Безопасность жизнедеятельности и охрана труда
Контроль за состоянием охраны труда на предприятии. Виды инструктажа, порядок и сроки проведения. Меры защиты от поражения электрическим током. Мероприятия по защите от шума и вибрации. Применяемые средства тушения пожаров. Чрезвычайные ситуации.
Рубрика | Безопасность жизнедеятельности и охрана труда |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 08.06.2009 |
Размер файла | 1,7 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
В устройствах заземления и зануления:
Uпр. = 3 - = 3 - (1 - ) = 3 · б
0 < б ? 1
Uприкосновения тем меньше, чем ближе электроустановки расположены к заземлителю.
Выносная и контурная схемы заземлений. 1-я схемы более безопасна, т.к.электроустановка ближе к заземлителю. Выносная схема м. применяться в случаях: 1)если удельное сопротивление грунта по контуру велико, а на определенном расстоянии оно гораздо меньше песка 7*104Ом*см глины0,4*104Ом*см 2)при необходимости заземления оборудования, устанавливаемого в существующее здание, а по близости заземляющего устройства нет.
26. Защитные меры в электроустановках. Назначение и принципиальная схема работы защитного отключения в эл.установках
Согласно ГОСТ 21.1.019-79* электробезопасность электроустановок обеспечивается: конструкцией электроустановок; техническими способами и средствами защиты; организационными и техническими мероприятиями. Все меры обеспечения электробезопасности сводятся к трем путям: 1)недопущение прикосновения и приближения на опасное расстояние к токоведущим частям, находящимся под напряжением; 2)снижение напряжения прикосновения; 3) уменьшение продолжительности воздействия электрического тока на пострадавшего. К техническим способам относятся следующие, предусмотренные ПУЭ: 1)применение надлежащей изоляции и контроль за ее состоянием; 2)обеспечение недоступности токоведущих частей; 3)автоматическое отключение электроустановок в аварийных режимах - защитное отключение; 4)заземление или зануление корпусов электрооборудования; 5) выравнивание потенциалов; 6)применение разделительных трансформаторов; 7)защита от опасности при переходе напряжения с высокой стороны на низкую; 8)компенсация емкостной составляющей тока замыкания на землю; 9)применение низких напряжений. Принцип действия защитного отключения. Это преднамереное автоматическое отключение эл. установки от питающей сети в случае опасности поражения эл. током. Условия, при которых выполняется заземление или зануление в соответствии с требованиями ПУЭ-85. 1)В малоопасных помещениях 380 В и выше переменного тока 440 В и выше постоянного тока 2)В особо опасных помещениях, помещениях с повышенной опасностью и вне помещений 42 В и выше переменного тока 3)110 В и вышепостоянного тока 4)При всех напряжениях во взрывоопасных помещения. Заземляющие устройства бывают естественными (используются конструкции зданий) в этом случае нельзя использовать те элементы, которые при попадании искры приводят к аварии (взрывоопасные). Искусственные -- контурное и выносное защитное заземляющее устройство.
27. Цель и применение заземления электромашин. Выносное и контурное заземление. Принцип расчёта заземляющего устройства
В ЭУ переменного и постоянного тока защитное заземление обеспечивает защиту людей от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции. Защитное заземление - это заземление металлических частей нормально не находящихся под напряжением электроустановки с целью обеспечения электробезопасности. Защитному заземлению подлежат металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты. Так корпуса электрических машин , трансформаторов, светильников и др. нетоковедущие части могут оказаться под напряжением при замыкании на корпус. Если корпус не заземлен, то прикосновение к нему также опасно, как и прикосновение к фазе. При заземлении корпуса ток через тело человека при его прикосновении к корпусу будет тем меньше, сем меньше ток замыкания на землю и сопротивление цепи заземления и чем ближе человек стоит к заземлителю. Защитное заземление представляет собой заземляющее устройство. Заземляющее устройство - это совокупность проводников к заземлителю. Заземлитель - это проводник или совокупность металлически соединенных проводников, находящихся в соприкосновении с землей. В качестве заземлителя в первую очередь необходимо использовать естественные заземлители (железобетонные фундаменты). В качестве искусственных заземлителей применяют стальные стержни из уголка. В сетях напряжением выше 1000 В прикосновение к фазе опасно, а применение разделительных трансформаторов значительно повышает стоимость электроустановок. Поэтому в таких сетях применяют другие защитные меры. Целью разделения сетей является уменьшение тока замыкания на землю за счет высокого сопротивления изоляции фаз относительно земли, поэтому не допускается заземление нейтрали или обратного провода за разделительным трансформатором или преобразователем. Контурная схема более безопасна, т.к. ЭУ ближе к заземлению, выносная схемы м. применяться в сл. случаях: 1) если удельное сопротивление грунта по контуру велико, а на определенном расстоянии оно гораздо меньше 2) при необходимости заземления оборудования, устанавливаемого в существуемые здания, а по близости заземляющего устройства нет.
