Выполнение расчетно-графических работ по прогнозированию и оценке обстановки при чрезвычайных ситуациях

Прогнозирование обстановки при чрезвычайных ситуациях природного харатера. Классификация зданий и сооружений по сейсмостойкости. Взрыв парогазовоздушного облака в неограниченном и ограниченном пространстве. Характеристики взрываемости некоторых газов.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид учебное пособие
Язык русский
Дата добавления 14.04.2009
Размер файла 2,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

5- за первый год, 1/год в последующие годы

50 - за первый год, 10/год в последующие годы

Отселение

50 за первый год

500 за первый год

1000 - за все время отселения

Таблица 4.

Критерии для принятия решений об ограничении потребления загрязненных пищевых продуктов в первый год после аварии.

Радионуклиды

Содержание радионуклида в пищевых продуктах, кБк/кг

Уровень А

Уровень Б

Иод-131,Цезий-134, 137 и стронций- 90

1

0,1

10

1,0

Плутоний-238,239,

америций-241

0,01

0,1

Если предотвращаемый уровень облучения меньше А, то нет необходимости в мерах защиты, связанных с нарушением нормальной жизнедеятельности населения, хозяйственного и социального функционирования территорий.

Если уровень предотвращаемого облучения больше А, но меньше, то решение принимается на основании принципов обоснования и оптимизации с учетом конкретной обстановки и местных условий.

Для аварийно-спасательных формирований, осуществляющих спасательные работы, а также для условий боевых действий с применением ядерного оружия ,доза облучения устанавливается:

Однократная (в течении первых четырех суток) - 50Р(0,05Гр);

Многократная: в течении первых 10-30 сут.- 100Р (0,1Гр), в течении трех месяцев-200Р (0,2Гр), в течении года-300Р (0,3Гр).

При выявлении радиационной обстановки решаются следующие задачи:

- определение размеров зон радиоактивного загрязнения местности и отображения ее на картах ( схемах, планах);

- определение размеров зон облучения щитовидной железы детей и взрослого населения за время прохождения облака и отображения его на картах.

Зонирование загрязненных территорий

На разных стадиях аварии вмешательство регулируется зонированием загрязненных территории, которое основывается на величине годовой эффективной дозы, которая может быть получена жителями в отсутствии мер радиационной защиты.

Под годовой дозой - понимается эффективная доза, средняя у жителей населенного пункта за текущий год, обусловленная искусственными радионуклидами, поступившими в окружающею среду в результате радиационной аварии.

На территории, где годовая эффективная доза не превышает 1мЗв, проживание и хозяйственная деятельность населения на данной территории по радиационному фактору не ограничивается.

Зонирование на восстановительной стадии радиационной аварии

1. зона радиационного контроля- от 1мЗв до 5мЗв. В этой зоне помимо мониторинга радиоактивности объектов окружающей среды, сельскохозяйственной продукции и доз внешнего и внутреннего облучения критических групп населения, осуществляются меры по снижению доз.

2. зона ограниченного проживания - от 5мЗв до 20мЗв. В этой зоне осуществляются те же меры мониторинга и защиты населения что и в первой. Добровольный въезд на указанную территорию для постоянного проживания не ограничивается, однако разъясняется риск ущерба здоровью.

3. зона отселения - от20мЗв до 50мЗв. Въезд на указанную территорию для постоянного проживания не разрешен, особенно для лиц репродуктивного возраста и детей.

4. зона отчуждения - более50мЗв. В этой зоне проживание не допускается, а хозяйственная деятельность и природопользование регулируется специальными актами.

Расчет доз внутреннего облучения от загрязненных продуктов.

В региональном органе санэпиднадзора всегда имеются данные о загрязненности радионуклидами пищевых продуктов. Нормы радиационной безопасности (НРБ-99) устанавливают стандартные условия для поступления радионуклида в организм человека. Эти условия характеризуются:

- величиной объема воздуха Vнас., с которым радионуклид поступает в организм человека на протяжении календарного года (нас. в возрасте 12-17 лет

-V= 7,3 *106 литров, старше 17 лет- Vнас.=8,1*106л.);

- массой воды М нас., с которой радионуклид поступает в организм

(М нас.=730кг/год);

- время облучения в течении календарного года (t=8800ч.)

Пример. На территории проживания населения было зафиксировано загрязнение пищевых продуктов радионуклидами цезием-137, стронцием-90,и йодом-131. Удельная и объемная активность (Аm и Ао) пищевых продуктов и состав рациона приведены в таблице 5.

Определить эффективную дозу облучения населения (в возрасте до 17лет) от пищевых продуктов и питьевой воды в течении календарного года.

Таблица 5.

Состав и содержание радионуклидов в пищевых продуктах и воде

Наименование пищевых продуктов

Наименование радионуклидов в продуктах

Масса пищевых продуктов за год

кг(л)

Цезий-137

Стронций-90

Йод -131

Активность радионуклидов, Бк/кг, Бк/л

Молоко

50

20

120

190

Мясо

100

40

80

60

Хлеб

30

10

40

110

Картофель

200

50

240

200

Питьевая вода

8

4

5

730

Рыба

80

30

20

40

Решение. 1. определяем активность пищевых продуктов и питьевой воды за календарный год по долгоживущим радионуклидам (период полураспада больше года):

По молоку Аcs=50*190=9500Бк; Аsr=20*190=3800Бк;

По мясу =6000Бк; =2400Бк;

По хлебу =3300Бк; =1100Бк;

По картофелю =40000Бк; =10000Бк;

По питьевой воде =5840Бк; =2920Бк;

По рыбе =3200Бк; =1200Бк;

Годовая активность радионуклидов, имеющих «небольшой» (по сравнению с одним годом) период полураспада, определяется по зависимости:

где А - активность радионуклида за промежуток времени от t1 до t2 (в данном случае в течении года), Бк; М - масса пищевых продуктов, кг; А0 - активность (удельная) радионуклида в начальный момент времени ti, Бк/кг; t1 и t2 - начальное и конечное время поступления радионуклида в организм (для примера t1=0 и t2=8800ч.)ч; T- период полураспада радионуклида, ч.

