационных скважин некоторые исследователи связывали с незначительным значением адсорбции ПАВ в пластовых условиях, не принимая во внимание многочисленные экспериментальные исследования, свидетельствующие о значительных потерях ПАВ за счет адсорбционных процессов, происходящих на керновой породе в моделированных условиях пласта [65, 73, 87 и др.]. Хотя вышеизложенное явление может иметь и другое объяснение, связанное со структурой и неоднородностью коллекторов, диффузией ПАВ в нефть и др.

При промысловом эксперименте по закачке ПАВ на Николо-Березовской и Вятской площадях Арланского месторождения в 1981 -1983 гг. осуществлялся постоянный контроль за концентрацией ПАВ в добываемой продукции скважин. За это время заметных выходных концентраций ПАВ по опытным скважинам зафиксировано не было. Максимальная массовая доля ПАВ, которую удалось обнаружить на одной из скважин, составляла 0,01 и 0,008 %. В грандиозном эксперименте, проводимом в 1967-1983 гг. на Арланском месторождении, было выполнено 4992 анализа по выявлению ПАВ в воде добывающих скважин, причем ежегодно их количество возрастало. Так, в 1967 г. было сделано 123, в 1980г. - 602 анализа, а в 1982 г. - 929 анализов. Результаты анализа этих материалов показали, что обнаруженная концентрация ПАВ в добываемой продукции добывающих скважин не превышала фоновых значений.

2. Сталагмометрическое определение поверхностного и межфазного натяжений водных растворов поверхностно-активных веществ (ПАВ)

2.1 Описание сталагмометра

В качестве средства измерения используется сталагмометр СТ-1.

Основной частью прибора является микрометр 1, обеспечивающий фиксированное перемещение поршня 2 в цилиндрическом стеклянном корпусе медицинского шприца 3. Шток поршня 2 соединен с пружиной 4, благодаря чему исключается его самопроизвольное перемещение.

Микрометр со шприцом укреплены с помощью скобы 5 и втулки 6, которая может свободно передвигаться по стойке штатива 7 и фиксироваться на любой ее высоте винтом 8. На наконечник шприца надета капиллярная трубка из нержавеющей стали 9 (капилляр). Для определения поверхностного натяжения растворов ПАВ на границе с воздухом используется капилляр с прямым кончиком, а для межфазного натяжения методом счета капель - капилляр с загнутым кончиком. При вращении микровинта, пружина 4, сжимаясь, давит на шток поршня 2, который, перемещаясь в корпусе шприца, заполненного исследуемой жидкостью, выдавливает ее из кончика капилляра 10 в виде капли. При достижении критического объема капли отрываются и падают (для измерения поверхностного натяжения методом счета капель) или всплывают и образуют слой (для измерения межфазного натяжения методом объема капель).

Рисунок 1 - Установка по определению межфазного натяжения СТ-1

Поскольку величина межфазного и поверхностного натяжения зависит от температуры соприкасающихся фаз, сталагмометр помещен в термостатирующий шкаф.

2.2 Определения поверхностного натяжения растворов ПАВ методом счета капель

Поверхностное натяжение (у) возникает на границе раздела фаз. Молекулы на границах раздела фаз не полностью окружены другими молекулами того же вида по сравнению с соответствующими молекулами в объеме фазы, поэтому поверхность раздела фаз в межфазном поверхностном слое всегда является источником силового поля. Результат этого явления - нескомпенсированность межмолекулярных сил и наличие внутреннего или молекулярного давления. Для увеличения площади поверхности необходимо вывести молекулы из объемной фазы в поверхностный слой, совершив работу против межмолекулярных сил.

Поверхностное натяжение растворов определяют методом счета капель с использованием сталагмометра, который заключается в отсчете капель при медленном вытекании исследуемой жидкости из капилляра. В данной работе используется относительный вариант метода, когда одна из жидкостей (дистиллированная вода), поверхностное натяжение которой при данной температуре точно известно, выбирается в качестве стандартной.

Перед началом работы сталагмометр тщательно промывают хромовой смесью, затем несколько раз ополаскивают дистиллированной водой, так как следы жира (ПАВ) сильно искажают полученные результаты.