Расчёт заземляющего устройства
1) Rз - сопротивление растекания тока через трубу. Если Rз <= Rнорм, то расчёты закончены. Rнорм = 4 Ом
2) Сколько нужно труб без учёта экранирования (n'): n' = Rз / Rнорм
3) к-т экранирования для заземлителя зз.
4) nфакт = n' / зз
5) длина соединительной полосы: 1,05*А*n = ln
6) R полосы
7) з для полосы
8) Rзу = (Rз*Rполосы) / (Rполосы* зз*n+Rз* зполосы) <= Rнорм
28. Характеристика организма как проводника электрического тока. О чего зависит его проводимость?
Действие электрического тока на живую ткань носит разносторонний и своеобразный характер. Проходя через организм человека, электроток производит действия:
· термическое: проявляется ожогами отдельных участков тела, нагревом до высокой температуры органов, расположенных на пути тока, вызывая в них значительные функциональные расстройства
· электролитическое: выражается в разложении органической жидкости, в том числе крови, в нарушении ее физико-химического состава
· механическое: приводит к расслоению, разрыву тканей организма в результате электродинамического эффекта, а также мгновенного взрывоподобного образования пара из тканевой жидкости и крови
· биологическое: проявляется раздражением и возбуждением живых тканей организма, а также нарушением внутренних биологических процессов.
Исход поражения человека электротоком зависит от многих факторов: силы тока и времени его прохождения через организм, характеристики тока (переменный или постоянный), пути тока в теле человека, при переменном токе -- от частоты колебаний.
Ток, проходящий через организм, зависит от напряжения прикосновения, под которым оказался пострадавший, и суммарного электрического сопротивления, в которое входит сопротивление тела человека. Величина последнего определяется в основном сопротивлением рогового слоя кожи, составляющим при сухой коже и отсутствии повреждений сотни тысяч Ом. Если эти условия состояния кожи не выполняются, то ее сопротивление падает до 1 кОм. При высоком напряжении и значительном времени протекания тока через тело сопротивление кожи падает еще больше, что приводит к более тяжелым последствиям поражения током. Внутреннее сопротивление тела человека не превышает нескольких сотен Ом и существенной роли не играет.
На сопротивление организма воздействию электрического тока оказывает влияние физическое и психическое состояние человека. Нездоровье, утомление, голод, опьянение, эмоциональное возбуждение приводят к снижению сопротивления. Характер воздействия тока на человека в зависимости от силы и вида тока приведен в табл. (путь тока рука -- нога, напряжение 220 В)
Ток, мА |
Переменный ток, 50 Гц |
Постоянный ток |
|
0.6...1.5 |
Начало ощущения, легкое дрожание пальцев |
Ощущений нет |
|
2,0...2,5 |
Начало болевых ощущений |
То же |
|
5,0.-7,0 |
Начало судорог в руках |
Зуд, ощущение нагрева |
|
8,0...10,0 |
Судороги в руках, трудно, но можно оторваться от электродов |
Усиление ощущения нагрева |
|
20,0...25,0 |
Сильные судороги и боли, неотпус-кающий ток, дыхание затруднено |
Судороги рук, затруднение дыхания |
|
50,0...80,0 |
Паралич дыхания |
То же |
|
90,0... 100,0 |
Фибрилляция сердца при действии тока в теч, 2-3 с, паралич дыхания |
Паралич дыхания при длительном протекании тока |
|
300,0 |
То же, за меньшее время |
Фибрилляция сердца через 2 - 3 с, паралич дыхания |
Значение тока, протекающего через тело человека, является главным фактором, от которого зависит исход поражения: чем больше ток, тем опаснее его действие.