Интегрирование выражения

При «небольшом» (с одним годом) периодом полураспада радионуклида выражение из приведенной формулы, при условии что выражение можно привести к нулю, тогда формула примет вид:

Годовая активность пищевых продуктов и питьевой воды по йоду-131:

По молоку Аj = 190*120*193/8800*0,693=722Бк;

По мясу =152Бк;

По хлебу =139Бк;

По картофелю = 1519Бк;

По питьевой воде =115 Бк;

По рыбе =25Бк;

2. Определяем суммарную активность пищевых продуктов по каждому радионуклиду за год.

По цезию-137: Аcs=9500+6000+3300+40000+1600+3200 = 63600Бк/год;

По стронцию: Аsr =3800+2400+100+10000+800+1200 =19300Бк/год;

По йоду: Аj =722+152+139+1519+116+25+ =2673Бк/год.

3. Определяем эффективную дозу облучения населения от загрязненных продуктов по каждому радионуклиду, по таблице 6.(прил.) (табл.П-2, НРБ-99).

Для цезия - 137 Е = 1,3* 10-8 Зв/Бк;

Для стронция - 90 Е = 8,0*10-8 Зв/Бк;

Для йода - 131 Е = 1,8*10-8Зв/Бк.

Эффективная доза от внутреннего облучении, обусловленная поступлением в организм радионуклидов с продуктами питания, определяется как произведение суммарной активности радионуклида за год на его дозовый коэффициент.

Ecs = E *Acs =1,3*10-8*63600=0,83мЗв;

Esr =E*Asr = 8,0*10-8 *19300 =154мЗв;

Ej = E *Aj = 1,8*10-7 *2683 =0,048мЗв.

Внутренняя доза облучения населения от пищевых продуктов составит:

Евнутр= Ecs + Esr + Ej = 0,830+01,54 + 0,048 = 2,85мЗв.

Таким образом, население от пищевых продуктов в течение календарного года получит эффективную дозу 2,85мЗв. Для принятия решения об ограничении потребления продуктов необходимо воспользоваться табл.4. В данном случае уровень облучения превосходит предел А, но не достигает предела Б, решение может быть принято по ограничению употребления пищевых продуктов с учетом конкретной обстановки и частных условий.

Определение дозы облучения населения от загрязненного воздуха радионуклидами.

Для примера возьмем время проживания населения на загрязненной территории в течении одного календарного года. Радиационная авария находится в восстановительной стадии, т.е. нет выброса в атмосферу радионуклидов.

При проведении исследования воздуха было зафиксировано, что в воздухе содержатся радионуклиды цезий-137, стронций-90, и йод-131.

Объемная активность воздуха по радионуклидам:

Acs = 17,6Бк/м3;

Asr = 5Бк/м3;

Aj = 15Бк/м3.

Так как период полураспада стронция-90 составляет 29,1 лет, цезия -131-30 лет, то в течении календарного года снижение активности этих радионуклидов будет незначительная, в расчетах снижения активности можно не учитывать.

1. Определяем годовую активность радионуклидов, поступивших в организм с воздухом.

Для населения (возраст12-17 лет) объем вдыхаемого воздуха

Vнас.=7,3*106 л/год=7,3*103м3/год;

Годовая активность цезия-137 и стронция -90

Acs = 17,6 * 7,3*103Бк;

Asr =5 * 7,3*103 = 36,5*103Бк.

Период полураспада йода-131 - 8,04 суток, т.е. довольно быстрый, поэтому активность этого радионуклида будет падать при условии, что не будет аварийного сброса. Активность йода-131 будет изменятся с течением времени по зависимости:

Следовательно годовая активность йода-131 будет:

, где Vвозд.- объем воздуха, вдыхаемого за время t;

A0 - начальная активность йода -131; t - время нахождения населения на зараженной территории; T - период полураспада йода-131.

Проинтегрировав это выражение и подставив время в часах, получим следующую зависимость:

Для практических расчетов годовую активность воздуха, загрязненного короткоживущими радионуклидами определяют по формуле:

=, где - годовой объем воздуха, определяется из НРБ-99(стандартные условия), - объемная активность воздуха на начало поступления в организм человека, Бк/м3; - период полураспада, ч.

2. Определяем дозу облучения населения по каждому радионуклиду.

По таблице 6 (табл. П-2,НРБ-99), находим дозовые коэффициенты для радионуклидов:

J-131 E =7,2*10-8 Зв/Бк;

Sr-90 E =5,10-8 Зв/Бк;

Cs-137 E =4,6*10-9Зв/Бк.

Дозы облучения:

Ej =7,6*10-9*7,2*10-8 =0,252мЗв;

Esr =5*10-8*36,5*103 =1,825мЗв;

Ecs =4,6*10-9*128,5*103 =0,591мЗв.

Эффективная доза от загрязненного воздуха:

Eвозд. внутр.= 0,252 +1,825 +0,591 =2,67мЗв.

Общая доза внутреннего облучения от поступления в организм человека радионуклидов через органы дыхания и пищеварения:

Евнутр.= Епища + Евоздух = 2,85 +2,67 =5,52мЗв.

Расчет внешней дозы облучения

Во многих случаях внешнее облучение от радионуклидов, находящихся в окружающей человека среде, является самой большой составляющей дозы. Особенно большой вклад внешнего облучения в общее будет там, где вводились ограничения на пищевые продукты.

Внешнее облучение обуславливается в основном - излучением и определяется по формуле:

внеш.= 8800*к*, где - эффективная доза излучения; Рм, Рз- мощность дозы излучения на открытой местности и в зданиях соответственно; Ром,,Роз- радиационный фон на открытой местности и в зданиях до аварии; К- коэффициент перехода (при измерении мощности дозы в Греях К=0,7; в Зивертах К =1).