Сначала опыт проводят с дистиллированной водой: набирают раствор в прибор и дают жидкости по каплям вытекать из сталагмометра в стаканчик. Когда уровень жидкости достигнет верхней метки, начинают отсчет капель n0; отсчет продолжают до достижения уровнем нижней метки. Эксперимент повторяют 4 раза. Для расчета поверхностного натяжения используют среднее значение количества капель. Разница между отдельными отсчетами не должна превышать 1-2 капли. Поверхностное натяжение воды у0 табличная величина. Плотность растворов определяется пикнометрически.

Повторяют эксперимент для каждой исследуемой жидкости. Чем меньше поверхностное натяжение истекающей из сталагмометра жидкости, тем меньший объем имеет капля и тем больше будет число капель. Сталагмометрический метод дает достаточно точные значения поверхностного натяжения растворов ПАВ. Измеряют число капель n исследуемого раствора, вычисляют поверхностное натяжение у по формуле

где 0 - поверхностное натяжение воды при температуре опыта,

n0 и nх - число капель воды и раствора,

0 и х - плотности воды и раствора.

По полученным данным эксперимента строится график зависимости величины поверхностного натяжения на границе раствор ПАВ - воздух от концентрации (изотерма поверхностного натяжения).

2.3 Определение межфазного натяжения растворов ПАВ

Среди многообразных поверхностных явлений, протекающих на границах раздела фаз, особое влияние оказывает межфазное натяжение.

При рассмотрении системы вода - нефть на их границе раздела всегда существует межфазное натяжение. Молекула воды, удаленная от поверхности раздела, со всех сторон окружена другими молекулами воды. Поэтому результирующая сила взаимодействия этой молекулы с другими молекулами равна нулю. Молекула, расположенная на поверхности раздела, подвержена действию, с одной стороны, молекул масла, расположенных выше границы раздела, а с другой стороны, молекул воды, лежащих ниже этой границы. Результирующая сила взаимодействия этой молекулы не равна нулю. Вследствие этого возникают силы межфазного натяжения и образуется поверхностный слой типа упругой мембраны.

Величина межфазного натяжения разных тел на границе раздела различных соприкасающихся фаз не одинакова и является для них физической характеристикой.

Приборы для определения межфазного натяжения основываются на измерении усилия, необходимого для разрыва поверхности межфазного раздела по периметру определенной длины. Наибольшее распространение получил метод определения объема капель, выдавливаемых из капилляра на границе раздела фаз.

Межфазное натяжение па границе двух жидкостей определяется но формуле:

у = К V (с1 - с2), (1.7)

где у - межфазное натяжение, мН/м;

К - постоянная капилляра, мНм3 / (м·кг);

V - объем выдавливаемой капли, в делениях шкалы;

с1, с2 - плотность граничащих жидкостей, кг/м3.

Для определения постоянной капилляра необходимо замерить межфазное поверхностное натяжение такой органической жидкости на границе с дистиллированной водой, для которой это значение имеется в справочнике. Например, величина поверхностного натяжения на границе октан - дистиллированная вода по справочнику равна 50,98 мН/м.

Определив на сталагмометре объем выдавливаемой капли, постоянную К капилляра определяют по формуле

К = 50,98/[V (св - со)], (1.8)

где К - постоянная капилляра, мНм3 / (м·кг);

50,98 - значение поверхностного натяжения на границе октан -дистиллированная вода, мН/м;

V- объем всплывшей капли в делениях шкалы;

св - плотность воды, кг/м3;

со - плотность октана, кг/м3.

Проведение испытания

Устанавливается температура в термостате, равная 30 °С. Шприц заполняется нефтью и закрепляется с помощью скобы 14 на штативе. В стаканчик до метки наливается дистиллированная вода и в нее помещается загнутый капилляр, который с помощью медицинской иглы 10 надевается на шприц 4. Поверхность капилляра должна быть обезжирена хромовой смесью (концентрированная серная кислота + хромовокислый калий). Записывается число делений лимба микрометра и включается в сеть электродвигатель, который приводит во вращение микровинт, сообщающий поршню поступательное движение. Поршень шприца 4 начинает медленно перемещаться, вытесняя тем самым нефть из капилляра. В связи с этим на кончике капилляра формируется капля, которая при достижении критического объема, отрывается от капилляра и всплывает на поверхность воды. В момент отрыва капли необходимо отключить электродвигатель от электросети и записать число делений лимба микрометра. Высчитывается объем выдавливаемой капли в делениях лимба микровинта. Проводится не менее 10 подобных замеров и берется среднее значение объема капли V, по которому вычисляется величина межфазного натяжения на границе нефть-дистиллированная вода