Допустимым считается ток, при котором человек может самостоятельно освободиться от электрической цепи. Его величина зависит от скорости прохождения тока через тело человека: при длительности действия более 10 с - 2 мА, при 10 с и менее - 6 мА. Ток, при котором пострадавший не может самостоятельно оторваться от токоведущих частей, называется неотпускающим.
Длительность протекания тока через тело человека влияет на исход поражения вследствие того, что со временем резко повышается ток за счет уменьшения сопротивления тела и накапливаются отрицательные последствия воздействия тока на организм.
Род и частота токов в значительной степени определяют исход поражения. Наиболее опасным является переменный ток с частотой 20--100 Гц.
Токи частотой свыше 500 000 Гц не оказывают раздражающего действия на ткани и поэтому не вызывают электрического удара. Однако они могут вызвать термические ожоги.
Переменный ток опаснее постоянного, однако при высоком напряжении (более 500 В) опаснее постоянный ток. Из возможных путей протекания тока через тело человека (гол, - рука, гол, - ноги, рука - рука, нога - рука, нога - нога и т. д.) наиболее опасен тот, при котором поражается головной мозг (гол, - руки, гол, - ноги), сердце и легкие (руки - ноги). Неблагоприятный микроклимат (повыш, температура, влажность) увеличивает опасность, так как влага (пот) понижает сопротивление кожных покровов.
29. Описать типовые случаи поражения электрическим током при касании к электрической сети
Действие электрического тока на живую ткань носит разносторонний и своеобразный характер. Проходя через организм человека, электроток производит действия:
· термическое: проявляется ожогами отдельных участков тела, нагревом до высокой температуры органов, расположенных на пути тока, вызывая в них значительные функциональные расстройства
· электролитическое: выражается в разложении органической жидкости, в том числе крови, в нарушении ее физико-химического состава
· механическое: приводит к расслоению, разрыву тканей организма в результате электродинамического эффекта, а также мгновенного взрывоподобного образования пара из тканевой жидкости и крови
· биологическое: проявляется раздражением и возбуждением живых тканей организма, а также нарушением внутренних биологических процессов.
Это многообразие действий электрического тока нередко приводит к различным электротравмам, которые условно можно свести к двум видам:
1) местным электротравмам: электрические ожоги, электрические знаки, металлизация кожи, механические повреждения и электроофтальмия
2) общим электротравмам (электрическим ударам).
Местные электротравмы -- это четко выраженные местные повреждения тканей организма, вызванные воздействием электрического тока или электрической дуги.
Электрические ожоги могут быть вызваны протеканием тока через тело человека (токовый или контактный ожог), а также воздействием электрической дуги на тело (дуговой ожог).
Электрические знаки -- это четко очерченные пятна серого или бледно-желтого цвета диаметром 1--5 мм на поверхности кожи человека, подвергшегося действию тока. Электрические знаки безболезненны, и лечение их заканчивается, как правило, благополучно.
Meталлизация кожи -- это проникновение в верхние слои кожи мельчайших частичек металла, расплавившегося под действием электрической дуги.
Механические повреждения являются следствием резких непроизвольных судорожных сокращений мышц под действием тока, проходящего через тело человека. В результате могут произойти разрывы кожи, кровеносных сосудов и нервной ткани, вывихи суставов и даже переломы костей.
Электроофтальмия -- воспаление наружных. оболочек глаз, возникающее в результате воздействия мощного потока ультрафиолетовых лучей электрической дуги. Обычно болеэнь продолжается несколько дней.
Электрический удар -- это возбуждение живых тканей организма проходящим через него электрическим током, сопровождающееся непроизвольными судорожными сокращениями мышц. Различают следующие четыре степени ударов: I -- судорожное сокращение мышц без потери сознания; II -- судорожное сокращение мышц с потерей сознания, но с сохранившимся дыханием и работой сердца; III -- потеря сознания и нарушение сердечной деятельности или дыхания (либо того и другого вместе); IV -- клиническая смерть, т. е. отсутствие дыхания и кровообращения.
Клиническая («мнимая») смерть -- переходный процесс от жизни к смерти, наступающий с момента прекращения деятельности сердца и легких.