Пример. Мощность дозы на открытой местности составляет 0,24мкЗв/час, в зданиях- 0,41мкЗв/час. Определить дозу облучения за календарный год t=8800ч, если до аварии радиационных фон на местности 0,1мкЗв/час, а в зданиях 0,2мкЗв/час.

Решение. Воспользуемся формулой

Евнеш. =

или примерно 1,72мЗв.

Таким образом, эффективная доза за год у жителей:

Е = Евнутр.внеш.= 5,52 +1,72 =7,24мЗв/год.

На разных стадиях аварии вмешательство регулируется зонированием загрязненных территорий, которое основывается на величине годовой эффективной дозы, которая может быть получена жителями в отсутствии мер защиты. В данном случае , на восстановительной стадии радиационной аварии территория попадает в зону ограниченного проживания населения, например населенные пункты №3,4,6 (см.рисунок 1).

Определение размеров зон радиоактивного загрязнения и облучения щитовидной железы

Зоны радиоактивного загрязнения представляют собой участки местности, ограниченные изолиниями доз внешнего облучения, которые может получить незащищенное население при открытом расположении за промежутки времени, определяемые с момента начала выброса радиоактивных веществ (время формирования заданной дозы облучения). Фактическое время формирования дозы облучения меньше на время подхода облака

Приведенное время подхода радиоактивного облака (ч), отсчитываемое с момента начала выброса радиоактивных веществ в атмосферу, определяется по формуле:

,

Где Х- расстояние до аварийного реактора по оси следа радиоактивного облака, км; U0- скорость ветра на высоте флюгера (10м), м/с; - коэффициент, учитывающий распределение скорости ветра по высоте и размерность величин X и U0 и принимающий значения при конвекции - 0,23, изотермии - 0,20, инверсии - 0,09.

Время подхода радиоактивного облака является временем начала радиоактивного загрязнения местности.

Зоны облучения щитовидной железы представляют собой участки местности, ограниченные изолиниями доз, которые получить не защищенное население при ингаляционном поступлении радиоактивных веществ за время прохождения облака.

Дополнительная информация : заданные дозы внешнего гамма-облучения D0 (Гр) и облучения щитовидной железы Dж (Гр) при открытом расположении, выбираемые, как правило , в соответствии с критериями для принятия решения (таб.6).

Таблица 6.

Меры защиты

Предотвращаемая доза за первые 10 суток, мГр

На все тело

Щитовидная железа, легкие, кожа

Уровень А

Уровень Б

Уровень А

Уровень Б

укрытие

5

50

50

500

Йодная профилактика:

- взрослые

- дети

-

-

-

-

250*

100*

2500*

1000*

Эвакуация

50

500

500

5000

только для щитовидной железы.

Порядок решения задачи.

1. По данным таблицы 7. определяется степень вертикальной устойчивости атмосферы, соответствующая погодным условиям и времени суток.

Таблица 7.

Степень вертикальной устойчивости атмосферы.

Скорость ветра, м/с

ночь

утро

день

вечер

Ясно,

перемен. Облач-

ность

Сплош

ная обл-

ачность

Ясно,

перемен.

Облач-

ность

Сплош

ная облач-

ность

Ясно,

перемен.

облач

ность

Сплош-

ная

облач-

ность

Ясно,

перемен.

облач-

ность

Сплош-

ная

облач-

ность

2

Ин

Из

Из (ин)

Из

Кон(из)

Из

Из

Из

2 -3,9

Ин

Из

Из (ин)

Из

Из

Из

Из(ин)

Из

4

Ин

Из

Из

Из

Из

Из

Из

Из

2. На карте (плане) обозначаются положение аварийного РОО(реактора) и в соответствии с заданным направлением ветра черным цветом наносится ось следа радиоактивного облака.

3. По табл.8 определяются глубины прогнозируемых зон радиоактивного загрязнения соответствующие заданным значениям дозы внешнего облучения и времени ее формирования, погодным условиям, типу ядерного реактора, а также находятся глубины прогнозируемых зон облучения щитовидной железы, соответствующие заданной дозе облучения.

Таблица 8.

Глубины (Lx,км) зон радиоактивного загрязнения и облучения щитовидной железы для принятия неотложных решений по защите населения в начальном периоде аварии для реактора РБКМ-1000 и ВВЭР-1000 при различной степени вертикальной устойчивости атмосферы и скорости ветра (м/с) на высоте 10 м.

Зона

конвекция

изотермия

инверсия

2

3

4

2

5

7

2

3

4

Укрытие (уровень А, 5мГр за первые 10 суток на все тело)

240

300

200

240

190

220

280

260

300

200

260

300

250

275

280

210

300

250

Укрытие (уровень Б, 50мГр за первые 10 суток на все тело)

55

110

40

110

35

80

140

200

163

300

160

295

140

140

185

130

220

180

Эвакуация (уровень Б, 500мГр за первые 10 суток на все тело)

10

21

8

5

6

11

45

70

30

44

25

53

60

57

60

50

50

50

Йодная профилактика взрослые:

уровень А, 250мГр за первые 10 суток для щитовидной железы

уровень Б,2500мГр за первые 10 суток для щитовидной железы

90

140

48

28

69

125

11

20

51

98

9

14

160

180

60

90

185

235

48

90

195

240

40

78

160

185

77

105

190

220

85

120

205

270

87

130

Дети:

Уровень А, 100мГр за первые 10 суток для щитовидной железы

Уровень Б, 1000мГр за первые 10 суток для щитовидной железы

255

278

91

141

227

275

80

124

198

270

54

101

277

260

157

178

287

300

179

230

297

300

190

232

243

257

161

181

280

290

184

218

290

300

192

265

Примечание. В числителе приведены значения для РБМК-1000, в знаменателе - для ВВЭР-1000.

