Исторические основы криптологии
Искусство шифрования и тайной передачи информации. Проблема защиты информации. Предмет криптологии. Язык сообщения. Тайнопись. Коды и их назначение. Криптография и криптоанализ. История криптографии. Шифрование и компьютерные технологии.
Рубрика | Государство и право |
Вид | реферат |
Язык | русский |
Дата добавления | 19.01.2007 |
Размер файла | 747,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Среди заметных фигур в криптографии первой половины XX в. выделяется У. Фридман, получивший серьезные теоре-тические результаты в криптоанализе и ставший известным благодаря своим заслугам по вскрытию военных шифров Японии и Германии.
У.Фридман родился в 1891 г. в Кишиневе, в семье пере-водчика, работавшего в русском почтовом ведомстве. В 1892 г. его семья эмигрировала в США, где отец стал зани-маться швейными машинами. У.Фридман в 1914 г. Окончил Корнельский университет по специальности генетика. В городе Итака, где проживала семья Фридмана, крупный бизнесмен Д. Фабиан имел собственные лаборатории по акустике, гене-тике и криптографии. Любопытно, что криптографией Д. Фабиан увлекся, пытаясь доказать, что автором пьес У. Шекспира являлся Ф. Бэкон.
В 1915 г. Д. Фабиан нанял на работу в свое поместье Ривербэнк специалиста по генетике. Им стал У. Фридман. Вско-ре он увлекся криптографией и проявил себя в этом деле. Че-рез некоторое время У. Фридман уже возглавлял в Ривербэнкских лабораториях два отдела -- генетики и шифров.
Помимо криптоаналитической работы У.Фридман занимался преподаванием в классе, состоявшем из армейских офицеров, присланных в Ривербэнк для изучения криптографии. До 1918 г. им был подготовлен цикл из семи лекций, восьмую он написал после возвращения со службы в качестве дешифровалыцика в американских экспедиционных силах (шла первая мировая война). Известные все вместе как Ривербэнкские публикации, эти работы являются серьезным вкла-дом в теоретическую криптографию.
Наибольший интерес с точки зрения современной криптографии представляют лекции "Методы раскрытия шифров с длинной связной гаммой" и "Индекс совпадения и его приме-нения в криптографии". В первой из них предлагается бесключевой метод чтения при использовании неравноверо-ятной гаммы. Во второй излагается так называемый к-тест, позволяющий выяснить, можно ли подписать друг под другом две (или более) криптограммы (или отрезки криптограмм) так, чтобы буквы в каждой колонке оказались бы зашифрованы одинаковыми знаками гаммы.
Поступив в 1921 г. на службу в войска связи, У. Фридман успешно применял свои методы для вскрытия машинных шифров. Когда была создана служба радиоразведки, У.Фридман стал ее главой и продолжил свои разработки, самой значимой из которых было вскрытие японской пурпурной шифрмашины. В 1929 г. он стал широко известен как один из ведущих криптографов мира, когда "Британская энциклопедия" поместила его статью "О кодах и шифрах". С основными результатами У. Фридмана можно познакомиться в четырехтомнике "Военная криптогра-фия".
Выдающиеся результаты в применении математических методов в криптографии принадлежат Клоду Шеннону. К. Шеннон получил образование по электронике и математике в Мичиганском университете, где и начал проявлять интерес к теории связи и теории шифров. В 1940 г. он получил степень доктора по математике, в течение года обучался в Принстонском институте усовершенствования, после чего был принят на службу в лабораторию компании "Bell Telephone".
К 1944 г. К. Шеннон завершил разработку теории секретной связи. В 1945 г. им был подготовлен секретный доклад "Матема-тическая теория криптографии", который был рассекречен в 1949 г. и издан.
В данной работе излагается теория так называемых секрет-ных систем, служащих фактически математической моделью шифров. Помимо основных алгебраических (или функциональ-ных) свойств шифров, постулируемых в модели, множества со-общений и ключей наделяются соответствующими априорными вероятностными свойствами, что позволяет формализовать мно-гие постановки задач синтеза и анализа шифров. Так, и сегодня при разработке новых классов шифров широко используется принцип Шеннона рассеивания и перемешивания, состоящий в использовании при шифровании многих итераций "рассеиваю-щих" и "перемешивающих" преобразований.
Разработанные К. Шенноном концепции теоретической и практической секретности (или стойкости) позволяют количе-ственно оценивать криптографические качества шифров и пы-таться строить в некотором смысле идеальные или совершенные шифры. Моделируется также и язык открытых сообщений. А именно, предлагается рассматривать язык как вероятностный процесс, который создает дискретную последовательность сим-волов в соответствии с некоторой вероятностной схемой.
Центральной в работах К. Шеннона является концепция из-быточной информации, содержащейся в текстовых сообщениях. Избыточность означает, что в сообщении содержится больше символов, чем в действительности требуется для передачи со-держащейся в нем информации. Например, всего лишь десять английских слов -- the, of, and, to, a, in, that, it, is, i -- состав-ляют более 25% любого (английского) текста. Легко понять, что их можно изъять из текста без потери информации, так как их легко восстановить по смыслу (или по контексту). Фактически К.Шеннон показал, что успех криптоанализа определяется тем, насколько избыточность, имеющаяся в сообщении, "переносит-ся" в шифрованный текст. Если шифрование "стирает" избыточ-ность, то восстановить текст сообщения по криптограмме стано-вится принципиально невозможно.
Задачу дешифрования К. Шеннон рассматривает как задачу вычисления апостериорных знаний противника о шифре после перехвата криптограммы. Дело в том, что вероятности сообще-ний и ключей составляют априорные знания противника, кото-рыми он располагает в соответствии с правилом Керкгоффса. После перехвата криптограммы он может (по крайней мере, в принципе, поскольку множества сообщений и ключей конечны) вычислить апостериорные вероятности возможных ключей и сообщений, которые могли быть использованы при составлении данной криптограммы. Вот эти вероятности и составляют апо-стериорные знания противника. С этой точки зрения показателен следующий пример.