Биологическая (истинная) смерть -- необратимое явление, характеризующееся прекращением биологических процессов в клетках и тканях организма и распадом белковых структур; она наступает по истечении периода клинической смерти.
30. Процесс возникновения и накопления зарядов статистического электричества. Отрицательное воздействие СЭ. Защита от СЭ
Электростатические заряды могут возникнуть в результате прикосновения 2-х твёрдых тел, 2-х жидкостей или при дроблении тел.
Разряды статического электричества могут явиться причиной взрыва, пожара, появлению брака продукции.
Человек воспринимает разряды электричества в виде резких уколов. При разности потенциалов в 3000 В достаточно для воспламенения практически всех горючих газов и жидкостей, а 5000 В - даже текстильную пыль.
Электростатические заряды могут возникнуть: при разбрызгивании краски - 5000 В, при движении машины - 3000 В.
Защита
1. отвод зарядов стат. Электричества заземлением
2. отвод с пом.ум-я эл. сопротивления контактирующих тел
3. снижение интенсивности возникновения зарядов СЭ
4. нейтрализация зарядов СЭ (индукционные, радиоизотопные, комбинированные ионизаторы воздуха)
5. отвод зарядов, накопившихся на людях (спецбраслет, пояс)
31. Защита от СЭ. Молниезащита
Ежедневно44 тыс.разрядов, t=300000С, величина тока в начале разряда J150-200 кА. (0,1А считается смертельной для человека), мах прод-ть разряда - 0,1 с.
молниеотводы состоят из 3 частей: молниеприемник, токопров. часть, зазем. устр-во.
(1) м.б. стержень - один или многостержневой, тросы, сетчатые.
Любой молниеприемник имеет защитную зону и все, что находится внутри данной защитной зоны с определенной гарантией защищено от прямых ударов молнии.
Одностор. Молниеприемнок имеет защитную зону в виде конуса с ломаной образующей, основанием которого является окружность r=1,5h, h - высота молниеприемника.
1.rx=1,5(h-1,25hx) при 0<hx<=2/3h
2. rx=0,75(h-hx) при 2/3h<hx<=h
Защита от СЭ
1. отвод зарядов стат. Электричества заземлением
2. отвод с пом.ум-я эл. сопротивления контактирующих тел
3. снижение интенсивности возникновения зарядов СЭ
4. нейтрализация зарядов СЭ (индукционные, радиоизотопные, комбинированные ионизаторы воздуха)
5. отвод зарядов, накопившихся на людях (спецбраслет, пояс)
32. Что такое напряжение шага. От чего зависит его величина. Поведение человека
Напряжением шага (шаговым напряжением) называется напряжение между двумя точками цепи тока, находящихся одна от другой на расстоянии шага, на которых одновременно стоит человек
При контактировании токоведущих или токопроводящих частей электроустановок с землёй происходит растекание тока. Наибольшая величина потенциала грунта будет в местах соприкосновения. По мере удаления потенциал грунта будет уменьшаться. При движении человека м. появиться разность потенциалов 2-х точек грунта, где касается человек. Наиболее опасным расстоянием считается до 8м, теоретически до 20м.
,
где в - коэффициент шагового напряжения. Напряжение шага зависит от 1_напряжения в сети 2)от состояния грунта 3)от расстояния человека до места контактирования 4)от длины шага 5)от направления движения человека относительно места контактирования. Наиболее опасным считается движение по окружностям равного потенциала, менее опасным-по касательной. Возможны 2 случая воздействия шагового напряжения: 1) при движении человек осознает, что через него проходит ток, в этом случае необходимо сдвинуть ноги, осмотреться и удаляться от места контактирования прежним путем мылами шагами или прыжками. 2)человек упал под воздействием тока шагового напряжения, в этом случае запрещается вставать, необ-мо осмотреться и удаляться от него перекатами. Попытка встать м. привести к смертельному исходу.
33. Разница между звземдением и занулением эл. оборудования
Защитное заземление - это заземление металлических частей нормально не находящихся под напряжением электроустановки с целью обеспечения электробезопасности.
Зануление - это преднамеренное соединение частей ЭУ, нормально не находящихся напряжением, с глухозаземленной нейтралью генератора , трансформатора в сетях 3-х фазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока.