4. Максимальные ширины зоны Ly (км) (на середине глубин) определяются по формуле

Ly=ALх,

где А - коэффициент, зависящий от степени вертикальной устойчивости атмосферы и принимающий значения при конвекции - 0,20, изотермии - 0,06, инверсии - 0,03.

5. Площади зон радиоактивного загрязнения S (км2) и облучения щитовидной железы находятся по формуле:

S=0,8LxLy.

6. Используя найденные размеры, зоны в масштабе карты отображаются в виде правильных эллипсов ( см. рис.2.).

При решении задач с разрушением реакторов типа ВВЭР-440 глубины зон определяются умножением данных рассчитанных для реактора ВВЭР-1000, на коэффициент 0,663.

Lx(ВВЭР-440)= 0,663Lx(ВВЭР-1000).

Оценка радиационной обстановки при применении ядерного оружия

Среди поражающих факторов ядерного взрыва ионизирующее излучение создают проникающая радиация и радиоактивное заражение местности.

Проникающая радиация- представляет собой поток гамма-излучения и поток нейтронов.

Гамма-излучение и нейтронное излучение различны по своим физическим свойствам, а общим для них является то, что они могут распространятся в воздухе во все стороны на расстояние до -4км. Проходя через биологическую ткань, гамма-кванты и нейтроны ионизируют атомы и молекулы, входящие в состав живых клеток, отдельных органов и систем организма, что приводит к возникновению специфического заболевания - лучевой болезни.

Источником проникающей радиации являются ядерные реакции деления и синтеза, протекающие в боеприпасах в момент взрыва, а также радиоактивный распад осколков деления.

Время действия проникающей радиации при взрыве зарядов деления и комбинированных зарядов не превышает нескольких секунд (10-15сек.) и определяется временем подъема облака взрыва на такую высоту, при которой гамма-излучение поглощается толщей воздуха и практически не достигает поверхности земли.

Поражающее действие гамма-излучения на человека характеризуется поглощенной дозой. Так как облучение является внешним (облучается все тело), а взвешивающий коэффициент для гамма-излучения равен единицы, то можно принять, что поглощенная доза равна эквивалентной дозе, (в данном случае 1Гр=1Зв) и в дальнейшем использовать для характеристики поглощенную дозу. Время набора человеком основной части дозы (до 80%) равно нескольким секундам.

При воздушном и наземном ядерных взрывах доза гамма-излучения на равных расстояниях от центра взрыва практически одинакова, но она зависит от плотности воздуха. Плотность воздуха летом меньше чем зимой, поэтому при взрыве летом доза гамма-излучения будет больше, чем зимой на одном и том же расстоянии от центра взрыва.

Эквивалентная доза складывается из доз гамма-излучения и нейтронов, которые действуют на любой объект практически одновременно. Поэтому, поражающее действие проникающей радиации определяется суммарной дозой (эквивалентной дозой), получаемой в результате сложения доз гамма-излучения и нейтронов.

Изменение суммарных доз проникающей радиации для взрывов различной мощности в зависимости от расстояния представлено на рис.2.

Соотношение между дозами гамма-излучения и нейтронного излучения в эквивалентной дозе зависит от мощности взрыва и расстояния до центра взрыва. Для больших доз и взрывов мощностью менее 10кт доза, обусловленная нейтронами, большие дозы, обусловленной гамма-излучением; для средних величин доз, а также для взрывов мощностью более 10кт справедливо обратное соотношение.

Прохождение проникающей радиации через защитные материалы

В веществе, более плотном чем воздух, гамма-излучение и нейтронное излучение ослабляются еще сильнее. Происходит это потому, что чем больше плотность вещества, тем больше в единице его объема атомов и тем больше количество раз взаимодействуют с ними гамма-излучение и нейтроны.

При попадании потока гамма-излучения на поверхность преграды толщиной l, некоторый слой dy уменьшает дозу гамма-излучения в два раза (рис.3). тогда на границе А-А доза равна Doy/2,если в толщине преграды умещается несколько слоев dy, то доза радиации, например на границе второго слоя Б-Б, будет Doy/4, и т.д. в общем виде ослабление дозы гамма-излучения преградой толщиной l пропорционально 2l/dy. Эта величина называется коэффициентом ослабления материала Кy,. Доза за преградой будет:

D=D0y/2l/dy

Рис.3. Схема ослабления гамма-излучения преградой.

Таблица 8.

Толщина слоя половинного ослабления некоторых материалов

Наименование материала

Слой половинного ослабления, см

dy

dn

Древесина

Полиэтилен

Вода

Грунт

Кирпичная кладка

Стеклопластик

Стиробетон

Железобетон

Железо

Свинец

30,5

21.8

20,4

13,0

13,0

12,0

11,0

9,5

3,5

2,0

9,7

2,7

2,7

9,0

10,0

4,0

5,0

8,2

11,5

12,0

Расчет противорадиационной защиты убежища

Ограждающие конструкции убежищ должны обеспечивать ослабление радиационного воздействия до допустимого уровня.