Пусть для зашифрования нормативного английского языка применяется шифр простой замены, в котором каждый из 26! ключей может быть выбран с равной вероятностью. Пусть про-тивник знает об источнике сообщений лишь то, что он создает английский текст. Тогда априорными вероятностями различных сообщений из N букв являются их относительные частоты в нормативном тексте. Если же противник перехватил крипто грамму из N букв, то он может вычислить условные вероятно-сти открытых текстов и ключей, которые могут создать такую криптограмму. Если N достаточно велико, скажем N = 50, то обычно имеется единственное сообщение (и единственный ключ) с условной вероятностью, близкой к единице (это -- само сообщение, подвергнутое шифрованию), в то время как все дру-гие сообщения имеют суммарную вероятность, близкую к нулю. Таким образом, имеется, по существу, единственное "решение" такой криптограммы. Для меньших значений N, скажем N = 10, обычно найдется несколько пар сообщений и ключей, вероятности которых сравнимы друг с другом, то есть, нет ни одного сообщения (и ключа) с вероятностью, близкой к единице. В этом случае "решение" криптограммы неоднозначно.
Понятие совершенной секретности К. Шеннон определяет требованием, чтобы апостериорные знания противника в точно-сти совпадали бы с априорными знаниями. Он приводит пример совершенного шифра, которым является шифр Вернама (со слу-чайной равновероятной гаммой). Следует подчеркнуть, что все рассуждения о стойкости шифров К. Шеннон проводит лишь для одной постановки задачи криптоанализа: когда противник располагает лишь одной криптограммой и требуется найти текст сообщения. Для других постановок задач требуются отдельные исследования.
Теоретической мерой секретности (или стойкости) по К.Шеннону является энтропийная характеристика -- неопреде-ленность шифра по открытому сообщению, которая измеряет (в статистическом смысле), насколько "близка" средняя крип-тограмма из N букв к единственному "решению". Он выводит формулу для приближенного вычисления минимального N, при котором находится единственное "решение". Такая вели-чина получила название расстояния единственности. Форму-ла для расстояния единственности связывает между собой не-определенность шифра по открытому тексту и избыточность текста. Чем большим оказывается расстояние единственности, тем более шифр приближается к совершенному шифру, для которого формально расстояние единственности равно .
Наконец, К. Шеннон вводит понятие рабочей характери-стики шифра, подходя к практической оценке стойкости. Он формулирует также основные критерии оценки качества секрет-ных систем с позиций практики их использования.
Как видим, К. Шеннону удалось решить фундаментальные проблемы в теоретической криптографии. Его работы стимули-ровали бурный рост научных исследований по теории информа-ции и криптографии.
В работах К. Шеннона по исследованию свойств языка важ-ную роль играет величина удельной энтропии Н на букву тек-ста, другими словами, среднее количество информации, переда-ваемой буквой открытого текста. Предложенный им метод экс-периментов с угадыванием очередной буквы английского текста по предыдущим буквам оказался неэффективным при получе-нии оценок величины Н для других языков. Метод "отгадыва-ния" развил в своих работах А. Н. Колмогоров. Достаточно точ-ные приближения параметра Н для русского и французского языков получил Б. Б. Пиотровский. Он указал на существенную разницу между значениями Н для текстов различного характе-ра (литературных, деловых, разговорной речи).
Понятие "количества информации", содержащейся в тексте, базировалось, по К. Шеннону, лишь на частотных характеристи-ках. В своих фундаментальных работах 60-х годов А. Н. Колмо-горов подошел к определению количества информации с учетом смыслового содержания текста, что позволило уточнить при-ближение величины Н для литературных текстов. Необходимо также отметить, что еще задолго до К. Шеннона частотные ха-рактеристики языка изучал выдающийся русский ученый А. А. Марков. Сегодня часто используются так называемые марковские модели открытых текстов, учитывающие зависимости букв текста от предыдущих букв.
Следующая страница в истории криптографии XX в. посвя-щена телефонным шифраторам, которые были разработаны в 30-х годах и стали широко использоваться во время второй мировой войны. В России разработка телефонного шифратора велась под руководством В.А.Котельникова, ставшего впоследствии акаде-миком, ученым с мировым именем. Ему принадлежит знамени-тая теорема дискретизации (или теорема отсчетов), лежащая в основе теории цифровой обработки сигналов.
Согласно, идея телефонного шифратора была запа-тентована Д. Х. Роджерсом еще в 1881 г., спустя пять лет после изобретения Беллом телефона. Идея состояла в передаче теле-фонного сообщения по нескольким (в простейшем случае -- по двум) цепям поочередными импульсами в некоторой быстро изменяющейся последовательности. Предлагалось разнести та-кие линии на значительное расстояние друг от друга с тем, что-бы устранить возможность подключения сразу ко всем одновре-менно. Подключение же к одной из них позволяло бы слышать лишь отдельные неразборчивые сигналы.
В более поздних разработках предлагались различные пре-образования непосредственно самой речи. Звуки речи преобра-зуются телефоном в непрерывный электрический сигнал, кото-рый с помощью соответствующих устройств изменяется шифра-тором по законам электричества. К числу возможных изменений относятся: инверсия, смещение, или деление диапазона частот, шумовые маскировки, временные перестановки частей сигнала, а также различные комбинации перечисленных преобразований. Естественно, каждое из указанных преобразований производит-ся под управлением ключа, который имеется у отправителя и получателя. Наиболее просто реализуемым являлось преобразо-вание инверсии. Сложнее реализовались временные перестанов-ки. Для их осуществления речевой сигнал в некоторый проме-жуток времени предварительно записывался на магнитофонной ленте. Запись делилась на отрезки длительностью в доли секунд. Отрезки с помощью нескольких магнитных головок разносились и перемешивались, в результате чего в канале слышалась хаоти-ческая последовательность звуков. Использовалась также дви-жущаяся магнитная головка, которая в зависимости от направления движения считывала сигналы быстрее или медленнее, чем они были записаны на ленте. В результате тон сигналов становился выше или ниже обычного, в канале быстро чередовались высокие и низкие звуки, не воспринимаемые ухом. Следует от-метить, что одной из самых сложных проблем, которые возника-ли при разработке телефонных шифраторов, была проблема узнавания восстановленной после расшифрования речи.
В США первый телефонный шифратор, под названием A3, был принят в эксплуатацию в 1937 г. Именно он доставил президенту Рузвельту известие о начале второй мировой войны утром 1 сентября 1939 г. по вызову американского посла в Па-риже. A3 осуществлял инверсию и перестановку 5 поддиапазонов частот. Из 3840 возможных комбинаций () фактически использовались лишь 6, которые менялись 36 раз за каждые 20 секунд. Слабость используемой криптографии компенсирова-лась регулярным изменением частот передачи.
В настоящее время аналоговая телефония уступает место цифровой телефонии. Тем самым и многие технические проблемы, связанные с криптографическими преобразованиями анало-говых сигналов, отпадают за ненадобностью. Дело в том, что оцифрованный сигнал является дискретным и, следовательно, к нему можно применить хорошо разработанную надежную "дис-кретную криптографию".