ув-н = К V (св - сн), (1.9)

где у - межфазное натяжение, мН/м;

К - постоянная капилляра, мНм3 / (м·кг);

V - объем выдавливаемой капли, в делениях шкалы;

сн - плотность нефти, кг/м3

По полученным данным эксперимента строится график зависимости величины межфазного поверхностного натяжения на границе нефть-вода от температуры.

2.4 Результаты экспериментальных исследований поверхностной и межфазной активности ПАВ

После подготовки сталагмометра к проведению измерений нами была произведена тарировка прибора. Была рассчитана константа К на границе дистиллированная вода - октан (К = 0,008974). Затем мы проводили лабораторные исследования при комнатной температуре (24 С). Результаты приведены в Таблице 2, 3.

Таблица 2 - Результаты измерения поверхностного натяжения растворов ПАВ, дистиллирована вода

Концентрация, %

Плотность, г/см3

Количество капель, шт.

Поверхностное натяжение, мН/м

вода

0,998

122

72,98

0,05

0,995

222

34,6

0,1

0,995

238

32,3

0,2

0,995

243

31,6

0,3

0,995

256

30,0

0,4

0,994

257

29,9

0,5

0,994

258

29,8

0,6

0,994

260

29,5

0,7

0,993

261

29,4

0,8

0,993

262

29,3

0,9

0,993

264

29,1

1,0

0,993

266

28,8

По Таблице 2 была построена изотерма поверхностного натяжения (Рисунок 2).

Рисунок 2 - Изотерма поверхностного натяжения растворов ПАВ

Рисунок 3 - Изменение относительного поверхностного натяжения

Как видно, для раствора концентрацией 0,1 % поверхностное натяжение меньше примерно на 15%. Максимальное изменение характерно для раствора 5% концентрации, оно составляет 40% или снижено в 2,5 раза. При этом значения для 2.5 и 5 % близки.

Межфазное натяжение на границе трансформаторное масло - дистиллированная вода составляет 41,5 мн/м. Эксперименты проводили с нефтью Девонского отложения Серафимовского месторождения Республики Башкортостан Российской Федерации.

Результаты представлены в Таблице 3.

Таблица 3 - Результаты измерения межфазного натяжения растворов ПАВ, дистиллированная вода

Концентрация, %

Значения лимба

Константа

Плотность раствора, г/см3

Плотность трансформаторного масла, г/м3

Межфазное натяжение, мН/м

Дистиллированная вода

30

0,008974

998

844

41,5

0,05

2,5

0,008974

995

844

3,4

0,1

1,9

0,008974

995

844

2,6

0,2

1,8

0,008974

995

844

2,4

0,3

1,8

0,008974

995

844

2,4

0,4

1,7

0,008974

994

844

2,3

0,5

1,6

0,008974

994

844

2,2

0,6

1,5

0,008974

994

844

2,0

0,7

1,4

0,008974

993

844

1,9

0,8

1,3

0,008974

993

844

1,7

0,9

1,2

0,008974

993

844

1,6

1,0

1,1

0,008974

993

844

1,5

Как видно, максимальное снижение МН характерно для 5% раствора. Снижение составляет примерно 19 раз, что представлено ярко на рисунке 6.

Рисунок 4 - Изотерма межфазного натяжения растворов ПАВ, дистиллированная вода

Рисунок 5 - Изменение относительного межфазного натяжения

По рисунку видно, что значения для 2.5 и 5 % близки. Оба значения предположительно покажут высокую отмывающую способность, что следуетподтвердить в последующих экспериментах по отмыву почвы и песка от нефтяного загрязнения.