Степень ослабления радиационного воздействия выступающими над поверхностью земли стенами и покрытиями убежищ следует определять по формуле:

A2КyiКniКр/Кyini

Где А - степень ослабления проникающей радиации (нормируется согласно СНиП 2.01.51.-90); Кyi и Кni -коэффициенты ослабления дозы гамма-излучений и нейтронного излучения i-м слоем материала ограждающих конструкций убежища (табл.9); Кр- коэффициент условий расположения убежищ, который определяется по формуле:

Крзасзд

Где Кзас- коэффициент, учитывающий снижение дозы проникающей радиации в застройке и принимаемый по СНиП II-11-77; Кзд -коэффициент, учитывающий ослабление радиации в жилых и производственных зданиях при расположении в них убежищ и принимаемый по СНиП II-11-77.Таблица 9

Толщина

Слоя

материала

Коэффициент ослабления толщей материала дозы проникающей радиации

гамма-излучения и нейтронов

10

15

20

25

30

35

40

45

50

бетон

кирпич

грунт

дерево

полиэтилен

сталь

Кn

Кy

Кn

Кy

Кn

Кy

Кn

Кy

Кn

Кy

Кn

Кy

6,2

2,0

3,7

1,7

6,5

1,7

12

1,0

22

1,0

4,7

17

12

3,5

5,5

2,5

13

2,5

30

1,2

53

1,3

6,5

56

23

5,3

8,2

3,7

26

3,8

59

1,3

130

1,7

8,8

150

43

8,3

12

5,2

51

5,7

120

1,5

240

2,0

11

280

74

13

17

7,2

100

8,2

200

1,8

460

2,5

14

430

130

20

24

10

170

12

340

2,2

860

3,0

17

640

230

30

34

14

280

17

550

2,5

1600

3,8

21

900

390

680

44

66

47

66

18

24

470

780

25

35

910

1500

3,0

3,5

3100

3800

4,5

5,5

26

33

1200

1200

Радиоактивное заражение местности, приземного слоя атмосферы и объектов

Радиоактивное загрязнение территории является поражающим фактором ядерного взрыва. Оно создается радионуклидами, образованными в результате ядерной реакции и облучения некоторых химических элементов в атмосфере и грунте нейтронами. Поражающее действие радиоактивного заражения обуславливается в основном гамма-излучением и в меньшей степени бета-излучением; альфа-излучение может воздействовать на человека при попадании радионуклида внутрь организма.

Поражающее действие радиоактивного загрязнения определяется главным образом внешним облучением. Попадание радионуклида на кожу или внутрь организма несколько увеличивает поражающий эффект внешнего облучения.

Основными источниками радиоактивного загрязнения территории в районе взрыва являются радионуклиды, образовавшиеся в результате ядерной реакции и наведенная активность элементов поверхностного слоя почвы (это алюминий-28, марганец-56, натрий-24, железо-59). Радионуклиды образуются в почве под воздействием нейтронов, выходящих из зоны взрыва.

Загрязнение местности по пути движения облака взрыва образуется в результате выпадения из облака и пылевого столба радиоактивных частиц (частиц грунта и капель воды с осевшими на них радионуклидами). Зону заражения местности по пути движения облака взрыва называют следом облака.

Зонирование территории производится в зависимости от дозы, которую может получить население, находящееся на отрытой местности от 1часа после взрыва до полного распада радиоактивных продуктов и предположении, что меры защиты не применяются. Доза рассчитывается от гамма-излучения при внешнем облучении всего тела человека (т.е. поглощенная доза равна эквивалентной дозе).

Таблица10

Характеристика зон радиоактивного загрязнения территории на следе облака и в районе ядерного взрыва

Зона

загрязнения

Условное

обозначение

Цвет линии

границы зоны

на схеме

Поглощенная доза, Гр

На внешней

границе зоны

В середине

зоны

На внутренней

границе зоны

Умеренного

заражения

Сильного

заражения

Опасного

заражения

Чрезвычайно

опасного

заражения

А

Б

В

Г

Синяя

Зеленая

Коричневая

черная

0,4

4

12

40

1.25

7

22

70

4

12

40

Более100

На равнинной местности при неменяющемся направлении и скорости среднего ветра, а также при прогнозировании зон радиоактивного загрязнения след облака имеет форму эллипса

Рис.3 Зоны радиоактивного загрязнения территорий.

Степень радиоактивного загрязнения местности характеризуется мощностью дозы радиации. Мощность дозы излучения (уровень радиации) -величина дозы ионизирующего излучения, отнесенная к единице времени (1час). P=dD/dt (Гр/с-1, Гр/ч). Мощность дозы зависит от плотности потока гамма-квантов и их энергии. Энергия гамма-квантов со временем изменяется незначительно, а плотность их уменьшается прямо пропорционально уменьшению активности радионуклидов. Это обстоятельство, а также естественные процессы непрерывного распада радионуклидов приводит к уменьшению мощности дозы с течением времени. Изменение мощности дозы в любой точке загрязненной территории происходит по определенному закону:

Pt=P0 или Pt=PK(t) (1.1)

Где Рt- мощность дозы в рассматриваемый момент времени t (время отсчитывается с момента взрыва);

Р0 - мощность дозы в момент времени t0 после взрыва;

К( t ) - коэффициент, характеризующий степень изменений мощности дозы с течением времени: К( t )=.

Тогда доза излучения за время от t1 до t2 составит:

. (1.2)

После интегрирования получим:

.

Подставив значения:

,

Найдем

. (1.3)

Для ядерного взрыва при п=1,2 формула 1.3 приобретает вид

или.

Для расчета дозы радиации по данной формуле необходимо измеренный уровень радиации привести с помощью коэффициентов перерасчета (характеризующих степень изменения мощности дозы с течением времени) уровней радиации (см. таблицы методики прилож.1) на время начала и окончания облучения, т.е. найти Рн и Рк.

Для практических целей можно применять правило приблизительного определения 10-кратного снижения уровня радиации при 7-кратном увеличении времени. Так, если уровень радиации через 1 час после взрыва принять за 100%, то через 7часов он составит примерно 10%, а через 72ч (49ч.), или около двух суток - 1%, а через 73ч(343ч), или около двух недель, -0,1%.

Прогнозирование и оценка обстановки при радиационных авариях, осуществляется с использованием методических рекомендаций данного пособия , а при оценке радиационной обстановки при ядерном взрыве «Методикой оценки радиационной обстановки при ядерных взрывах» (Приложение 1).

