Вода и здоровье: различные аспекты

Роль воды в жизни человека. Содержание воды в организме человека. Питьевой режим и баланс воды в организме. Основные источники загрязнения питьевой воды. Влияние водных ресурсов на здоровье человека. Способы очистки воды. Термическая санитарная обработка.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид контрольная работа
Язык русский
Дата добавления 14.01.2016
Размер файла 48,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

6.5 Удаление ионов

Существует три основных способа снижения концентрации ионов: мембранные процессы, ионный обмен, дистилляционный процесс. На практике используются много разновидностей и комбинаций этих способов, что открывает почти бесконечные возможности в их использовании при водоочистке.

6.6 Мембранные процессы

Мембранные процессы широко применяются в системах водоочистки для удаления: ионов, твердых взвешенных, органических соединений и микроорганизмов. Диапазон размеров пор мембран, выпускаемых промышленностью, весьма широк: от размеров сравнимых с размерами коллоидных частиц до размеров ионов. Ионоудаляющие мембраны занимают "тесный" участок спектра размеров пор и включают мембраны обратного осмоса (ОО) и нанофильтрующие мембраны. В настоящее время химия мембран настолько доведена до совершенства, что степень разделения ионов различного размера находится где-то между 99,9 и 50%, стирая различие между понятиями нанофильтрации и фильтрации при низком давлении. Теперь есть смысл обсуждать не размеры пор мембран, а особенности эксплуатации мембран из целлюлозы и других полимеров.

Целлюлозные мембраны устойчивы в присутствии окислителей бактерицидного происхождения и по существу могут работать в присутствии дезинфицирующих веществ, применяемых для уничтожения микроорганизмов, паразитирующих на материале мембран. Несмотря на то, что к преимуществам целлюлозных мембран можно отнести и возможность содержания в воде незначительных количеств хлора, остающегося в воде при использовании процесса обратного осмоса, преимущества нецеллюлозных мембран существенно превосходят отмеченное положительное свойство целлюлозных мембран.

Нецеллюлозные мембраны работают при значительно более низких давлениях и в широком диапазоне значений рН. Недаром во всех наиболее прогрессивных технических решениях используются именно нецеллюлозные мембраны. Одной из наиболее важных характеристик ионоудаляющих мембран является их высокая ионосепарирующая способность вне зависимости от концентрации ионов в потоке (вплоть до максимального осмотического давления). Это еще одно существенное преимущество по сравнению с ионным обменом, при котором каждый удаляемый ион заменяется на какой-либо другой. Именно эта характеристика фактически предопределяет включение мембранного разделения в каждую систему удаления ионов. Очень редко экономически оправдано использование ионного обмена для удаления только одного иона. Основополагающим решением в применении мембранного разделения является возможность использования систем с одно - или двукратным изменением направления потока очищаемой воды. Еще одной проблемой при мембранной очистке являются растворенные в воде газы, особенно С02, но и эти проблемы решаются использованием дегазифицирующих мембран.

Применение мембранной технологии предъявляет высокие требования к соблюдению заложенных в проекте норм технологического режима, аналитического контроля и правил промывки. Первым условием надежной работы систем мембранной очистки является постоянный расход воды, выражаемый в литрах на квадратный метр площади мембраны в сутки (ЛМС). Обычно промышленные мембранные системы очистки рассчитываются на расход 0,4-0,6 м3/м2 в сутки. Поток питательной воды направляют в систему мембранной очистки вначале на мембраны с крупными порами, а затем к мембранам с все более понижающимися по размеру порами. Из питательной воды перед подачей в систему мембранной очистки следует удалить загрязнения, которые могут быть причиной засорения или образования отложений на мембранах. Очень важно постоянно в процессе эксплуатации контролировать давление и расход воды через мембранную систему, поскольку именно эти два параметра определяют соблюдение условий постоянства технологического режима и отражают все отклонения от него. Необходимо постоянно отслеживать характеристики как питательной воды, так и очищенной воды на выходе из системы очистки. Качественный контроль состоит из действий, направленных на соблюдение всех отмеченных выше условий работы мембранной системы. Температура - очень важный фактор, определяющий вязкость воды и, как следствие, скорость ее фильтрации через мембрану. Часто питательную воду, поступающую на очистку, в мембранных системах, использующих обратный осмос, нагревают до 25°С, хотя это не всегда экономически оправдано. Более рациональным приемом является использование МГД-резонатора, снижающего вязкость воды и повышающего производительность фильтрации без затрат на подогрев. Промывка мембран отфильтрованной водой перед остановкой установки является неотъемлемой частью устранении загрязнения и предотвращения отложений на мембранах. Это особенно важно в системах, применяющих антинакипин. Совместное применение автоматизированной общей чистки мембран и санитарной обработки системы увеличивает продолжительность ее работы и снижает затраты на обслуживание.

