Последовательная перекачка нефтепродуктов по нефтепродуктопроводу "Черкассы-Камбарка"
Общая характеристика нефтепродуктопровода "Черкассы-Камбарка". Принцип последовательной перекачки бензина и дизельного топлива, основные ее параметры. Смесеобразование при последовательной перекачке и борьба с ним. Расчет контактов нефтепродуктов.
Рубрика | Геология, гидрология и геодезия |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 26.11.2014 |
Размер файла | 2,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
На стадии строительства трубопровода скребки применяют для удаления камней, строительного мусора. Для этого оптимально подходит конструкция со сравнительно плоской передней поверхностью для предотвращения перекатывания скребка через посторонние предметы, находящиеся в трубопроводе.
При заполнении или опорожнении трубопровода в конструкции скребка должен быть предусмотрен плотный затвор, обеспечивающий его эффективную работу. Опыт эксплуатации НПП показал, что после прохода одного скребка по трубопроводу небольшое количество воды снова накапливается в пониженных участках трассы проложения. Экспериментально было обнаружено, что эффективность процесса повышается, если скребок проталкивать сухим газом (воздухом, азотом, метаном); сухой газ подберет пары воды и осушит трубопровод.
В случае ограниченности запасов воды в данной местности или невозмож- ности ее сброса возникает необходимость возврата опрессовочной воды. Для этих целей используются двухходовые скребки, снабженные надежными уплотнениями для возможности движения в обоих направлениях вдоль оси трубопровода. Недостатком их является невысокое качество уплотнений по сравнению с одноходовыми скребками.
Скребки с коническими манжетами представляют собой конструкцию лучшего качества, которое достигается за счет использования пары или группы манжет с уплотняющим воротником на периферии каждой манжеты. Работа такого скребка эффективна при движении его только в одном направлении. Скребок с коническими манжетами гибок и надежен на сотнях километров пути с сохранением герметичности уплотнений.
Непосредственно перед или сразу же после заполнения трубопровода продуктом используют калибровочный скребок, который имеет круглую пластинку-калибр с металлической облицовкой диаметром 92,5% от внутреннего диаметра трубопровода.
С помощью калибровочных скребков из трубопровода удаляются предметы, случайно оставленные в нем, обнаруживаются места овальности труб. Регулярные его пропуски могут выявить деформацию трубопровода задолго до его разрушения. Однако калибровочные скребки не могут выявить небольшие деформации, более того, они сами могут создать гофры и царапины на исправном трубопроводе.
Этих недостатков лишен скребок-нутромер. Благодаря особенностям конструкции, контакт его металлических деталей с металлом трубопровода исключен. Однако любой дефект формы трубопровода скребком регистрируется. Благодаря коническим манжетам и корпусу малого диаметра, крупные препятствия внутри трубопровода нутромер может обходить, а надежное уплотнение обеспечивает возможность использования скребка как эффективного средства заполнения и опорожнения трубопроводов. Регулярные пропуски скребка по эксплуатирующемуся трубопроводу позволяют с небольшими затратами обновлять данные о состоянии трубопровода.
Регулярные пропуски скребков позволяют удалять и жидкостные «карманы» (вода, оставшаяся от строительства или гидростатических испытаний, или вода и конденсат, введенные в трубопровод вместе с транспортируемым продуктом из скважин, танкеров или резервуаров) и передвигать их сплошной массой к концу трубопровода для сброса. Во избежание образования взрывоопасной смеси в трубопровод перед скребком запускают азот или другой инертный газ. Кроме того, это способствует поддержанию противодавления на скребке, что является необходимым при заполнении трубопровода.
Частота пропуска скребков зависит от параметров трубопровода, физических свойств и расхода жидкости и даже от температуры и времени года. У каждого трубопровода свое значение оптимальной частоты пропуска скребков.
Поддержание в чистоте внутренней поверхности трубопровода означает удаление не только посторонних загрязнений, но и продуктов коррозии металла труб. Образование продуктов коррозии и коррозионных каверн снижает пропускную способность трубопровода, кроме того, они могут увеличиться до такой степени, что утоньшение стенок труб станет серьезной угрозой для целостности трубопровода.