Защитному заземлению и занулению подлежат металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты.
При заземлении корпуса ток через тело человека при его прикосновении к корпусу будет тем меньше, сем меньше ток замыкания на землю и сопротивление цепи заземления и чем ближе человек стоит к заземлителю.
34. Классификация помещений по опасности поражения током
Классификация помещений на 3 класса: 1) без повышенной опасности 2) с повышенной опасностью, признаки: -наличие сырости(относительная влажность более 75%), -наличие высокой t'(более 35'), -наличие токопроводящей пыли, -токопроводящих полов, -возможность одновременного прикосновения с одной стороны к металлическим частям, коммуникациям, различным конструкциям, с другой к токопроводящим или токоведущим частям. 3) особо опасные: -относительная влажность близка или =100%, -наличие химически агрессивной или активной или органической среды, разрушающих изоляцию токоведущих частей, -одновременное наличие 2-х и более признаков 2-го класса.
35. Характеристика шума. Что такое «порог чувствительности» и «болевой порог» в оценке шкмов
Шум -- сочетание различных по частоте и силе звуков. С физиологической т.зр. шум рассматривается как звуковой процесс неблагоприятный для восприятия, мешающий разговорной речи и отрицательно влияющий на здоровье человека. Наиболее восприимчивы органы слуха с частотой 1000-3000Гц, все формулы введены в расчете на 1000Гц. Звук -- колебания частиц воздушной среды, которые воспринимаются органами слуха человека, в направлении их распространения. Слышимый шум-- 20 - 20000 Гц, ультразвуковой диапазон-- свыше 20 кГц, инфразвук --меньше 20Гц, устойчивый слышимый звук-- 1000 Гц - 3000 Гц. Вредное воздействие шума: сердечно-сосудистая система; неравная система; органы слуха (барабанная перепонка). Физические характеристики шума: интенсивность звука J, [Вт/м2]; звуковое давление Р,[Па]; частота f, [Гц]. Порог чувствительности или болевой порог- наименьшее значение силы звука и звукового давления, при котором звуки только начинают различаться или появляется боль в ушных раковинах. I0-порог чувст. При частоте 1000Гц соот. I0=10-12Вт/м2, Iр-,болевой порог, при I0=1014, 1000Гц.. В акустике измеряются не абсолютные значения I0 и Ip, а их относительные логарифмические величины, взятые по отношению к порогу слышимости - уровень звукового давления (интенсивности) : [дБ], где Р- звуковое давление в точке измерения [Па]; Р0- пороговое значение 210-5 [Па]
Частотный состав шума характеризует его спектр - сов-то входящих в него звуков различной частоты. Спектры шумов пред-ют октавных полосах частот. Октава - это интервал изменения частоты ровно в 2 раза.
Характеристики источников шума. В технической документации на машину д.б. указаны 2 характеристики: 1)уровни звуковой мощности а октавных полосах частот (Lp), указывается обычно для массового или кр.сер.пр-ва. 2) хар-ки направленности излучения шума машины. Кроме этих хар-к м. применяться дополнительные: 1) октавные уровни звукового давления на определенном расстоянии от источника 2) октавные уровни звукового давления на расстоянии 1 м от контура машины.
36. Источники возникновения инфразвука и ультразвука? Их влияние на организм человека, мероприятия по защите
Инфразвук. -- колебание звуковой волны > 20 Гц. Многие внутренние органы обладают собственной частотой колебания менее 16 Гц. Источники инфразвука: оборудование, которое работает с частотой циклов менее 20 в секунду, все медленно вращающиеся детали и механизмы, неисправные вентиляторы, морская волна. Вредное воздействие: действует на центр. нервную систему (страх, тревога, покачивание, т.д.). Особенности: малое поглощение эн., значит распространяется на значительные расстояния. Диапазон инфразвуковых колебаний совпадает с внутренней частотой отдельных органов человека (6-8 Гц), следовательно, из-за резонанса могут возникнуть тяжелые последствия. Увеличение звукового давления до 150 дБА приводит к изменению пищеварительных функций и сердечному ритму. Возможна потеря слуха и зрения. Защитные мероприятия: Снижение ин. звука в источнике возникновения., средства индивидуальной защиты., поглощение.