6.7 Ионный обмен

Хотя двухходовой обратный осмос (ОО) во многих случаях может обеспечить необходимое удаление ионов, часто проекты систем очистки воды предусматривают стадию ионного обмена, размещаемую вслед за установкой ОО. Ионный обмен удаляет СО2, который в системе ОО может быть причиной сбоев при контроле качества очистки. Кроме того, в некоторых случаях считается приемлемым в очень низко расходных системах очистки воды применять портативные ионообменные емкости как единственный метод снижения концентрации ионов. Использование ионного обмена вслед за установкой ОО повышает надежность всей системы очистки. Однако при этом возникает несколько проблем. Общеизвестно, что колонии бактерий охотно поселяются на поверхности гранул ионообменного материала, особенно на смесях катионита-анионита, имеющих нейтральный рН. Кроме того, на стадии регенерации ионообменных материалов используются рискованные реагенты и сложное оборудование. Применение ионообменных емкостей создает постоянную "непредсказуемость" в процессе водоподготовки. Некоторые из этих проблем уменьшаются проверенными способами применения ионообменной технологии. Например, раздельное использование катионитов и анионитов обеспечивает сильно отличающиеся от нейтрального значения рН на ионитах разного типа, что подавляет рост бактерий. Одновременно, раздельное применение катионитов и анионитов облегчает их регенерацию и снижает затраты на реагенты. Использование портативного ионообменного резервуара позволяет провести регенерацию без ущерба для основного процесса и является гарантией стабильного качества очищенной воды.

6.8 Дистилляция

Дистилляция является естественным процессом очистки воды, состоящим из стадии испарения и конденсации. Любой загрязнитель, испаряющийся при более высокой, чем вода, температуре, может быть удален в процессе дистилляции с очень высокой полнотой (обычно более 99%). Загрязнения в водяной пар могут попадать только в виде брызг при слишком интенсивном кипении.

Очистка дистилляцией энергоемка из-за высоких энергозатрат на испарение воды. Рациональные технологические схемы, однако, могут существенно снизить энергозатраты. К таким схемам относится многокорпусная вакуумвыпарка, когда на обогрев последующего корпуса применяется вторичный пар предыдущего более "горячего" корпуса. При такой схеме используется особенность, присущая фазовому переходу первого рода. Тепло, выделяющееся при конденсации, равно затратам тепла на испарение, если оба процесса вести при одинаковой температуре. Но если конденсацию вести при более низкой температуре, то будет выделяться тепла больше, чем было затрачено на испарение. Предположим, испарение ведется при температуре 100°С. Тогда на испарение 1 кг воды расходуется 2259 кДж тепла. Если конденсацию провести при 40°С, то при этом выделится тепла 2406 кДж, то есть на 147 кДж больше. Это "избыточное" тепло можно использовать на подогрев, тем более, что для подогрева 1 кг воды от температуры 20°С до температуры 100°С нужно только 80 кДж тепла.

Слабым местом дистилляции является накипеобразование на поверхностях теплообмена. Слой накипи даже в 1 мм существенно повышает энергозатраты в тепловых процессах. Для борьбы с этим злом обычно используют различного типа антинакипины. Антинакипинами называют химические добавки, молекулы которых образуют водорастворимые комплексные соединения с ионами кальция и магния. Комплексообразователями являются, например, этилендиаминтетрауксусная кислота (ЭДТА) или полимерные фосфаты, такие как соль Грема, гексаметафосфат натрия и др.

У антинакипина есть несколько крупных недостатков:

высокая стоимость;

необходимость использования в технологической схеме узла растворения антинакипина и его дозировки;

молекула антинакипина гидролизуется (реагирует с водой) и разлагается при высоких температурах. Этот процесс протекает относительно медленно, но принуждает постоянно компенсировать гидролиз, добавлять к питательной воде "избыточные" порции антинакипина;

если в качестве антинакипина применяется органический комплексообразователь, он может с брызгами при интенсивном кипении попадать в дистиллят. А органические антинакипины ядовиты для человека. Прекрасным техническим решением, лишенным всех недостатков антинакипина, является применение МГД-резонатора. Он одновременно решает две проблемы:

снижая удельную теплоту парообразования, уменьшает энергозатраты;

предотвращает накипеобразование, вынуждая карбонат кальция кристаллизоваться в форме арагонита. Использование в 80-х годах прошлого века

МГД-резонатора на сорокакорпусной опреснительной установке, запитываемой водой Каспийского моря, позволило:

отказаться от антинакипина;

работать в безнакипном режиме;

снизить энергозатраты на получение 1 т пресной воды на 30-50%.