Регулярный пропуск скребков со стальными щетками помогает срывать окалину и удалять ее вместе с грязью и водой. Для удаления парафинов и смолистых отложений из трубопровода эффективно применение скребков с ножами, т.к. мягкий парафин и смола склеивают проволочные щетки и препятствуют контакту проволочных концов с внутренней поверхностью трубопровода.
Если в трубопровод постоянно поступает жидкость в виде сконденсированных паров из транспортируемого газа, то надеяться полностью удалить жидкость из трубопровода скребком бессмысленно. В этом случае следует пропускать трубопроводные шаровые разделители, заполненные водой или гликолем, автоматически связав частоту пропусков со временем или потерей давления в трубопроводе.
При выборе того или иного механического устройства необходимо учитывать специфику их воздействия на пристенные отложения. Это положение подтверждается опытом очистки целого ряда отечественных и зарубежных трубопроводов.
Основным недостатком механических скребков является то, что в процессе очистки НПП неизбежно изнашивается металл стенки труб, возникают царапины и подрезы, что дополнительно уменьшает и без того незначительный остаточный ресурс трубопроводов.
Кроме того, механические средства полностью непригодны для очистки НПП переменного сечения и сложного профиля, к каким относится большинство действующих нефтепродуктопроводов.
Для очистки подобных НПП используются системы нового поколения -эластичные гельные разделители на основе гидрофильных полимеров. Гелеобразные поршни могут равноценно выполнять большинство функций механических поршней, отличаясь при этом способностью к некоторым химическим реакциям, что позволяет закачать их непосредственно в полость трубопровода. В настоящее время при обслуживании трубопроводных коммуникаций применяются гели 4 типов: гели-разделители партий нефтепродуктов, гелеобразные поршни для выноса мусора из полости трубопровода, углеводородные гели, осушающие гели. Гельные системы обладают целым набором полезных свойств; псевдопластичностью, вязкоупругостью, когезионностью, способностью к самовосстановлению формы и уменьшению напряжений сдвига. Разделительные гели полностью предотвращают перетоки разделяемых жидкостей, тогда как при применении механических скребков не менее 1% проталкивающей жидкости проникает в проталкиваемую.
В настоящее время к полимерным составам, применяемым в трубопроводном транспорте нефтепродуктов, предъявляются следующие требования :
- высокая поверхностная и объемная активность не только в лабораторных, но и в реальных гидродинамических условиях;
- высокая технико-экономическая эффективность;
- повышенные адсорбционная и адгезионная и пониженная десорбционная способность в динамических условиях;
- ярко выраженное флокулирующее действие на коллоидно-дисперсную фазу гид-I рофобных сред;
- способность снижать коллоидную растворимость воды в нефтепродукте;
- способность образовывать на стенках трубопровода гидрофильный слой полимера в результате прокачки его рабочего раствора, предохраняющий поверхность металла от действия электролитов и кристаллизации пристенных отложений; -способность сохранять н повышать эффективность действия других реагентов и деэмульгаторов,
- значительный молекулярный вес, высокая эластичность и набухаемость макромолекул,
- удовлетворительная стабильность к механической и термической деструкциям и способность создавать скользящий пограничный слой, способствующий снижению пристенного трения жидкости.
В той или иной мере вышеперечисленным требованиям удовлетворяют полиакриламид (ПAA, АМФ) и его модификация (МПАА), карбоксиметил-целлюлоза (КМЦ), полиакрилонитрил (гипан), поливиниловый спирт (ПВС).