Ультразвук. Звуки с частотой выше 20 кГц, не слышны. Используется в оптике (для обезжиривания, ...). Низкочастотные ультразвуковые колебания распространяются воздушным и контактным путем. Высокочастотные - контактным путем. Ультразвук быстро затухает в различных средах. При воздействии на жидкость наблюдается явление кавитации (жидкость рвется), появляются микроразрывы в виде пузырьков, при разрыве которых давление м. достигать 10 и 100 атмосфер. «-«: человек, систематически подвергающийся облучению ультразвука теряет способность сосредоточиться, у него нарушается равновесие, появляется слабость, усталость, головные боли, боли в ушах, расстройство сна, снижение пульса. При средних и больших интенсивностях воздействие УЗ м. оказаться паралитическим и даже смертельным. Нормирование УЗ устанавливает ГОСТ 12,1,001-83. Меры защиты: Использование блокировок, звукоизоляция (экранирование), дистанционное управление, противошумы.
37. Влияние вибрации на организм человека. Вибрационная болезнь
Вибрация -- механические колебания упругих тел или колебательные движения механических систем. Характеризуется 4-мя параметрами: амплитудой (а, мм;м), колебательная скорость V(v/c, Vv/c), колебательное ускорение W (мм/с2,, м/с2), частотой f, Гц. Наиболее распространенные 1 и 2. LV=20 lg VC/V0 [дБ], где V0 - пороговое значение колебательной скорости (V0 = 510-8 м/с). По способу передачи вибрации на человека: - общая; - локальная (ноги или руки). По источнику возникновения: - транспортная; - технологическая; - транспортно-технологическая. Систематическое воздействие общих вибраций, хар-ся высоким уровнем виброскорости, может приводить к виброболезни, кот. хар-ся нарушением физиологических функций организма, связанными с поражением ЦНС.
Они вызывают: головные боли, головокружение, расстройство сна, снижение работоспособности. Нарушение сердечной деятельности, сердечно-сосудистой системы.
Наиболее опасны для организма вертикальные вибрации.
Местные вибрации
Ручные машины, вибрация которых имеет максимальные уровни энергии в низких частотах (до 35 Гц), вызывают вибрационную патологию с преимущественным поражением нервно-мышечного и опорно-двигательного аппарата.
Болезнь возникает через 8-10 лет (формовщики, бурильщики).
При работе с ручным инструментом в высокочастотной области (более 125 Гц) возникают сосудистые расстройства с наклонностью к спазму периферических сосудов. Болезнь возникает через 65 лет (шлифовщики).
Нормирование вибраций осуществляется в соот. с ГОСТ 12.1.012-90.
38. Уменьшение шума и вибрации в самом источнике его возникновения
Уменьшение шума и вибрации в самом источнике его возникновения является наиболее рациональным, для этого нужно:
· Заменять ударные механизмы и процессы на безударные
· Заменять штамповку прессованием
· Заменять обрубку резкой, клёпку - сваркой
· Заменять возвратно-поступательное движение детали равномерным вращательным движением
· Прямозубые шестерни косозубыми и шевронными
· Увеличить класс точности обработки ЗК
· Использовать пластмассы
· Применять смазывание и использовать прокладочные материалы
39. Мероприятия по защите от шума и вибрации
I группа - Строительно-планировочная
II группа - Конструктивная
III группа - Снижение шума в источнике его возникновения
IV группа - Организационные мероприятия
I группа. Строительно-планировочная
Использование определенных строительных материалов связано с этом проектирования. В ИВЦ -- акустическая обработка помещения (облицовка пористыми акустическими панелями). Для защиты окружающей среды от шума используются лесные насаждения. Снижается уровень звука от 5-40 дБА.
II группа. Конструктивная
Установка звукоизолирующих преград (экранов). Реализация метода звукоизоляции (отражение энергии звуковой волны). Используются материалы с гладкой поверхностью (стекло, пластик, металл).
Акустическая обработка помещения (звукопоглощение).
Можно снизить уровень звука до 45 дБА.
Использование объемных звукопоглотителей (звукоизолятор + звукопоглотитель). Устанавливается над значительными источниками звука.
Можно снизить уровень звука до 30-50 дБА.