6.9 Бактериальный контроль

Бактериальный контроль требует постоянного внимания в сравнении с любым другим аспектом в системах очистки воды. Понятие бактериальный контроля включает как оборудование, так и процедуру. Обычно применяемым оборудованием является источник ультрафиолетового излучения (УФ), озоногенерирующие системы, системы нагрева, химические дозировочные и рециркуляционные системы. Процедуры сводятся к периодическим санитарным обработкам и технологическим приемам, препятствующим попаданию бактерий в систему. Бактериальный контроль применяется на всех стадиях очистки, хранения и распределения воды.

6.10 Ультрафиолетовое излучение

Ультрафиолетовое излучение с длиной волны 254 нм и дозировкой от 30 тыс. мкВт в секунду на квадратный сантиметр обеспечивает удовлетворительную скорость уничтожения большинства бактерий. При этом к воде не надо добавлять никаких химических веществ. Это делает УФ-облучение великолепным дезинфицирующим устройством в системах водоочистки.

Обычно источники УФ-излучения размещают во многих точках системы водоочистки. Часто УФ-излучатели размещают как на входе, так и на выходе системы очистки воды, что значительно продлевает время между периодическими санитарными обработками. УФ-излучение инициирует накипеобразование. Поэтому УФ-излучатель, располагающийся в точках, где отмечается повышенное содержание в воде солей жесткости, должен комплектоваться очистительной втулкой (шомполом), а водный канал в этом месте должен быть выполнен из тефлона.

6.11 Озон

Озон является мощным окислителем, постоянно генерируемым из атмосферного кислорода электрическим разрядом. Озон убивает микроорганизмы с очень высокой скоростью за счет окисления и растворения стенок клеток. Озон, как было показано ранее, легко разлагается на молекулярный и атомарный кислород, который собственно и является окислителем. Процесс разложения озона ускоряется УФ-излучением. Озон - прекрасное вещество для санитарной обработки, так как он мало растворим в воде (0,039% объема) и легко из нее улетучивается. Положительные качества озона являются и его отрицательными качествами: он может окислять полиамидные мембраны, ионообменные смолы и другие полимеры. Озон чаще всего применяется для дезинфекции воды, но может быть использован и в системах очистки, если это позволяют применяемые конструкционные материалы.

6.12 Термическая (тепловая) санитарная обработка

Тепло - надежный метод уничтожения микроорганизмов. Оно может быть применено для санитарной обработки картриджей фильтров, угольных фильтров, ионообменных подложек, мембранных систем, трубопроводов, емкостей и так далее. Все системы, подвергаемые тепловой санитарной обработке, должны быть изготовлены из специальных конструкционных материалов. Это особенно верно в случае мембранных и ионообменных систем. Положительные качества тепловой санобработки тем не менее существенно увеличивают эксплуатационные затраты. Минимальная температура, при которой уже приемлема санитарная термообработка, составляет 75°С, но такая температура может вредить мембранам и ионитам. Однако более высокие температуры допустимы при пропарке трубопроводов и емкостей. Поэтому для санитарной обработки мембранных систем и ионитов обычно используют подогретую очищенную воду.

6.13 Химическая санобработка

Для санобработки отдельных узлов систем водоочистки могут быть использованы различные химические соединения. Поскольку тепловая санобработка очень дорогая, часто санобработку проводят химикатами, периодически циркулирующими через мембранную систему. Это легко осуществить, если в мембранной системе очистки воды предусмотрена очистительно-промывная система. Главной проблемой при использовании химических веществ для санитарной обработки является возможность их последующего удаления из системы.

Заключение

Питьевая вода -- важнейший фактор здоровья человека. Практически все ее источники подвергаются антропогенному и техногенному воздействию разной интенсивности. Санитарное состояние большей части открытых водоемов России в последние годы улучшилось из-за уменьшения сброса промышленных отходов производства, но все еще остается тревожным.