Прогнозирование и оценка обстановки при химических авариях

Развитие химической промышленности обусловило возрастание техногенных опасностей, приводящих к крупным химическим авариям, сопровождаемых значительными материальными ущербами и большими человеческими жертвами.

Под химически опасным (ХОО) объектом понимается объект, на котором хранят, перерабатывают, используют или транспортируют опасные химические вещества (ОХВ), при аварии на котором или при разрушении которого может произойти гибель или химическое заражение людей, сельскохозяйственных животных и растений, а также химическое заражение окружающей природной среды.

Все эти объекты классифицируются по степени химической опасности. В основу этой классификации положена степень опасности объекта для населения и территорий.

Таблица 11

Степень химической опасности

объекта

Количество человек, попадающих в зону

химического заражения при аварии,

тыс.человек

I

Более75

II

От 40 до 75

III

Менее 40

IV*

Оценке не подлежит

Примечание* - зона возможного заражения АХОВ

Опасность заражения АХОВ приземного слоя атмосферы, зданий и сооружений, местности, открытых водоисточников, а в отдельных случаях и грунтовых вод при химических авариях определяется физико-химическими свойствами АХОВ их способностью переходить из жидкого состояния в парообразное.

В результате возникновения аварий на различных производственных объектах с жидкими (газообразными) АХОВ или пожаров с твердыми химическими веществами с образованием аэрозолей АХОВ в районах прилегающих к очагу поражения, может создастся сложная химическая обстановка на значительных площадях с образованием обширных зон химического заражения.

Под зоной химического заражения понимается территория или акватория, в пределах которой распространены или куда привнесены опасные химические вещества в концентрациях или количествах, создающих опасность для жизни и здоровья людей, сельскохозяйственных животных и растений в течении определенного времени. Она включает территорию непосредственного разлива АХОВ (горения веществ, образующих АХОВ) и территорию, над которой распространилось облако зараженного воздуха с поражающими концентрациями.

Величина зоны химического заражения зависит от физико-химических свойств, токсичности, количества разлившегося (выброшенного в атмосферу) АХОВ, метеорологических условий и характера местности. Размеры зон характеризуются глубиной и шириной распространения облака зараженного воздуха с поражающими концентрациями и площадь разлива (горения) АХОВ. Внутри зоны могут быть районы со смертельными концентрациями.

Глубина зоны химического заражения для АХОВ определяется глубиной распространения первичного и вторичного облака и в значительной степени зависит от метеорологических условий, рельефа местности и плотности застройки объектов.

Существенное влияние на глубину зоны химического заражения оказывает степень вертикальной устойчивости приземного слоя воздуха.

Для задач прогнозирования рассматривают три основных типа устойчивости атмосферы:

- неустойчивая (конвекция), когда нижний слой воздуха нагрет сильнее верхнего. Характерна для солнечной летней погоды.

- безразличная (изотермия), когда температура воздуха на высотах до 30м от поверхности земли почти одинакова. Характерна для переменной облачности в течении дня, облачного дня и облачной ночи, а также дождливой погоды;

- устойчивая (инверсия), когда нижние слои воздуха холоднее верхних. Характерна для ясной ночи, морозного зимнего дня, а также для утренних и вечерних часов.

В зависимости от глубины распространения облака АХОВ в зоне заражения может быть один или несколько очагов химического поражения.

Очагом химического поражения принято называть территорию с находящимися на ней объектами, в пределах которой в результате воздействия АХОВ произошли массовые поражения людей. Сельскохозяйственных животных и растений.

Потери рабочих, служащих и населения в очагах химического поражения зависят от токсичности, величины концентрации АХОВ и времени пребывания людей в очаге поражения, степени их защищенности и своевременности использования индивидуальных средств защиты.

Характер поражения людей, находящихся в зоне химического поражения определяется главным образом токсичностью АХОВ и полученной токсодозой.

Токсичность АХОВ ( от греч.- яд) - ядовитость, свойство некоторых химических соединений и веществ биологической природы при попадании в определенных количествах в живой организм (человека, животного и растения) вызывать нарушения его физиологических функций, в результате чего возникают симптомы отравления (интоксикации, заболевания),а при тяжелых - гибель.

Токсичность характеризуется количеством вещества, вызывающим поражающий эффект, и характером токсического действия на организм.

В целях количественной оценки токсичности АХОВ и токсинов используются определенные категории токсических доз при различных путях проникновения в организм: ингаляционном, кожно-резорбтивном и через раневые поверхности. Показателем токсичности вещества является доза. Доза вещества, вызывающая определенный токсический эффект, называется токсической дозой (токсодозой). Для человека и животных она определяется количеством вещества, вызывающим определенный токсический эффект. чем меньше токсодоза, тем выше токсичность.

При ингаляционных поражениях, если человек массой G (кг) вдыхает воздух с концентрацией С (мг/л) в нем АХОВ в течении (мин) при интенсивности дыхания V(л/мин), то удельная поглощенная доза АХОВ (количество АХОВ, попавшего в организм) D (мг/кг) будет равна

Dуд. =CV/G

Для людей или конкретного вида животных, находящихся в одинаковых условиях, отношение V/G постоянно, и его исключают при характеристики ингаляционной токсичности вещества, а выражение C(мг.*мин/л) принимают за коэффициент токсичности имеющий постоянную величину.

Для количественной оценки токсичности приняты следующие параметры:

- концентрация ОХВ в среде (мг/кг;мг/м3);

- токсодоза (мг*мин/л; г *мин/л).

Токсическая доза, вызывающая равные по тяжести поражения, зависит от свойства вещества, путей его проникновения в организм и условий применения вещества.

Основными показателями токсичности АХОВ при воздействии на человека в чрезвычайных ситуациях являются:

Limir- пороговая концентрация, порог раздражающего действия на слизистые оболочки верхних дыхательных путей и глаз. Выражается количеством вещества, которое содержится в одном объеме воздуха (мг/м3) и пороговая токсодоза - количество вещества, вызывающее начальные признаки поражения организма с определенной вероятностью. Пороговые токсодозы обозначают PD100 или PD50.