Во второй половине XX в., вслед за развитием элементной базы вычислительной техники, появились электронные шифраторы, разработка которых потребовала серьезных теоретиче-ских исследований во многих областях прикладной и фундамен-тальной математики, в первую очередь алгебре, теории вероят-ностей и математической статистике. Сегодня именно электрон-ные шифраторы составляют подавляющую долю средств шиф-рования. Они удовлетворяют все возрастающим требованиям по надежности и скорости шифрования. Прогресс в развитии вы-числительной техники сделал возможными программные реали-зации криптографических алгоритмов, которые все увереннее вытесняют во многих сферах традиционные аппаратные средства.
В семидесятых годах произошло два события, серьезно повлиявших на дальнейшее развитие криптографии. Во-первых, был принят (и опубликован!) первый стандарт шифрования данных (DES), "легализовавший" принцип Керкгоффса в криптографии. Во-вторых, после работы американ-ских математиков У. Диффи и М. Хеллмана родилась "новая криптография"-- криптография с открытым клю-чом. Оба этих события были рождены потребностями бурно развивающихся средств коммуникаций, в том числе локаль-ных и глобальных компьютерных сетей, для защиты которых потребовались легко доступные и достаточно надежные крип-тографические средства. Криптография стала широко востребоваться не только в военной, дипломатической, государст-венной сферах, но также в коммерческой, банковской и дру-гих сферах.
Вслед за идеей Диффи и Хеллмана, связанной с гипотетическим понятием однонаправленной (или односторонней) функции с секретом, появились "кандидат" на такую функ-цию и реально осуществленная шифрсистема RSA с откры-тым ключом. Такая система была предложена в 1978 г. Райвестом, Шамиром и Адлеманом. Парадоксальным казалось то, что в RSA для зашифрования и расшифрования используются разные ключи, причем ключ зашифрования может быть от-крытым, то есть всем известным. Вслед за RSA появился целый ряд других систем. В связи с несимметричным исполь-зованием ключей стал использоваться термин асимметричная шифрсистема, в то время как традиционные шифрсистемы стали называться симметричными.
Наряду с идеей открытого шифрования Диффи и Хеллман предложили идею открытого распределения ключей, позво-ляющую избавиться от защищенного канала связи при рас-сылке криптографических ключей. Их идея основывалась на сложности решения задачи дискретного логарифмировании, то есть задачи, являющейся обратной для задачи возведения в степень в конечном поле большого порядка.
Заключение.
Появление в середине двадцатого столетия первых электронно-вычислительных машин кардинально изменило ситуацию в области шифрования (криптографии). С проникновением компьютеров в различные сферы жизни возникла принципиально новая отрасль - информационная индустрия.
В 60-х и частично в 70-х годах проблема защиты информации решалась достаточно эффективно применением в основном организационных мер. К ним относились прежде всего режимные мероприятия, охрана, сигнализация и простейшие программные средства защиты информации. Эффективность использования указанных средств достигалась за счет концентрации информации на вычислительных центрах, как правило автономных, что способствовало обеспечению защиты относительно малыми средствами. "Рассосредоточение" информации по местам ее хранения и обработки, чему в немалой степени способствовало появление в огромных количествах дешевых персональных компьютеров и построенных на их основе локальных и глобальных национальных и транснациональных сетей ЭВМ, использующих спутниковые каналы связи, создание высокоэффективных систем разведки и добычи информации, обострило ситуацию с защитой информации.
Проблема обеспечения необходимого уровня защиты информации оказалась (и это предметно подтверждено как теоретическими исследованиями, так и опытом практического решения) весьма сложной, требующей для своего решения не просто осуществления некоторой совокупности научных, научно-технических и организационных мероприятий и применения специфических средств и методов, а создания целостной системы организационных мероприятий и применения специфических средств и методов по защите информации.
Объем циркулирующей в обществе информации стабильно возрастает. Популярность всемирной сети Интренет в последние годы способствует удваиванию информации каждый год. Фактически, на пороге нового тысячелетия человечество создало информационную цивилизацию, в которой от успешной работы средств обработки информации зависит благополучие и даже выживание человечества в его нынешнем качестве. Произошедшие за этот период изменения можно охарактеризовать следующим образом: объемы обрабатываемой информации возросли за полвека на несколько порядков; доступ к определенным данным позволяет контролировать значительные материальные и финансовые ценности; информация приобрела стоимость, которую даже можно подсчитать; характер обрабатываемых данных стал чрезвычайно многообразным и более не сводится к исключительно текстовым данным; информация полностью "обезличилась", т.е. особенности ее материального
представления потеряли свое значение - сравните письмо прошлого века и современное послание по электронной почте; характер информационных взаимодействий чрезвычайно усложнился, и наряду с классической задачей защиты передаваемых текстовых сообщений от несанкционированного прочтения и искажения возникли новые задачи сферы защиты информации, ранее стоявшие и решавшиеся в рамках используемых "бумажных" технологий - например, подпись под электронным документом и вручение электронного документа "под расписку"; субъектами информационных процессов теперь являются не только люди, но и созданные ими автоматические системы, действующие по заложенной в них программе; вычислительные "способности" современных компьютеров подняли на совершенно новый уровень как возможности по реализации шифров, ранее немыслимых из-за своей высокой сложности, так и возможности аналитиков по их взлому.
Перечисленные выше изменения привели к тому, что очень быстро после распространения компьютеров в деловой сфере практическая криптография сделала в своем развитии огромный скачок, причем сразу по нескольким направлениям: во-первых, были разработаны стойкие блочные с секретным ключом, предназначенные для решения классической задачи - обеспечения секретности и целостности, передаваемых или хранимых данных, они до сих пор остаются "рабочей лошадкой" криптографии, наиболее часто используемыми средствами
Примечания.
1. Во многих приложениях задача идентификации и аутентификации доступа человека или программы к некоторому ресурсу является даже более важной, чем задача обеспечения конфиденциальности. Практически все многопользовательские и сетевые операционные системы требуют аутентификации пользователя. Равно как банкоматы и кассовые терминалы. С развитием интернета и безбумажных технологий число приложений, которые требуют аутентификации пользователей, будет только возрастать.