На сегодняшний день наиболее доступна технология формирования полимерной "пробки" при использовании 1,2... 1,8 %-ного МПАА с сохранением текучести в течение 3...4 суток и очистных свойств в течение 20 и 772 суток соответственно для АМФ и ПАА. Образование полимерной "пробки" на основе 1,5...7,5%-ного МПАА идет при любой положительной температуре нефтепродукта при наличии твердых осадков в присутствии доступных наполнителей (глины, песка, пемзы, древесных опилок). Продолжительность формирования нерастекаемой пробки сокращается с 3 суток до 4...6 часов при использовании 4...7,5%-ного МПАА. При нагреве 1,2 и 1,8%-ного МПАА до 45...65°С время формирования пробки сокращается соответственно до 2 часов и до 35... 55 минут, при этом повышаются эксплуатационные свойства МПАА и сокращается его расход.
Через любое удобное время от 2 часов до 300 суток полученный разделитель вытесняют потоком со скоростью не менее 0,2 м/с по схеме запуска скребка. Режим эксплуатации трубопровода при этом существенно не изменяется. Прием выносимых скоплений осуществляется в отдельный резервуар в конечном пункте.
Применение вязкоупругих разделителей, обладающих рядом преимуществ, может вызвать осложнения, связанные с их низкой механической прочностью. Разрушение разделителя вызывает не только некачественное разделение нефтепродуктов, но и повышение гидравлического сопротивления трубопровода в случае повышенной адгезии к внутренней поверхности трубы нерастворенного в нефтепродукте разделителя.
Существующий на сегодняшний день остаточный ресурс нефтепродуктопроводов не позволяет применять при их очистке от внутритрубных отложений и скоплений воды и газов жесткие механические скребки, травмирующие внутреннюю поверхность НПП.
Уменьшение объемов перекачки нефтепродуктов не позволяет увеличивать скорости потоков нефтепродуктов до критических величин, обеспечивающих вынос жидкостных и газовых скоплений из застойных зон рельефных участков НПП. В сложившейся ситуации наиболее перспективными средствами очистки являются органические и водорастворимые гели, способные проводить очистку НПП сложного профиля и переменного диаметра.
Используемые гельные очистные системы имеют достаточно низкую износостойкость и большую длину, что требует при их использовании применения специального оборудования для закачки их в трубопроводы.
Актуальным представляется создание гельных систем повышенной износостойкости, объединяющих достоинства как механических скребков, так и полимерных гелей, применение которых не требует использования и модернизации имеющихся узлов приема-запуска разделителей[10].
ЗАКЛЮЧЕНИЕ
В данной курсовой работе мы рассмотрели проектирование нефтепродуктопровода «Черкассы-Камбарка» протяженностью 202,5 км. Выяснили, что трасса трубопровода пройдет через Нефтекамск, Дюртюлинский и Благовещенский районы. Привели характеристики перекачивающих станций, насосно-силового оборудования и перекачиваемых нефтепродуктов, рассмотрели технологию последовательной перекачки и методы контроля за ней. Произвели подбор насосно-силового оборудования, определили толщину стенки трубы, ее необходимый диаметр, осуществили гидравлический расчет нефтепровода, нашли объем смеси и расчетное время цикла. За окончательный вариант сооружения однониточного нефтепродуктопровода был принят вариант с n =2 перекачивающими станциями. В этом случае расстановка станций на местности была произведена исходя из максимальной производительности нефтепродуктопровода, то есть Q2 =965 м3/ч. Также рассмотрели тему очистки нефтепродуктопровода, причины, по которой ее применяют , и очистные устройства.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1 Определение трассы трубопровода и профиля высот. [Электронный ресурс]. - URL: http://www.vhfdx.ru/karta-vyisot .
2 Коршак А.А., Нечваль А.М. «Проектирование и эксплуатация газонефтепроводов» - Уфа: ДизайнПолиграфСервис,2008.-485 с.
3 Нечваль, А.М. Основные задачи при проектировании и эксплуатации магистральных трубопроводов: Учебное пособие. - Уфа: УГНТУ. - 77с.
4 СП 36.13330.2012. Магистральные трубопроводы. - Пересмотрен СП 36.13330.2011; Введ. 01.07.2012.
5 ГОСТ Р Магистральный трубопровод. Нормы проектирования. - [Электронный ресурс]. - URL: http://pwreng.ru/ntd/gost/2905-gost-magistralniy-nefteprovod-normi-%20proektirovaniya-part1.