3. Экспериментальные исследования механизма вытеснения модели нефти растворами ПАВ из пористой среды

3.1 Обоснование выбора модели с использованием критериев подобия

При подготовке к проведению экспериментов были рассчитаны и изготовлены насыпные модели, руководствуясь известными критериями подобия при фильтрации через модели, пласта.

Расчет размеров модели и условий эксперимента исходя из критериев подобия пластовых и модельных условий.

Общепринято в настоящее время при проведении фильтрационных исследований использовать условия подобия и вытекающие из них количественные критерии подобия, рассмотренные в работе [100]. Выбор параметров экспериментов основан на безразмерных отношениях величин, характеризующих физический процесс, происходящий в исследуемой модели. Метод анализа размерностей или приведение к безразмерному виду уравнений, описывающих изучаемый процесс, позволяют получить критерии подобия.

При осуществлении физического моделирования практически невозможно поддерживать условие

потому что в этом случае проницаемость модели должна быть слишком мала. Таким образом, затрудняется точнее моделирование процесса.

Приближенное моделирование осуществимо при пренебрежении величиной капиллярного давления и допущении, что процесс не зависит от соотношения , где у - коэффициент поверхностного натяжения на границе раздела фаз, ДP - перепад давления на модели. С капиллярностью связан только комплекс влияющий на значения фазовых проницаемостей по нефти и воде. Приближенное подобие достигается при сохранении условия

(1.11)

(1.12)

и требования от используемой модели условия, что величина капиллярного давления незначительна но сравнению с общим перепадом по модели.

Известно [100] понятие стабилизированной зоны - области, в которой происходит переход от движения чистой нефти к отмыву нефти. Длина этой области приблизительно постоянна.

Допустим, что в экспериментах относительный размер стабилизированной зоны равняется величине x*,тогда соответствующее значение критерия подобия

р1 = x* / c,(1.13)

где с - параметр, который зависит от соотношения вязкостей вытесняющей воды и нефти (Рисунок 6).

Проведенные исследования показывают, что для р1 ? 0,6 нефтеотдача практически не зависит от дальнейшего уменьшения этого критерия.

Помимо критерия р1, необходимо удовлетворение критерия

(1.14)

Рисунок 6 - Зависимость параметра «C» от отношения вязкости воды и нефти

В результате экспериментов установлено, что для слабоцементированных песчаников изменение критерия р2 влияет на процесс вытеснения лишь до значения р2 = 0,5 * 106. При более высоких значениях р2 процесс становится автомодельным, это позволяет не соблюдать равенство чисел р2 для модели и натуры и ограничиться в проводимых экспериментах тем значением этого параметра, при превышении которого его изменение несущественно влияет на процесс. График зависимости безводной нефтеотдачи от критерия р2 приведен на Рисунке 7.

Теперь определим параметры экспериментов по вытеснению нефти, при которых достигается приближенное подобие при относительно размерах образца.

Рисунок 7 - Зависимость безводной нефтеотдачи от критерия р2 по [100]

Из формулы (1.14) находится минимальный перепад давления модели

P min= с/ (2minkP),(1.15)

Из соотношения (1.10) учитывая, что для соблюдения подобия должно выполняться его соотношение

получим формулу для минимальной длины модели

Lmin=(2minkP)/, (1.16)

Подставляя из (1.15) значение Pmin получим

(1.17)

Коэффициент р1 рекомендуется брать равным ?0,5, примем 1 = 0,26, 2 равным 0,5106, x* =0,26С. Средняя пористость насыпных моделей 0,38, средняя проницаемость по воде для насыпной модели при проведении экспериментов равна 0,186 мкм2, измеренное межфазное натяжение на границе "вода-трансформаторное масло" составляет = 41,5 мН/м2, динамическая вязкость трансформаторного масла, использованного при проведении экспериментов - мн = 9,924 мПас, вязкость воды мв = 0,914 мПа, . Как видно (Рисунок 6) для мо = 0,0921 величина С = 0,48.