III группа. Снижение шума в источнике его возникновения
Самый эффективный метод, возможен на этапе проектирования. Используются композитные материалы 2-х слойные. Снижение: 20-60 дБА.
IV группа. Организационные мероприятия
Определение режима труда и отдыха персонала.
Планирование раб. времени.
Планирование работы значительных источников шума в разных источниках.
Снижение: 5-10 дБА.
Если уровень шума не снижается в пределах нормы, используются индивидуальные средства защиты (наушники, шлемофоны).
Приборы контроля: - шумомеры; - виброаккустический комплекс -- RFT, ВШВ.
Мероприятия по борьбе с вибрацией
3 направления:
1) организационные (организация раб оты и СИЗ)
2) инженерно-технические мероприятия (уменьшение вибрации в самом источнике их возникновения.
3) лечебно-профилактические
Вибробезопасность машин (механизмов) достигается :виброизоляцией их по ГОСТ 12.4.046-78 за счет установки на фундаменты, виброизолированные от пола специальные амортизаторы (прокладки из войлока,резины, пружины т.п; балансировкой вращающихся частей; применением виброизолирующих мастик и др.
Организационно-технические меры включают: проведение проверок вибрации не реже 1 раза в год при общей вибрации и двух раз в год при локальной вибрации, а также после ремонта машин; и при начале их эксплуатации; исключение контакта работающих с вибрирующими поверхностями за пределами рабочего места или зоны (ограждения, знаки, надписи), введение определенного режима работ, недопущение к работе лиц, моложе 18 лет и не прошедших медосмотр, проведение повторного ежегодного медосмотра.
40. Влияние шума на организм человека. Нормирования шума
Шум, вибрация и ультразвук представляют собой колебания материальных частиц газа, жидкости или твердого тела. Производственные процессы часто сопровождаются значительным шумом, вибрацией и сотрясениями, которые отрицательно влияют на здоровье и могут вызвать профессиональные заболевания.
Слуховой аппарат человека обладает неодинаковой чувствительностью к звукам различной частоты, а именно - наибольшей чувствительностью на средних и высоких частотах (800-4000 Гц) и наименьшей - на низких (20-100 Гц). Поэтому для физиологической оценки шума используют кривые равной громкости (рис.30), полученные по результатам изучения свойств органа слуха оценивать звуки различной частоты по субъективному ощущению громкости, т.е. судить о том, какой из них сильнее или слабее.
Уровни громкости измеряются в фонах. На частоте 1000 Гц уровни громкости приняты равными уровням звукового давления. По характеру спектра шума подразделяются на :
широкополостные : спектр больше одной октавы (октава, когда f(н) отличается от f(к) в 2 раза).
тональные - слышится один тон или несколько.
По времени шумы подразделяются на постоянные (уровень за 8 час. раб. день изменяется не более 5 дБ).
Непостоянные (уровень меняется за 8 час. раб.дня не менее 5 дБ).
Непостоянные делятся : колеблющиеся во времени - постоянно изменяются по времени; прерывистые - резко прерываются с интервалом 1 с. и более; импульсные - сигналы с длительностью менее 1 с.
Всякое возрастание шума над порогом слышимости увеличивает мускульное напряжение, значит повышает расход мышечной энергии.
Под влиянием шума притупляется острота зрения, изменяются ритмы дыхания и сердечной деятельности, наступает понижение трудоспособности, ослабленность внимания. Кроме того, шум вызывает повышенные раздражимость и нервозность.
Тональный (преобладает определенный шум тон) и импульсный (прерывистый) шумы более вредны для здоровья человека, чем широкополосный шум. Длительность воздействия шума приводит к глухоте, особенно с превышением уровня 85-90 дБ и в первую очередь снижается чувствительность на высоких частотах.
Нормирование шума. Осущ-ся в соот. С ГОСТ 12,1,003-83. Учитываются: 1)вид работы 2) хар-ка шума (монотонный, импульсный, постоянный или непостоянный), 3) продолжительность воздействия шума 4) источник шума. В соот. С ГОСт нормирование м. осущ-ся 2 методами: 1) по спектральному составу, т.е. нормирование по октавным составляющим. Для постоянных шумов. 2) нормирование эквивалентного шума - в основном для непостоянных шумов. По 2 методу дополнительный уровень звука на раб. местах устанавливается по общему уровню звука, определенного по шкале А шумометра, т.е. на частоте 1000 Гц.