6 Центробежные насосы для магистральных трубопроводов: Каталог. - 2-е изд., исправл. и доп. - М.:ЦИНТИХИМНЕФТЕМАШ, 1989. - 24 с.
7 Статистика температуры почвы // [Электронный ресурс]. -http://www.atlas-yakutia.ru/weather/soil_temp/climate_russia-XIII.html.
8 ГОСТ 305-82. Топливо дизельное. Технические условия // [Электронный ресурс]. - http://www.nge.ru/g_305-82.htm.
9 ГОСТ Р 51105-97. Топлива для двигателей внутреннего сгорания. Неэтилированный бензин // [Электронный ресурс]. - http://www.nge.ru/g_p_51105-97.htm.
10 Большая энциклопедия нефти и газа // [Электронный ресурс]. -http://www.ngpedia.ru.
11 Википедия-свободная энциклопедия // [Электронный ресурс]. -http://ru.wikipedia.org/wiki.
Размещено на Allbest.ru
Подобные документы
Характеристика Архангельской нефтебазы; ее основные зоны. Правила хранения нефтепродуктов в металлических резервуарах, бочках и бидонах. Назначение и принципы работы насосных станций. Виды канализационных сетей; расчет их пропускной способности.
отчет по практике [2,1 M], добавлен 16.08.2015Основные сооружения нефтебаз, техника безопасности. Факторы расположения железнодорожных нефтегрузовых тупиков. Прием и отпуск нефтепродуктов, условия их хранения в таре. Эксплуатация насосных станций. Лаборатории для проведения анализов нефтепродуктов.
отчет по практике [29,2 K], добавлен 06.10.2012Технология перекачки нефти на исследуемой станции, ее назначение, структура и принцип работы, состав используемого оборудования. Структура и функциональные особенности системы автоматизации. Улучшение метрологических и эксплуатационных характеристик.
дипломная работа [306,7 K], добавлен 29.05.2015Описание технологической схемы нефтеперекачивающей станции. Параметры на контроль и управление. Магистральные нефтепроводы. Насосно-силовое оборудование для перекачки нефти. Магистральные насосные агрегаты. Электродвигатель, система затвора, маслосистема.
отчет по практике [457,6 K], добавлен 11.03.2016Компонентный состав пластовой нефти Приразломного месторождения. Описание технологической схемы установки. Выбор конструкционных материалов для изготовления аппарата, расчет опор. Оперативный контроль и управление ходом технологического процесса.
дипломная работа [2,9 M], добавлен 02.01.2012Осесимметричный приток газа к скважине. Линеаризация уравнения Лейбензона и основное решение линеаризованного уравнения. Решение задачи о притоке газа к скважине методом последовательной смены стационарных состояний. Расчет по линеаризованной формуле.
курсовая работа [108,5 K], добавлен 31.01.2011Исследование особенностей образования минералов в природе. Характеристика процессов роста кристаллов в переохлажденном расплаве. Анализ влияния числа центров кристаллизации на структуру агрегата. Схема последовательной кристаллизации гомогенной жидкости.
реферат [2,5 M], добавлен 05.01.2014Состав, свойства и фракции нефти. Ее нахождение в природе, добыча посредством буровых скважин. Понятие ректификации, ее применение, принцип осуществления в ректификационных колоннах. Способы переработки нефтепродуктов: пиролиз, риформинг, крекинг.
презентация [1,2 M], добавлен 18.12.2013Расчет геометрических параметров резервуара. Система пожаротушения на складах нефти и нефтепродуктов. Проверка устойчивости стенки резервуара, ее анкерное крепление и конструкция днища. Монтаж металлоконструкций вертикальных стальных сварных резервуаров.
курсовая работа [4,5 M], добавлен 26.04.2015Геологическое строение и общая характеристика Орловского месторождения угля. Обоснование способа разработки и основные параметры карьера. Технология и организация производственных процессов. Расчет капитальных затрат на строительство предприятия.
курсовая работа [176,0 K], добавлен 02.01.2013