Тогда из формулы находим минимальный перепад давления

Минимальную длину образца можно оценить по условию (1.17), отсюда

Одним из основных факторов, влияющих на механизм вытеснения модели нефти водой является соблюдение правил выбора модели пласта. При проведении опыта процесс должен быть точно или же приближенно подобным натуральному, т.е. при вытеснении нефти водой должны обеспечиваться условия подобия, что при вытеснении трансформаторного масла водой, длина модели должна быть не меньше длины стабилизированной зоны. Основными критериями, характеризующими процесс вытеснения масла водой, являются:

,

где р1 - критерий пласта и модели, выражающий отношение перепада давления к капиллярному давлению на водо-нефтяном контакте;

р2 - критерий, выражающий отношение капиллярного давления к градиенту внешнего давления.

А.А.Эфрос указывает, что при значении критерия р1?0,6 нефтеотдача мало зависит от дальнейшего уменьшения этого параметра, и поэтому в опытах по вытеснению масла водой можно не учитывать пластовое значение р1, а ограничиться его максимально допустимой величиной.

При р2?0,5·106 также можно не соблюдать равенство для модели и натуры, а ограничиться в опытах тем значением р2, выше которого его изменение не оказывает существенного влияния на процесс вытеснения. Эти соображения позволяют определять параметры опытов по вытеснению масла водой, в которых при сравнительно небольших размерах образца достигается приближенное подобие.

3.2 Проведение испытания по вытеснению

Целью работ по вытеснению нефти из моделей пластов является оценка эффективности применения метода повышения нефтеотдачи с использованием ПАВ.

Добавка ПАВ к закачиваемой воде приводит к снижению межфазного натяжения волы на границе с нефтью. При низком межфазном натяжении капли нефти легко деформируются, благодаря чему уменьшается работа, необходимая для проталкивания их через сужения пор, что увеличивает скорость их перемещения в пласте. Добавка ПАВ к воде приводит к уменьшению краевых углов избирательного смачивания, т.е. к улучшению смачиваемости породы водой. Кроме того, ПАВ способны диффундировать из водных растворов в нефть, вызывая снижение аномалий ее вязкости. И, наконец, водные растворы ПАВ обладают повышенными моющими свойствами и способствуют отрыву нефтяной пленки от поверхности пород. Под действием ПАВ происходит диспергирование нефти в воде, причем ПАВ в определенной мере стабилизируют образующуюся дисперсию. Размеры капель нефти уменьшаются. Вероятность их прилипания к твердой поверхности уменьшается. Все это в конечном итоге ведет к повышению нефтепроницаемости пористой среды и коэффициента вытеснения нефти из пласта. В нефтепромысловой практике для увеличения нефтеотдачи пласта наибольшее применение получили неионогенные ПАВ, которые либо непрерывно закачиваются в пласт в виде низкоконцентрированных (0,05-0,10 %) водных растворов, либо периодически закачиваются в виде оторочек высококонцентрированных (5-10 %) водных растворов. Лабораторные исследования показали, что при использовании ПАВ нефтеотдача может возрастать в 1,10-1,12 раза по сравнению с обычным заводнением.

Эффективность вытеснения нефти из пласта оценивается коэффициентом нефтеотдачи, который равен отношению объема излеченной из пласта нефти к первоначальному объему нефти в пласте.

Основным показателем эффективности метода повышения нефтеотдачи пластов по результатам лабораторных опытов обычно считается величина коэффициента вытеснения нефти.

В опытах по определению коэффициента вытеснения нефти, когда в качестве модели нефти используют трансформаторное масло (марка Т1500У), а в качестве нефтеносной породы - кварцевый песок.

Для проведения работы необходимо иметь трансформаторное масло (модель нефти), специально подготовленные модели продуктивного пласта - кварцевый песок с заданной фракцией зерен (обычно 2,0-3,0*10-4 м) (при моделировании терригенных пород-коллекторов). После загрузки каждой порции производится уплотнение слоя песка легким постукиванием деревянной палочкой по стеклянной трубке. Высота насыпного слоя песка должна составлять всю длину трубки до выходного отверстия, сообщающегося с атмосферой.