Итак, сначала - определения. В дальнейшем под субъектом будем понимать пользователя или пользовательского агента(программу), осуществляющего доступ к некоторому ресурсу. Под информационной системой будем понимать отдельный компьютер или компьютерную сеть, или иное электронное устройство, доступ к которому регламентируется определенной системой полномочий и/или прав. Задачей систем идентификации и аутентификации является определение и верификация набора полномочий субъекта при доступе к информационной системе. Идентификацией субъекта при доступе к информационной системе называется процесс сопоставления его с некоторой хранимой системой характеристикой субъекта - идентификатором. В дальнейшем идентификатор субъекта используется для предоставления субъекту определенного уровня прав и полномочий при использовании информационной системой. Аутентификацией субъекта называется процедура верификации принадлежности идентификатора субъекту. Аутентификация производится на основании того или иного секретного элемента (аутентификатора), которым располагают как субъект, так и информационная система. Обычно информационная система располагает не самим секретным элементом, но некоторой информацией о нем, на основании которой принимается решение об адекватности субъекта идентификатору.
Для того, чтобы эта сухая теория стала более понятной, рассмотрим конкретный пример. Перед началом интерактивного сеанса работы большинство операционных систем запрашивают у пользователя его имя и пароль. Введенное имя является идентификатором пользователя, а его пароль - аутентификатором. Операционная система обычно хранит не сам пароль, а его хэш сумму, обеспечивая тем самым практическую невозможность восстановления пароля. Использование пары «имя пользователя пароль» для аутентификации субъектов является наиболее распространенным, но не единственным. Принципиально разных методов аутентификации на самом деле немного. Один класс методов аутентификации основывается на том, что аутентифицируемый субъект должен иметь некоторый секретный элемент(пароль, секретный ключ или специальный аутентификационный токен). Другой класс методов аутентификации применим, в основном, для аутентификации людей. Он основывается на наличии уникальных физических свойств самого человека (отпечатки пальцев, форма кисти руки, голос, радужная оболочка глаза). У каждого класса методов есть как достоинства,так и недостатки. Сравнением обоих классов методов мы займемся чуть позже, а пока рассмотрим подробнее разные методы аутентификации.
Алгоритмически процедура аутентификации представляется как последовательная передача одной или нескольких информационных посылок между субъектом и информационной системой и промежуточная их обработка обеими сторонами. В результате этих действий обе стороны обмена должны удостоверить, что они являются теми, за кого себя выдают. Про аутентификацию секретным элементом мы уже говорили. Другим распространенным методом аутентификации является аутентификация с использованием сертификатов открытого ключа. Разработано и применяется несколько таких алгоритмов. Обычно аутентификацию с использованием ключей совмещают с процедурой генерации парного симметричного ключа с целью его дальнейшего использования для обмена сообщениями. Наиболее известной процедурой взаимной аутентификации пары абонентов является метод Диффи Хеллмана. Он широко описан как в статьях самих авторов, так и в независимых работах. Суть метода состоит в том, что каждый из участников обмена путем математических преобразований своего секретного ключа и открытого ключа своего корреспондента и обмена несекретными посылками получают независимо друг от друга секретное число. Поскольку секретный и открытый ключи абонентов связаны некоторым соотношением, то есть возможность подбора преобразований ключей так, что полученные обоими абонентами числа совпадают. Полученное секретное число можно использовать в качестве разделяемого секрета.
Другим интересным методом аутентификации является использование аутентификационного токена. Аутентификационный токен представляет собой физическое устройство, обычно небольших размеров для удобства его ношения с собой. Это может быть смарт карта или недавно появившиеся устройства, подключаемые к порту USB и выполненные в виде брелока. Обычно аутентификационный токен содержит «на борту» энергонезависимую память и специализированный процессор. Некоторые устройства дополнительно имеют встроенный аппаратный генератор случайных чисел или таймер(часы реального времени). Процессор токена в зависимости от мощности способен выполнять самые различные операции. Есть процессоры, способные выполнять шифрование данных алгоритмом DES или вычислять хэш суммы c использованием ключа (HMACMD5). Специализированный токен позволяет производить криптографические преобразования без извлечения ключа из памяти токена и передавать между токеном, компьютером и информационной системой только несекретные или зашифрованные данные, что дополнительно защищает протокол аутентификации от перехвата ключей. Обычно программный доступ к токену возможен только после ввода PIN кода, известного только владельцу аутентификационного токена. Дополнительные возможности токенов позволяют реализовать более надежные протоколы аутентификации. Интересную технологию аутентификации, основанную на «одноразовых паролях», предложила компания Security Dynamics. Технология носит название SecureID. Одноразовыми паролями являются псевдослучайные числа. Генератором последовательности псевдослучайных чисел является аутентификационный токен. RSA Security предлагает несколько вариантов токена - смарт-карту, калькулятор с возможностью ввода PIN кода, брелоки. Каждый токен имеет уникальный серийный номер. Токен генерирует новое псевдослучайное число по одному в минуту. Период генератора псевдослучайных чисел таков, что время использования одного токена составляет два года. Для аутентификации по технологии SecureID информационная система должна содержать в себе аутентификационный сервер SecureID и базу данных, сопоставляющую имена аутентифицируемых пользователей и серийные номера токенов. Запрос на аутентификацию от пользователя состоит из его имени и случайного числа, считываемого пользователем с токена. Сервер, на основании полученного от пользователя числа и серийного номера токена, решает принадлежит ли данное число последовательности, генерируемой именно этим токеном, или нет.
Указанные и многие другие методы аутентификации страдают одним недостатком - они, на самом деле, аутентифицируют не конкретного субъекта, а фиксируют тот факт, что аутентификатор субъекта соответствует его идентификатору. То есть, все перечисленные методы незащищены от компрометации аутентификатора. Биометрические методы идентификации или аутентификации свободны от этого недостатка. Как уже отмечалось, биометрические методы основываются на анализе уникальных характеристик самого человека. Биометрическая характеристика может являться как идентификатором (как, собственно, дактилоскопия рассматривает отпечаток пальца, как идентификатор личности), так и аутентификатором (пользователь вводит свое имя и подтверждает его, посмотрев в окуляр анализатора радужной оболочки глаза). Для некоторых приложений(например, для контроля доступа в помещения) идентификации оказывается достаточно. Для некоторых(«параноидальных») случаев требуется ввести имя пользователя, его отпечаток пальца да еще и произнести кодовую фразу.