КВИО - коэффициент возможности ингаляционного отравления, представляющий собой отношение максимально достижимой концентрации токсичного вещества (Сmax, мг/м3) в воздухе при 200 С к средней смертельной концентрации вещества для мышей.

КВИО=

Где - - летучесть вещества мг/м3; -среднесмертельная концентрация яда при 120мин. Величина безразмерная.

ПДК - предельно допустимая концентрация вещества - максимальное количества вещества в единице объема воздуха, воды и др., которое при ежедневном воздействии на организм в течении длительного времени не вызывает в нем патологических изменений (отклонения в состоянии здоровья, заболевания), обнаруживаемых современными методами исследования в процессе жизни или отдаленные сроки жизни настоящего и последующих поколений. Различают ПДК рабочей зоны (мг/м3), пдк среднесуточная в атмосферном воздухе населенных мест, ПДК в воде водоемов различного водопользования (мг/л), ПДК (или допустимое остаточное количество) в продуктах питания (мг/кг) и др.

Смертельная, или летальная, доза - это количество вещества, вызывающее при попадании в организм смертельный исход с определенной вероятностью.

LC50 ( LC100) - Среднесмертельная (смертельная) концентрация в воздухе, вызывающая гибель 50% (100%) при ингаляционном воздействии вещества при определенной экспозиции (стандартная 2-4часа) и определенном сроке последующего наблюдения.(г*мин/м3; мг*мин/л)

LD50 ( LD100) - Среднесмертельная ( смертельная) доза, вызывающая гибель 50% (100%) приведении в желудок, в брюшную полость, на кожу при определенных условиях введения и конкретном сроке последующего наблюдения ( обычно 2 недели). Выражается количеством вещества, отнесенным к единице массы тела (мг/кг).

Выводящая из строя ( ID - доза, IC- концентрация) это количество вещества, вызывающее при попадание в организм выход из строя определенного процента пораженных как временно, так и со смертельным исходом

В военной токсикометрии и в гражданской обороне, наиболее употребительны показатели относительных медианных значений:

А) при воздействии на человека через органы дыхания (ингаляции);

- среднесмертельной LC50 ;

- средневыводящей IC 50 ;

- средней эффективно действующей EC50 ;

- средней пороговой PC ;

Выражающихся в мг*мин/л.

Б) при кожно-резорбтивном воздействии LD50, ID50, ED50, PD50. (мг/кг).

Таблица12

Параметры токсичности некоторых синтетических веществ.

АХОВ

LC50 (мг/м3)

биообъект, экспозиция

LC50

мг*мин/л

PC50

мг*мин/л

ПДК

мг/м3

ПДК в

Воде,

мг/м3

АХОВ ингаляционного действия

Аммиак

7600,крыса 2ч.

3800,мышь

150

5

0,04

2

Метил бромистый

1540,мышь,

2250, крыса 2ч.

90

2

0,2

-

Метил хлористый

5300,крыса

100

10

0,06

-

Метилмеркаптан

1700,мышь,

1200,крыса 2ч.

1700

1,7

9 *10-5

2*10-4

Оксид этилена

1500,мышь,

2630, крыса 4ч.

100

41

0,03

-

Сероводород

1200,мышь,2ч

16

5

0,008

-

Сероуглерод

10000,мышь

25000,крыса,2ч

900

1,5

0,005

1

Синильная кислота

400-700(LC100),

Чел.,2-3мин.

2

0,015

0,01

0,1

Фосген

360(LC100),чел.,

30мин

3,2

0,03

0,003

-

Хлор

1900(LC100),

Собака, 30мин

6

0,3

0,03

Отсутствие в воде

Боевые отравляющие вещества

Ви-газы

3,5*10-2

1*10-4

5*10-8

2*10-6

Зоман

5*10-2

2*10-4

1*10-7

5*10-6

Зарин

0,1

2,5*10-3

2*10-7

5*10-5

Иприт

1.3

2,5*10-2

2*10-6

1*10-4

Люизит

0,5

6*10-4

4*10-6

2*10-4

Поражение через кожу LD50 г/чел.

Ви-газы

0,007

Зоман

0,1

Зарин

1,48

Иприт

5

Азотистый иприт

1

Расчеты параметров зон заражения при химических авариях осуществляется с помощью «Методики прогнозирования последствий аварий на ХОО с выбросом в атмосферу АХОВ», (приложение 2).

Дополнительная информация

Оценка вредных веществ

Способность химических веществ вызывать нарушение жизнедеятельности организма (отравление) - называется токсичностью. Токсичность (вредность, ядовитость) характеризуется как мера несовместимости вещества с жизнью и здоровьем, а опасность - как вероятность отравления этим веществом в реальных условиях его применения или присутствия.

Оценка токсичности имеет четкую количественную интерпретацию (т.е. основанную на измерениях- предмет токсикометрии).

В основу токсикометрических исследований положено изучение зависимости между количеством ядовитого вещества, содержащимся в конкретной среде (субстрате) или поступившим в организм, и реакцией последнего в виде острого, подострого, хронического или смертельного отравления, а также в форме того или иного отдаленного эффекта.

При этом имеют значения не только собственно дозы, но и пути поступления вещества в организм, продолжительность его воздействия, состояние самого организма, условия окружающей среды. Количество яда оценивается в единицах его массы, отнесенных к единицы массы или объема субстрата (мг/м3 воздуха, мг/л воды, или г/кг воздушно-сухой почвы).эти характеристик называются концентрациями и обозначаются либо латинской буквой С, либо русской К.

Количество яда, поступившего в организм, соотносится с массой его тела (мг/кг) и называется дозой вещества ( D или Д ). Кроме того, концентрации вредных веществ могут выражаться в процентах или частях на миллион (ppm).