Определение пористости. По разности масс моделей, заполненных воздухом и водой, определяется пористость изготовленной модели. При определении пористости предполагается, что в насыщенной водой модели всё поровое пространство заполнено водой. Это положение допустимо для насыпной (несцементированной) модели, где отсутствуют закрытые, не связанные между собой поры. После набивки модель взвешивается. Масса модели, заполненной воздухом, обозначается m1. После насыщения модели водой модель повторно взвешивается. Масса модели, заполненной водой, обозначается m2. Тогда масса воды, находящейся в модели

mВ = m2 - m1

Так как плотность воды известна (сВ= 1000 кг/м3), вычисляем её объём в модели

VB= mВ / сВ,

Пользуясь принятым ранее допущением, что вода занимает все поры модели и зная объём пустой модели (объём пустой трубы) пористость m

m = VВ / VПМ

где VВ - объем воды, VПМ - объем пустой модели.

По результатам экспериментов определяются:

Коэффициент вытеснения

Мвыт=Vп /Vмод

Нагнетание воды осуществляется до полной обводненности проб жидкости, выходящих из пласта. Определяется количество выделившейся жидкости, в том числе нефти.

Рассчитывается коэффициент нефтеотдачи kн(по воде) для первичного нефтевытеснения по формуле

kн(по воде) = V1 / Vн,

где kн(по воде) - коэффициент нефтеотдачи первой стадии.

V1 - количество нефти, выделившейся в результате вытеснения водой (первичного нефтевытеснения), мл;

Vн - исходная нефтенасыщенность, мл;

Затем вслед за водой в пласт нагнетается оторочка исследуемого реагента в количестве, равном одному поровому объему. После ввода реагента в пласт вновь закачивается дистиллированная вода до полной обводненности проб, выходящих из пласта. Определяется количество выделившейся жидкости, в том числе нефти.

Рассчитывается коэффициент нефтеотдачи kн(прирост) для вторичного нефтевытеснения по формуле (? = ± 0,5 %, д = 1 %)

kн(прирост) = Vп / Vн,

где kн(прирост) - коэффициент нефтеотдачи заключительной стадии.

Vп - количество нефти, выделившейся в результате вытеснения оторочкой с последующим проталкиванием водой (вторичного нефтевытеснения), мл;

Vн - исходная нефтенасыщенность, мл;

Рассчитывается коэффициент извлечения нефти (КИН) на остаточную нефтенасыщенность по формуле (? = ± 0,5%, д = 1%)

kн(на ост) = Vп / Vп - V1,

Рассчитывался суммарный КНО по формуле (? = ± 0,5%, д = 1%)

kполн = kн(по воде) + kн(прирост),

где kполн - суммарный коэффициент нефтеотдачи.

При изучении фильтрационных характеристик моделей пласта проницаемость определяли по формуле:

где k.- коэффициент проницаемости среды, м2;

V - объём жидкости, м3;

L - длина модели пласта, м;

ф - время фильтрации жидкости через пористую среду, с;

м - динамическая вязкость жидкости, Па с;

F - площадь поперечного сечения образца или эффективная площадь

рассматриваемого объема пористой среды, м2;

?р - перепад давления на длине среды, Па:

Q - объемный расход жидкости, м3/с.

Вытеснение нефти из модели пласта производят при постоянной скорости или при постоянном перепаде давления. Объемная скорость закачки воды выбирается согласно принятой системе разработке изучаемого объекта.

В процессе вытеснения нефти непрерывно осуществляется контроль температуры, фиксируется перепад давления и расход прокачанной жидкости и вытесненной нефти.

Период безводного вытеснения нефти в опытах заканчивается после прокачки через модель пласта воды в объеме 0,5-0,8 поровых объемов всей модели. При этом вытесняется 90-95% подвижной нефти. Полное вытеснение нефти, как правило, достигается после прокачки 1,2-1,5 поровых объемов воды.

Нагнетание вытесняющей воды проводят непрерывно до полного обводнения вытесняемой жидкости. Объем вытесняемой нефти (Vн) фиксируют, при этом учитывают также нефть, отделяемую из проб воды путем их центрифугирования.

После вытеснения нефти вычисляют коэффициент нефтевытеснения по формуле: Квыт= Vн/ Vн нач, который обычно выражают в процентах.

Следующим этапом исследования является закачка оторочки (порции) композиции химреагента. Объем оторочки определяют, исходя из параметров соответствия реальным условиям или на основании серии предварительных экспериментов. После закачки оторочки композиции химреагента в модель вновь закачивают воду. На протяжении всего процесса строго фиксируют объем и состав вытесняемой жидкости и динамику изменения давления в системе.