Наиболее распространенным методом (и дешевым) биометрической идентификации или аутентификации является анализ отпечатка пальца. При регистрации пользователя в базу данных аутентификационного сервера помещается свертка - некоторая хэш сумма отсканированного отпечатка пальца. В зависимости от реализации, длина свертки составляет 200-400 байт. Но у биометрических методов аутентификации личности есть один серьезный недостаток (кроме относительно высокой стоимости). В случае компрометации аутентификационного токена, ключа или пароля субъект может отказаться от его использования и получить новый аутентификатор. В случае компрометации электронного представления биометрического аутентификатора, человек может просто «выпасть» из процесса аутентификации. В случае использования биометрической характеристики как идентификатора личности, угрозы компрометации нет.
2 Можно ли, используя криптографические технологии, обеспечить подлинность бумажного документа (завещания, доверенности или иного юридического документа)? Традиционным подходом является составление юридического документа на бумаге с водяными знаками или иными защитными элементами. Такой подход требует наличия специального бланка на момент составления документа или наличия типографии со специальным оборудованием. А что делать когда уже есть бумажный документ и есть желание защитить его от подделки? Известно, что каждый лист бумаги уникален по структуре образующих его волокон. С появлением недорогих сканеров, имеющих высокое разрешение, и надежных технологий распознавания образов, появилась возможность анализировать микроструктуру бумаги и использовать полученную информацию для обеспечения уникальности документа.
На сегодняшний день уже имеется проработанная технология, доведенная до программно-аппаратного решения, обеспечивающая уникальность бумажных документов, использующая вышеизложенную идею. Выбранный документ сканируется с высоким разрешением, и в отсканированном образе выделяются несколько особенностей (микро вкрапления, характерные изгибы образующих волокон, и т.д.). В общем, тут напрашивается некоторая аналогия с технологией анализа отпечатков пальцев... И, кстати, не случайно. Полученные данные преобразуются в двоичный массив, для которого вычисляется хэш функция. Полученное значение хэш функции и является аналогом «водяного знака» и обеспечивает уникальность документа. Легко заметить, что предложенную технологию легко расширить и значение хэш функции печатать прямо на бланке документа вместе с печатью нотариуса при нотариальном заверении документа. Но такой подход требует соответствующего законодательства. Попытки использовать «электронные водяные знаки» для небумажных носителей пока, к сожалению, не имели успеха. Самым известным примером может служить попытка защиты DVD дисков от нелегального распространения. Идея разработчиков состояла в том, чтобы помимо шифрования информации на диске помещать на него некоторую информацию, которая терялась или переставала быть актуальной на копии. Практика показала, что попытки внедрить подобную технологию оказались неудачными.
Приведенный пример, кстати, отражает глубокое и, к сожалению, часто не замечаемое различие традиционных документов и электронных. Суть этой разницы хорошо видна на примере применения электронной подписи. Программа проверки подписи, вообще говоря, может установить лишь то, что проверяемый документ был подписан с использованием ключа, имеющего указанный идентификатор и подпись верна (либо - не верна). Но по подписи нельзя определить кто же именно воспользовался данным ключом. Пусть, например, для вычисления «контрольной суммы» легального DVD диска использовались такие его характеристики, как материал покрытия, данные, нанесенные штрих кодом, код завода изготовителя и серийный номер диска. Обладание алгоритмом вычисления такой «контрольной суммы» позволит потенциальным «пиратам» изготовить неограниченное число копий просто перевычисляя «контрольную сумму» в процессе изготовления для тех «болванок», которые имеются в их распоряжении. Любой DVD проигрыватель воспримет так изготовленный диск как легальный!
3. Криптографическими методами можно обеспечить не только конфиденциальность, но и проконтролировать целостность передаваемых или хранимых данных. Контроль целостности в основном производится путем расчета некоторой «контрольной суммы» данных. Математиками и инженерами, работающими в области передачи данных и теории кодирования, разработано множество алгоритмов, рассчитывающих контрольные суммы передаваемых данных. Для многих приложений простой контрольной суммы (например, известного алгоритма crc32 или последовательного побайтного или пословного сложения исходного текста с известной константой) оказывается достаточно, особенно тогда, когда важна скорость обработки данных и не известен заранее объем данных (типичный случай - передача данных по каналам связи).
Проблема простых алгоритмов вычисления контрольной суммы в том, что достаточно легко подобрать несколько массивов данных, имеющих одинаковую контрольную сумму. Криптографически стойкие контрольные суммы вычисляются как результат применения к исходному тексту так называемой хэш функции.
Одним из результатов теории сложности и теории функций является гипотеза о существовании односторонних функций. Под односторонней функцией понимается функция, определенная (например) на множестве натуральных чисел и не требующая для вычисления своего значения больших вычислительных ресурсов. Но вычисление обратной функции(то есть, по известному значению функции восстановить значение аргумента) оказывается невозможно теоретически или (в крайнем случае) невозможно вычислительно. Строгое существование односторонних функций пока не доказано. Поэтому все используемые в настоящее время хэш функции являются лишь «кандидатами» в односторонние функции, хотя и имеют достаточно хорошие свойства. Основными свойствами криптографически «хорошей» хэш функции является свойство рассеивания, свойство стойкости к коллизиям и свойство необратимости. О необратимости мы уже говорили. Коллизией хэш функции H называется ситуация, при которой существуют два различных текста T1 и T2, но H(T1) = H(T2). Значение хэш функции всегда имеет фиксированную длину, а на длину исходного текста не накладывается никаких ограничений. Из этого следует, что коллизии существуют. Требование стойкости к коллизиям обозначает, что для криптографически «хорошей» хэш функции для заданного текста T1 вычислительно невозможно найти текст T2, вызывающий коллизию. Свойство рассеивания требует, чтобы минимальные изменения текста, подлежащего хэшированию, вызывали максимальные изменения в значении хэш функции.
Основные применяемые на сегодняшний день алгоритмы, реализующие хэш функции, являются MD2, MD4, MD5, SHA и его вариант SHA1, российский алгоритм, описываемый стандартом ГОСТ Р 34.11 94. Наиболее часто используются MD5, SHA1 и в России 34.11. Длина значения хэш функции различна. Типичной длиной является 16-32 байта. В свете последних криптоаналитических результатов, вероятно, придется в недалеком будущем отказаться от MD5, так как было заявлено: «его стойкость к коллизиям опустилась и, вероятно, подошла близко к той отметке, после которой о стойкости вообще говорить не приходится». В заголовок раздела вынесены слова «электронная подпись». Но не сказать об электронной подписи совсем было бы неправильно. Дело в том, что без несимметричной криптографии электронной подписи не было бы вообще! Идея электронной подписи проста. Когда описывался процесс шифрования с использованием несимметричного алгоритма, то отмечалось, что для зашифрования сообщения использовался открытый ключ, а для расшифрования - секретный. Но в применении к шифрованию ключи взаимозаменяемы. Можно зашифровать сообщение на своем секретном ключе, и тогда любой желающий сможет его расшифровать, используя открытый ключ. Это свойство несимметричных алгоритмов и используетсяпри формировании и проверке электронно-цифровой подписи. Собственно ЭЦП документа - это его хэш сумма, зашифрованная секретным ключом. Проверка ЭЦП документа сводится к вычислению хэш суммы документа, расшифрованию хэш суммы, содержащейся в подписи, и сравнению двух величин. Если значения вычисленной и сохраненной в подписи хэш сумм совпали, то считается, что подпись под документом верна.