Таким образом, совершенно очевидна потребность нашего населения в чистой, прозрачной, без цвета, вкуса и запаха, питьевой воде. Это позволит сохранить здоровье миллионов людей, даст экономию огромных денежных средств, которые потенциально предстоит затратить на оказание медицинской помощи при заболеваниях, возникающих под воздействием употребления некачественной воды.

Без всякого преувеличения можно сказать, что высококачественная вода, отвечающая санитарно-гигиеническим и эпидемиологическим требованиям, является одним из непременных условий сохранения здоровья людей. Но чтобы она приносила пользу, ее необходимо очистить от всяких вредных примесей и доставить чистой человеку.

За последние годы взгляд на воду изменился. О ней все чаще стали говорить не только врачи-гигиенисты, но и биологи, инженеры, строители, экономисты, политические деятели. Да и понятно - бурное развитие общественного производства и градостроительства, рост материального благосостояния, культурного уровня населения постоянно увеличивают потребность в воде, заставляют более рационально ее использовать.

Список используемой литературы

1. И.Ф. Ливчак, Ю.В. Воронов "Охрана окружающей среды",

2. О.Н. Малах УО "ВГУ им. П.М. Машерова" 2005г.

3. Васильева З.А., Любинская С.М. Резервы здоровья. - Л., 1981.

4. Д. Касаткин. Природа и человек. Вода источник жизни.

5. Г.Г. Онищенко. Вода и здоровье.

Размещено на Allbest.ru


Подобные документы

  • Вода из водопровода, фильтра, колодца. Минеральная и протиевая вода. Опрос населения о пользе воды, о том, какую воду предпочитают пить. Значение воды для жизни людей. Какая вода наиболее полезна для здоровья человека. Технологии очистки воды.

    презентация [1,5 M], добавлен 23.03.2014

  • Воздушная среда закрытых помещений. Влияние гельминтозов и паразитозов, качества питьевой воды, курения, микроэлементов, электромагнитного излучения, недостатка витаминов, психо-эмоционального состояния на здоровье человека. Профилактика заболеваний.

    курс лекций [152,8 K], добавлен 30.08.2009

  • Огнетушащая эффективность воды. Достоинства и недостатки воды. Интенсивность подачи воды для тушения. Способы подачи воды для пожаротушения. Область применения воды. Метод оценки применимости воды. Способы повышения огнетушащей эффективности воды.

    курсовая работа [46,3 K], добавлен 25.07.2014

  • Основные показатели безопасности питьевой воды. Гигиенические требования к организации водоснабжения населения. Государственный надзор за содержанием радионуклидов в питьевой воде, оценка доз внутреннего облучения населения загрязненных территорий.

    презентация [419,9 K], добавлен 15.01.2015

  • Факторы, влияющие на потребности человека в воде. Организация водопотребления в таежной и горно-таежной зонах. Сбор воды с растений. Поиск водоисточника по характеру полета птиц, поведения животных и насекомых. Способы дезинфекции и фильтрования воды.

    реферат [25,6 K], добавлен 03.04.2017

  • Химический состав пресных вод рек и озер. Установленный порядок потребления жидкости. Суммарный сток рек СНГ за год. Группы подземных и поверхностных вод. Методы водоподготовки, используемые для приготовления питьевой воды. Скорый безнапорный фильтр.

    реферат [1,1 M], добавлен 27.01.2012

  • Влияние компьютера на здоровье человека, основные аспекты длительной работы за компьютером. Ультрафиолетовое излучение, благоприятное влияние излучения на организм, воздействие ультрафиолета на кожу, на глаза м иммунную систему. Влияние шума на здоровье.

    реферат [22,4 K], добавлен 20.03.2010

  • Физиолого-гигиеническое и эпидемиологическое значение воды. Заболевания, связанные с биологическим качеством и химическим составом воды. Исчисление нормы водопотребления по теории Черкинса. Анализ микроэлементного состава и уровня минерализации.

    презентация [108,7 K], добавлен 09.10.2014

  • Пылеочистные аппараты разделяют по способу распыливания жидкости. Скорость осаждения частиц пыли на каплях воды. Виды фильтров. Ионизирующие аппараты для очистки воздуха от пыли. Способы улавливания пыли в трубопроводах промышленных предприятий.

    реферат [1,2 M], добавлен 25.03.2009

  • Особенности коммунальной гигиены, ее связь с глобальными проблемами градостроительства. Роль нормативов и рекомендаций, разработанных гигиенической наукой. Гигиеническая оценка воздушной среды. Критерии качества питьевой воды. Специфика охраны почв.

    контрольная работа [32,2 K], добавлен 11.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.