Суммируя объем дополнительно вытесненной нефти (? Vн) производят расчет прироста коэффициента нефтевытеснения (? Квыт) и оценивают эффективность используемой композиции химреагента.

При проведении экспериментов выполняются следующие условия. Кратность проведения опытов - не менее 3-х раз. Число параллельных определений в опыте 2-3-х кратное. Математическую обработку результатов экспериментов, построение корреляционных зависимостей и расчет коэффициентов корреляции проводят с помощью ПК.

Насыпная модель пласта позволяет смоделировать лишь проницаемость пласта и, в некоторых случаях, его пористость. Структура порового пространства существенно отличается от той, которую можно наблюдать в нефтяном пласте. Связано это с тем, что в насыпной модели, состоящей из плотно упакованных песчинок, все поры связаны между собой, имеют приблизительно одинаковые размеры, отсутствуют закрытые поры. Однако на первом этапе применение насыпных моделей является целесообразным, так как требуется получить качественные закономерности процесса вытеснения нефти водным раствором ПАВ. Применительно к условиям конкретного месторождения справедливы качественные зависимости, полученные на насыпных моделях, однако количественные показатели эффективности воздействия (прирост и конечные значения коэффициента вытеснения) необходимо уточнять исследованиями воздействия водным раствором ПАВ на естественных кернах.

3.3 Меры безопасности выполнения экспериментальных работ

Сотрудники лаборатории должны знать свойства и физико-химические характеристики реактивов и новых химических веществ, поступающих на исследование.

Необходимо следить, чтобы на всех емкостях реагентов, поступающих для исследования в лабораторию, имелись этикетки или подписи с указанием содержимого и основных физико-химических характеристик с выделением особо опасных свойств: «Яд», «Огнеопасно» и т.д.

Все работы, связанные с выделением вредных газов, паров и дыма, должны проводиться в работающих вытяжных шкафах с опущенными дверцами. Кратность воздухообмена 8-10.

При проведении опытов с реагентами, не испытывавшимися ранее в лаборатории, всем сотрудникам необходимо ознакомиться с их вредными свойствами, описанными в справочнике "Вредные вещества в промышленности". При проведении экспериментов с химическими веществами необходимо использовать спецодежду и индивидуальные средства зашиты - халаты, резиновые фартуки, перчатки и др.

При работе с аппаратами, находящимися под вакуумом, а также при всех работах, связанных с возможностью засорения, ожога и раздражения глаз, необходимо надевать защитные очки или приспособления для защиты (шлем или щиток из органического стекла).

Нельзя сливать нефтепродукты и органические растворители в канализацию. Все остатки химических веществ необходимо сливать в специальные закрытые бачки с этикеткой "Слив" и ежедневно выносить из лаборатории в специально отведенные для этого места.

Лаборатория должна быть оснащена средствами пожаротушения и аптечкой для оказания первой помощи.

Огнеопасные реактивы и реагенты необходимо хранить в специально оборудованных местах с хорошей вентиляцией.

Каждый работающий в лаборатории должен знать, где расположены средства пожаротушения (кошма, листовой асбест, сухой песок, огнетушители, пожарный водяной стояк и т.д.) и уметь ими пользоваться.

Перед выполнением работы следует ознакомиться с устройством установки для определения коэффициента вытеснения нефти из модели пласта и последовательностью проведения операций.

В работах используются модели пласта, и которых сойдется невысокое избыточное давление за счет гидростатического напора жидкости.

Перед выполнением работ следует убедиться в надежном закреплении напорного сосуда на специальной площадке. Все запорные устройства экспериментальной установки до и после выполнения работ должны быть надежно закрыты.

Во избежание поломки и раската стеклянных деталей установки, порезов их осколками, разлива масла и водных растворов используемых реагентов работы необходимо вести очень осторожно, без резких движений.

В случае разлива и попадании на кожу масла и водных растворов используемых реагентов необходимо смыть их водой или мыльным раствором.

При выполнении измерений в лаборатории должны соблюдаться следующие условия:

температура воздуха (20 +/- 5) °C;

влажность воздуха не более 80% при t = 25 °C;

частота переменного тока (50 +/- 1) Гц;

напряжение в сети (220 +/- 22) В.