4. Гай Юлий Цезарь.
5. Полибий; Polybios, из Мегалополя в Аркадии, ок. 200-ок. 118 гг. до н. э., греческий историк. Сын Ликорта, влиятельного политика и главы Ахейского союза, с юности принимал участие в военной и политической жизни. В 169 г. во время III Македонской войны стал гиппархом (предводителем конницы). Ездил с посольством к консулу Манлию. После победы под Пидной (168 г. до н. э.) римляне захватили 1000 заложников из самых знатных ахейских семей, в числе которых был и Полибий. В Риме он подружился с сыновьями Эмилия Паула, победителя под Пидной, а в особенности со Сципионом Младшим. Освобожденный вместе с другими заложниками, в 151 г. возвратился на родину, совершал многочисленные путешествия, часто приезжал в Рим по приглашению Сципиона, который использовал его познания в военном деле. В 146 г. до н. э. стал свидетелем взятия Карфагена. В том же году после взятия римлянами Коринфа и его разрушения Полибий. принял на себя посредническую роль в урегулировании отношений в покоренной Греции. По-видимому, Полибий. участвовал и в осаде Нуманция Сципионом в 133 г. до н. э. Последние годы жизни Полибий. провел на родине, умер в возрасте 82 лет, вероятно, вследствие падения с лошади. - Главное произведение Полибия. - История в 40 книгах - является всемирной историей, в которой автиор показал, как в течение 50 лет, от начала II Пунической войны до конца III Македонской, Рим объединил под своей властью почти весь населенный мир того времени.
Полибий, грек, был первым историком, открывшим величие Рима как грекам, так и самим римлянам. Причины побед римлян Полибий видел в тактическом совершенстве легиона, а также в смешанном государственном устройстве Рима, соединившим в себе элементы монархии, аристократии и демократии. Чтобы прояснить картину, Полибий описал во вступлении события I Пунической войны, а в процессе написания последующих частей произведения расширил первоначальный план описания взятия и разрушения Карфагена и Коринфа. Таким образом, произведение охватывало период 264-144 гг. до н. э. От Истории Полибия сохранилось 5 начальных книг, остальные мы имеем в выдержках, известнейшей из которых представляется выдержка из книги VI (отступление о государстве, формах правления, сравнение общественного строя Рима с политической структурой греческих государств и Карфагена). Полибий описывал события хронологически, по олимпиадам, подражая в этом Тимею. В отношении современных ему фактов Полибий (в соответствии с традициями греческой историографии) полагался прежде всего на собственную память и на сообщения очевидцев, зато для реконструкции событий прошлого использовал работы своих предшественников, интерпретируя их в свете собственного знания. Порой он обращался и к оригинальным документам, как, например, постановления римского сената, торговые договоры, документы из греческих архивов. Своих предшественников, а особенно Тимея, Полибий резко критиковал, при случае излагая собственный исторический метод. С одной стороны, он выступал против чрезмерной драматизации описываемых событий, которая обычно приводила к искажению истины ради эффекта. Историков этого направления, представителем которого был Филарх, П. обвиняет в том, что они выступают в большей степени трагическими поэтами, чем историками. А с другой стороны, полемизируя с Тимеем, доказывает, что историку недостаточно знакомиться с описываемыми событиями лишь по книгам. Он должен знать по личным впечатлениям страну, о которой пишет, и прежде всего - места важнейших сражений. Также он сам должен быть военным и политиком, чтобы его произведение могли с пользой для себя читать вожди и государственные деятели. В этой концепции, исходящей от Фукидида, Полибий провозглашал принцип беспристрастности историка, однако, сам ему не следовал ни в отношении современников, ни в отношении предшественников. Порой он исполнен гнева, ненависти, разочарования, в другом же месте - восхищения. Он идеализирует свою родину и Ахейский Союз. Полибий не стремился к красочности повествования. Его стиль шероховатый и жесткий. Но иногда он становится очень живым, а некоторые сцены, как, например, объявление Птолемея V царем и связанные с этим события в Александрии, написаны ярко и интересно. Другие произведения Полибия: Филопомен в 3 книгах - хвала предводителю Ахейского Союза, написанная после 183 г., а также не сохранившееся произведения, посвященное тактике, и монография о Нумантинской войне. К Истории Полибий неоднократно обращался Ливий, местами просто переводя ее. Из греческих историков дело Полибия продолжили Посидоний и Страбон, его использовали Диодор и Плутарх. В византийскую эпоху вышел пересказ произведения
6. Альберти Леон Батиста - итальянский архитектор и литератор, один из наиболее ярких представителей культуры Возрождения. Обладал обширными познаниями в самых разных областях: был философом и музыкантом, скульптором и математиком, физиком и лингвистом. На протяжении ряда лет он - итальянский ученый, архитектор, теоретик искусства эпохи Раннего Возрождения. Теоретические трактаты («О статуе», 1435, «О живописи», 1435-36, «О зодчестве»; опубликован в 1485) обобщили опыт современного ему искусства и гуманистической науки в области изучения античного наследия. В архитектуре использовал античную ордерную систему (церковь Сант-Андреа в Мантуе, 1472-94, дворец Ручеллаи во Флоренции, 1446-51). В молодости написал на латыни комедию "Любитель славы" (около 1424). Исследованию природы власти посвящен его сатирический роман (тоже на латыни) "Мом" (между 1443 и 1450). Он выступал горячим защитником литературного "народного" языка и основные его сочинения написаны по-итальянски. Это сонеты, элегии и эклоги. Наиболее известная работа - трактат в 4-х книгах "О семье" (1433-1441). Огромное значение имел знаменитый латинский трактат в 10-ти книгах "О зодчестве" (1450). Один из основополжников проективной геометрии.