Устанавливаются три количественных характеристики вещества:

1) пороговая доза (или концентрация), иначе называемая порогом однократного воздействия; это наименьшее количество вещества, вызывающее при однократном воздействии такие изменения в организме, которые обнаруживаются при помощи специальных биохимических или физиологических тестов при отсутствии внешних признаков отравления ; обозначаются символами Кминмин ) или Дмин. (Dмин ) (минимальная концентрация или доза).

2) токсическая несмертельная доза (концентрация), которая вызывает видимые проявления отравления без смертельного исхода и обозначается символами ЕД или ЕК;

3) токсическая смертельная доза (концентрация), которая вызывает отравление, заканчивающееся смертью подопытного животного; обозначается символами ЛК и ЛД, где Л - первая буква латинского слова леталис, что означает смертельный.

Наиболее объективную оценку токсичности исследуемого вещества,, приемлемую для сравнения различных ядов дает та доза (концентрация), которая вызывает гибель половины (50%) всех подопытных организмов, т.е.ЛК50 или ЛД50. Обратные им величины ЛК50-1и ЛД50-1 рассматриваются в качестве степени токсичности вещества.

Чем выше степень токсичности того или иного вещества, тем более жесткие требования при работе с ним или его присутствию в окружающей среде. Поэтому все токсичные вещества делят на группы токсичности (классы токсичности) (см. табл.). чем меньше значения устанавливаемых в эксперименте токсических доз (концентраций вещества), тем более ядовитым, т.е. токсичным или опасным, оно является.

Показатели *

Классы токсичности (опасности)

I

Чрезвычайно токсичные

II

высокотоксичные

III

Умеренно

токсичные

IV

малотоксичные

ЛД50,мг/кг,

при введении внутрь

15

15-150

150-1500

1500

ЛД50,мг/кг,

Накожно

100

100-500

501-2500

2500

ЛК50, мг/л

0,5

0,5-5,0

5,1-50

50

ЛКмин.,мг/л

0,01

0,01-0,1

0,11-1

0,1

Zостр.

6

6-18

18.1-54

54

Zхрон.

10

10-5

4,9-2,5

2,5

КВИО

300

300-30

30-3

3

* первые четыре показателя характеризуют степень токсичности , а три последние - степень опасности вещества.

Воздействие вредных веществ на организм можнт вызвать два вида отравлений: острое и хроническое.

Острые отравления (резкое скачкообразное возрастание содержание вредных веществ) возникает после аварий. В результате однократного воздействия наступают острые отравления приводящие к смертельному исходу немедленно, либо через определенный промежуток времени ( дни, недели).

Хроническое отравление - это заболевание, развивающееся в результате систематического воздействия таких доз вредного вещества, которые при однократном поступлении в организм не вызывают отравлений.


Подобные документы

  • Методика оценки химической обстановки, глубина распространения облака, зараженного АОХВ, на открытой местности. Определение размеров зон наводнений при разрушении гидротехнических сооружений. Значение давления ударной волны при взрыве газовоздушной смеси.

    методичка [31,1 K], добавлен 30.06.2015

  • Оценка обстановки, складывающейся в условиях чрезвычайных ситуаций мирного и военного времени. Мероприятия по защите населения от последствий чрезвычайных ситуаций. Выявление и оценка разрушений, радиационной, химической, инженерной и пожарной обстановки.

    контрольная работа [47,6 K], добавлен 12.10.2014

  • Понятие о чрезвычайных ситуациях. Взаимосвязь ЧС, природной среды и жизнедеятельности человека. Классификация чрезвычайных ситуаций. Катастрофа. Классификация катастроф. Стихийные бедствия.

    реферат [25,2 K], добавлен 14.04.2006

  • Изучение задач и структуры российской системы предупреждений и действий в чрезвычайных ситуациях. Основные силы и средства РСЧС. Правила организации оповещения о чрезвычайных ситуациях. Речевая информация. Права, обязанности, ответственность граждан.

    реферат [29,4 K], добавлен 22.11.2010

  • Принципы защиты в чрезвычайных ситуациях на предприятии ООО "ТюменНИИгипрогаз". Опасные и вредные производственные факторы. Ликвидация последствий взрывов и пожаров на территории общества. Защита сотрудников общества при авариях техногенного характера.

    курсовая работа [104,3 K], добавлен 25.02.2015

  • Источники чрезвычайных ситуаций, потери и ущерб как их следствие. Классификация чрезвычайных ситуаций. Система защиты населения и территорий от чрезвычайных ситуаций природного и техногенного характера. Зонирование территорий по видам опасности.

    реферат [46,7 K], добавлен 19.09.2012

  • Устойчивость функционирования объектов экономики в чрезвычайных ситуациях. Определение параметров поражающих факторов прогнозируемых чрезвычайных ситуаций. Методы по повышению устойчивости функционирования объектов экономики в чрезвычайных ситуациях.

    курсовая работа [787,1 K], добавлен 11.10.2008

  • Разработка сценария развития чрезвычайной ситуации. Расчет значений поражающих факторов при горении парогазовоздушного облака по типу "Огненный шар", при пожаре разлития, взрыве парогазовоздушной смеси, при аварии с отравляющими химическими веществами.

    курсовая работа [119,4 K], добавлен 15.04.2010

  • Особенности проведения аварийно-спасательных работ при различных чрезвычайных ситуациях техногенного и природного характера. Задачи гражданской защиты. Негативные факторы производственной среды. Освещение производственных помещений и его организация.

    контрольная работа [287,9 K], добавлен 19.06.2013

  • Значение создания функциональных подсистем. Основа сил и средств российских сил чрезвычайных ситуаций, их классификация. Сущность сил и средств при ликвидации чрезвычайных ситуаций природного характера. Этапы разработки плана действий (инструкции).

    презентация [1,2 M], добавлен 11.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.