Нельзя оставлять работающую установку без присмотра. Запрещается прием пищи и пользование открытым огнем в помещении, где находится экспериментальная установка.

Заключение

В работах многих авторов, начиная с 60-х годов, особо подчёркивается необходимость комплексных физико-химических исследований промысловых ПАВ.

Однако, до сих пор оценивают лишь влияние концентрации реагента на величину межфазного натяжения. Вопросы, связанные с влиянием температуры на свойства ПАВ, не изучаются.

В статье рассмотрены физико-химические свойства оксиэтилированных неионных поверхностно-активных веществ, произведен обзор по структуре и свойствам.

Нами рассмотрено влияние неоднородного строения нефтяного пласта на его охват заводнением и возможные пути его повышения. Изложены результаты теоретических, лабораторных и промысловых исследований увеличения охвата пластов воздействием с применением гидродинамических, физико-химических, физических, микробиологических и других методов повышения нефтеотдачи пластов. Обоснована перспективность совершенствования заводнения с применением методов повышения нефтеодачи пластов, основанных на повышении фильтрационного сопротивления промытых зон нефтеводонасышенного коллектора.

В результате проведенных экспериментальных исследований по вытеснению высоковязкой нефти Девонского отложения Серафимовского месторождения Республики Башкортостан Российской Федерации на специально изготовленных лабораторных моделях неоднородного продуктивного пласта выявлено, что сочетание последовательной закачки вытесняющих агентов в виде водных растворов неионогенных ПАВ (технология комплексного воздействия) вызывает дополнительные физико-химические эффекты, позволяющие максимально повысить эффективность заводнения

Установлено, что неионогеиные ПАВ непосредственно введенные в нефть месторождения Девонского отложения Серафимовского месторождения Республики Башкортостан Российской Федерации или перешедшие в нее путем диффузии из водных растворов, оказывают диспергирующее действие на основные структурообразующие компоненты пластовой нефти - асфальтены, в результате чего снижаются аномалии вязкости нефти и повышается коэффициент еевытеснении из модели продуктивного пласта.

Литература

1. Разработка нефтяных месторождений. Т. 1 /Н.И. Хисамутдинов, М.М. Хасанов, А.Г. Телин и др. - М.: ВНИИОЭНГ, 1994. - 263 c

2. Галеев Р.Г. Повышение выработки трудноизвлекаемых запасов углеводородного сырья. - М.: КУГК-р, 1997. - 351 с.

3. Геология, разработка и эксплуатация Ромашкинского нефтяного месторождения / Р.Х. Муслимов, A.M. Шавалеев, Р.Б. Хисамов, И.Г. Юсупов. - М.: ВНИИОЭНГ. - 1995. -Т. II. -286с. и др.

4. Методы извлечения остаточной нефти / М.Л. Сургучев, А.Т. Горбунов, Д.П. Забродин и др. - М.: Недра, 1991. - 347 с.

5. Применение полимеров в добыче нефти / Е.И. Григоращенко, Ю.В. Зайцев, В.В. Кукин и др. - М.: Недра, 1978. - С. 213.

6. Разработка нефтяных месторождений с применением поверхностно-активных веществ / Г.А. Бабалян, А.Б. Тумасян, Б.И. Леви и др. - М.: Недра, 1983. - 216 с.

7. Сургучев М.Л., Швецов В.А., Сурина В.В. Применение мицеллярных растворов для увеличения нефтеотдачи пластов. - М.: Недра, 1977. - 120 с.

8. Сургучев М.Л. Вторичные и третичные методы увеличения нефтеотдачи пластов. - М.: Недра, 1985. - 235 с. и др.

9. О комплексной системе разработки трудноизвлекаемых запасов нефти / Р.Х. Муслимов, Р.Г. Галеев, Э.И. Сулейманов и др. // Нефтяное хозяйство. - 1995. - № 42. - С. 26-34.

10. Ганиев P.P. Технология повышения нефтеотдачи пластов на основе ПАВ // Нефтепромысловое дело. - 1994. - №. 5. - С. 8-10.

Размещено на Allbest.ru


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.