7. Чарлз Уитстон (Wheatstone) (6.2.1802, Глостер, Англия, - 19.10.1875, Париж), английский физик и изобретатель, член Лондонского королевского общества (1836). Занимаясь изготовлением музыкальных инструментов, поставил ряд остроумных акустических опытов. В 1833 году объяснил возникновение фигур Хладни. С 1834 года профессор Королевского колледжа (Лондон). Предложил метод измерения продолжительности разрядной искры (1834); показал, что искровые спектры металлов однозначно характеризуют эти металлы (1835). В 1837 году вместе с У. Ф. Куком получил патент на изобретение электромагнитного телеграфа; в 1858 году создал первый практически пригодный автоматический телеграфный аппарат (телеграфный аппарат Уитстона). В 1867 году независимо от Э. В. Сименса открыл принцип самовозбуждения электрических машин. Сконструировал зеркальный стереоскоп, фотометр, шифровальный аппарат - криптограф, самопишущие метеорологические приборы и др. Предложил мостовой метод измерения сопротивлений.
8. Томас Джефферсон.
9. Клод Элвуд Шеннон (Shannon)(1916 -- 2001) -- американский инженер и математик. Человек, которого называют отцом современных теорий информации и связи. Осенним днем 1989 года корреспондент журнала "Scientific American" вошел в старинный дом свидом на озеро к северу от Бостона. Но встретивший его хозяин, 73-летнийстройный старик с пышной седой гривой и озорной улыбкой, совсем не желалвспоминать "дела давно минувших дней" и обсуждать свои научные открытия 30-50-летней давности. Быть может, гость лучше посмотрит его игрушки? Не дожидаясь ответа и неслушая увещеваний жены Бетти, хозяин увлек изумленного журналиста в соседнюю юкомнату, где с гордостью 10-летнего мальчишки продемонстрировал свои сокровища: семь шахматных машин, цирковой шест с пружиной и бензиновым двигателем, складной нож с сотней лезвий, двухместный одноколесный велосипед, жонглирующий манекен, а также компьютер, вычисляющий в римской системе счисления. И не беда, что многие из этих творений хозяина давно сломаны и порядком запылены, -- он счастлив. Кто этот старик? Неужели это он, будучи еще молодым инженером Bell Laboratories, написал в 1948 году"Великую хартию" информационной эры -- "Математическую теорию связи"? Его ли труд назвали "величайшей работой в анналах технической мысли"? Его ли интуицию первооткрывателя сравнивали с гением Эйнштейна? Да, это все о нем. И он же в тех же 40-х годах конструировал летающий диск на ракетном двигателе и катался, одновременно жонглируя, на одноколесном велосипеде по коридорам Bell Labs. Это Клод Элвуд Шеннон, отец кибернетики и теории информации, гордо заявивший: "Я всегда следовал своим интересам, недумая ни о том, во что они мне обойдутся, ни об их ценности для мира. Я по тратил уйму времени на совершенно бесполезные вещи."Клод Шеннон родился в 1916году и вырос в городе Гэйлорде штата Мичиган. Еще в детские годы Клод познакомился как с детальностью технических конструкций, так и с общностью математических принципов. Он постоянно возился с детекторными приемниками и радио-конструкторами, которые приносил ему отец, помощник судьи, и решал математические задачки и головоломки, которыми снабжала его старшая сестра Кэтрин, ставшая впоследствии профессором математики. Клод полюбил эти два мира, столь несхожие между собой, -- технику и математику. Будучи студентом Мичиганского университета, который он окончил в 1936 году, Клод специализировался одновременно и в математике, и в электротехнике. Эта двусторонность интересов и образования определила первый крупный успех, которого Клод Шеннон достиг в свои аспирантские годы в Массачусетском технологическом институте. В своей диссертации, защищенной в 1940 году, он доказал, что работу переключателей и реле в электрических схемах можно представить посредством алгебры, изобретенной в середине XIX века английским математиком Джорджем Булем. "Просто случилось так, что никто другой не был знаком с этими обеими областями одновременно!" -- так скромно Шеннон объяснил причину своего открытия. В наши дни совершенно излишне объяснять читателям компьютерного издания, что значит булева алгебра для современной схемотехники. В 1941 году 25-летний Клод Шеннон поступил на работу в Bell Laboratories. В годы войны он занимался разработкой криптографических систем, и позже это помогло ему открыть методы кодирования с коррекцией ошибок. А в свободное время он начал развивать идеи, которые потом вылились в теорию информации. Исходная цель Шеннона заключалась в улучшении передачи информации по телеграфному или телефонному каналу, находящемуся под воздействием электрических шумов. Он быстро пришел к выводу, что наилучшее решение проблемы заключается в более эффективной упаковке информации. Но что же такое информация? Чем измерять ее количество? Шеннону пришлось ответить на эти вопросы еще до того, как он приступил к исследованиям пропускной способности каналов связи. В своих работах 1948-49 годов он определил количество информации через энтропию --величину, известную в термодинамике и статистической физике как мера разупорядоченности системы, а за единицу информации принял то, что впоследствии окрестили"битом", то есть выбор одного из двух равновероятных вариантов. Позже Шеннон любил рассказывать, что использовать энтропию ему посоветовал знаменитый математик Джон фон Нейман, который мотивировал свой совет тем, что мало кто из математиков и инженеров знает об энтропии, и это обеспечит Шеннону большое преимущество в неизбежных спорах. Шутка это или нет, но как трудно нам теперь представить, что всего полвека назад понятие "количество информации"еще нуждалось в строгом определении и что это определение могло вызвать какие-то споры. На прочном фундаменте своего определения количества информации Клод Шеннон доказал удивительную теорему о пропускной способности зашумленных каналов связи. Во всей полноте эта теорема была опубликована в его работах 1957-61 годов и теперь носит его имя. В чем суть теоремы Шеннона? Всякий зашумленный канал связи характеризуется своей предельной скоростью передачи информации, называемой пределом Шеннона. При скоростях передачи выше этого предела неизбежны ошибки в передаваемой информации. Зато снизу к этому пределу можно подойти сколь угодно близко, обеспечивая соответствующим кодированием информации сколь угодно малую вероятность ошибки при любой зашумленности канала. Эти идеи Шеннона оказались слишком провидческими и не смогли найти себе применения в годы медленной ламповой электроники. Но в наше время высокоскоростных микросхем они работают повсюду, где хранится, обрабатывается и передается информация: в компьютере и лазерном диске, в факсимильном аппарате и межпланетной станции. Мы не замечаем теорему Шеннона, как не замечаем воздух. Кроме теории информации, неуемный Шеннон приложился во многих областях. Одним из первых он высказал мысль о том, что машины могут играть в игры и самообучаться. В 1950 году он сделал механическую мышку Тесей, дистанционно управляемую сложной электронной схемой. Эта мышка училась находить выход из лабиринта. В честь его изобретения IEEE учредил международный конкурс "микромышь", в котором до сих пор принимают участие тысячи студентов технических вузов. В те же 50-е годы Шеннон создал машину, которая "читала мысли" при игре в "монетку":человек загадывал "орел" или "решку", а машина отгадывала с вероятностью выше 50%, потому что человек никак не может избежать каких-либо закономерностей, которые машина может использовать. В 1956 году Шеннон покинул Bell Labs и со следующего года стал профессором Массачусетского технологического института, откуда ушел на пенсию в 1978 году. В числе его студентов был, в частности, Марвин Мински и другие известные ученые, работавшие в области искусственного интеллекта. Труды Шеннона, к которым с благоговением относятся деятели науки, столь же интересны и для специалистов, решающих сугубо прикладные задачи. Шеннон заложил основание и для современного кодирования с коррекцией ошибок, без которого не обходится сейчас ни один дисковод для жестких дисков или система потокового видео, и, возможно, многие продукты, которым еще только предстоит увидеть свет. В МТИ и на пенсии им полностью завладело его давнее увлечение жонглированием. Шеннон построил несколько жонглирующих машин и даже создал общую теорию жонглирования, которая, впрочем, не помогла ему побить личный рекорд -- жонглирование четырьмя мячиками. Еще он испытал свои силы в поэзии, а также разработал разнообразные модели биржи акций и опробовал их (по его словам -- успешно) на собственных акциях. Но с начала 60-х годов Шеннон не сделал в теории информации практически больше ничего. Это выглядело так, как будто ему всего за 20 лет надоела созданная им же теория. Такое явление -- не редкость в мире науки, и в этом случае об ученом говорят одно слово: перегорел. Как лампочка, что ли? Мне кажется, более точным было бы сравнение ученых со звездами. Самые мощные звезды светят не долго, около ста миллионов лет, и кончают свою творческую жизнь вспышкой сверхновой, в процессе которой происходит нуклеосинтез: из водорода и гелия рождается вся таблица Менделеева. Мы с вами состоим из пепла этих звезд, и так же наша цивилизация состоит из продуктов быстрого сгорания самых мощных умов. Есть звезды второго типа: они горят ровно и долго и миллиарды лет дарят свет и тепло населенным планетам (по крайней мере, одной). Исследователи такого типа тоже очень нужны науке и человечеству: они сообщают цивилизации энергию развития. А звезды третьего сорта -- красные и коричневые карлики -- светят и греют чуть-чуть, лишь себе под нос. Таких ученых хватает, но в статье о Шенноне говорить о них просто неприлично. В 1985 году Клод Шеннон и его жена Бетти неожиданно посетили Международный симпозиум по теории информации в английском городе Брайтоне. Почти целое поколение Шеннон не появлялся на конференциях, и поначалу его никто не узнал. Затем участники симпозиума начали перешептываться: вон тот скромный седой джентльмен -- это Клод Элвуд Шеннон, тот самый! На банкете Шеннон сказал несколько слов, немного пожонглировал тремя (увы, только тремя) мячиками, а затем подписал сотни автографов ошеломленным инженерам и ученым, выстроившимся в длиннейшую очередь. Стоящие в очередиговорили, что испытывают такие же чувства, какие испытали бы физики, явись на их конференцию сам сэр Исаак Ньютон. Клод Шеннон скончался в2001 году в массачусетском доме для престарелых от болезни Альцгеймера на 84году жизни.
Подобные документы
Изучение истории развития криптографии. Анализ эволюции видов криптографии: от примитивных первоначальных методов шифрования до современных. Мотив и цель использования криптографии при совершении преступлений. Виды используемых преступниками приемов.
реферат [29,6 K], добавлен 31.08.2010Основные источники правового регулирования конфиденциальной информации. Угрозы и меры по предупреждению ее утечки. Проблема и пути повышения защиты конфиденциальной информации и персональных данных в Администрации МО "Карагайский район" Пермского края.
курсовая работа [95,3 K], добавлен 09.10.2014Понятие и сущность Государственной тайны, виды компьютерной информации. Вирусы как источник умышленной угрозы безопасности данных. Блок законов Российской Федерации о защите информации. Использование Криптографических и парольных методов защиты файлов.
реферат [66,1 K], добавлен 22.02.2011Понятие и методики правовой защиты информации, ее актуальность и оценка эффективности на современном этапе, политика государства в данной области. Органы защиты государственной тайны. Правовые основы ответственности за нарушение данного законодательства.
контрольная работа [22,6 K], добавлен 24.04.2010Предмет регулирования Закона об информации и субъекты правоотношений в сфере информации, его основное содержание и значение. Предоставление и распространение информации, принципы получения доступа к ней. Ответственность за правонарушения в данной сфере.
реферат [24,5 K], добавлен 21.10.2014Сущность и специфические особенности режима информационного ресурса, правовые основы его защиты на современном этапе. Цели и методы защиты информации, необходимый для этого инструментарий. Правовая охрана права на неприкосновенность частной жизни.
курсовая работа [33,8 K], добавлен 27.09.2010Основные способы несанкционированного доступа к информации в компьютерных системах и защиты от него. Международные и отечественные организационные, правовые и нормативные акты обеспечения информационной безопасности процессов переработки информации.
реферат [28,4 K], добавлен 09.04.2015Свобода поиска, получения, передачи, производства и распространения информации законным способом. Установление ограничений доступа к ней только федеральными законами. Равноправие языков народов РФ при создании информационных систем и их эксплуатации.
презентация [424,4 K], добавлен 23.10.2016Порядок поиска, получения и передачи информации, реализация права на них при обороте документированной и массовой информации согласно Конституции РФ. Ответственность за отказ в предоставлении информации и принципы правового регулирования отношений.
реферат [20,1 K], добавлен 04.06.2009Понятие об информации, информационных ресурсах, их место в современном праве. Признаки информации с ограниченным доступом. Правовой режим защиты, составляющей государственную, служебную, профессиональную тайну; обеспечения недоступности третьим сторонам.
реферат [24,6 K], добавлен 13.12.2013