41. Характеристики источников шума. Нормирование шума
Характеристики источников шума. В технической документации на машину д.б. указаны 2 характеристики:
1)уровни звуковой мощности а октавных полосах частот (Lp), указывается обычно для массового или кр.сер.пр-ва.
2) хар-ки направленности излучения шума машины. Кроме этих хар-к м. применяться дополнительные: 1) октавные
уровни звукового давления на определенном расстоянии от источника 2) октавные уровни звукового давления на
расстоянии 1 м от контура машины.
Нормирование шума. Осущ-ся в соот. С ГОСТ 12,1,003-83. Учитываются: 1)вид работы 2) хар-ка шума (монотонный, импульсный, постоянный или непостоянный), 3) продолжительность воздействия шума 4) источник шума. В соот. С ГОСт нормирование м. осущ-ся 2 методами: 1) по спектральному составу, т.е. нормирование по октавным составляющим. Для постоянных шумов. 2) нормирование эквивалентного шума - в основном для непостоянных шумов. По 2 методу дополнительный уровень звука на раб. местах устанавливается по общему уровню звука, определенного по шкале А шумометра, т.е. на частоте 1000 Гц.
42. Применяемые средства тушения пожаров
При любом пожаре тушение должно быть направлено на устранение причин его возникновения и создание условий, при которых продолжение горения будет невозможно.
Тушение пожара может быть осуществлено:
а) сильным охлаждением горящих материалов с помощью веществ, обладающих большой теплоемкостью;
б) изоляцией горящих материалов от атмосферного воздуха;
в) снижением содержания кислорода в воздухе, поступающем к очагу горения;
г) специальными химическими средствами.
Для тушения пожара могут быть использованы: вода, водяной пар, химическая и воздушно-механическая пена, негорючие газы, твердые огнегасительные порошки, специальные химические вещества и составы.
Тушение водой
Вода является одним из наиболее доступных, дешевых и широко распространенных огнегасительных средств, пригодных для тушения как малых, так и больших пожаров. Огнегасительные свойства воды заключаются в том, что она имеет большую теплоемкость, способна отнимать от горящих веществ значительное количество тепла, снижая температуру очага горения до такой, при которой горение становится невозможно. Воду нельзя применять:
· для тушения веществ, вступающих с ней в реакцию, например, металлов калия и натрия. Выделяющийся водород в смеси с воздухом образует взрывоопасную смесь.
· при тушении электрических установок, находящихся под напряжением, а также при тушении карбида кальция из-за возможности взрыва выделяющегося при этом ацетилена.
Для пожаротушения вода применяется в виде компактных струй, в распыленном состоянии, тонкодисперсном состоянии, а также в виде воздушно-механической пены. Применять компактные струи при тушении горящих легковоспламеняющихся жидкостей нельзя, так как при этом происходит растекание жидкости, всплывающей на поверхность воды, что способствует увеличению зоны горения.
Если воду применять в распыленном состоянии, в виде мелкодисперсных частиц, когда большинство капель распыленной воды имеет размер менее 0,1 мм, то при этом увеличивается поверхность соприкосновения воды с горящими веществами, что способствует более интенсивному отбору водой тепла от очага горения и образованию пара, способствующего тушению. Распыленная струя воды при пожарах в помещениях может быть применена для снижения температуры и осаждения дыма. Вода в распыленном состоянии может применяться для тушения горящих нефтепродуктов с температурой-вспышки свыше 120° С.
Добавление к воде 0,2--2,0% (по массе) пенообразователей способствует понижению поверхностного натяжения, в результате чего улучшаются ее огнегасительные свойства, в 2--2,5 раза уменьшается расход воды, сокращается время тушения.
Тушение паром
Огнегасительное действие пара заключается в вытеснении воздуха из помещения. Огнегасительная способность пара обеспечивает эффективность только при больших его концентрациях на единицу объема.
Принцип тушения пожара паром заключается в том, что помещение, в котором возник пожар, быстро заполняют паром (в течение 5--10 мин). При этом температуру в помещении следует доводить не менее чем до +85° С, что вызовет понижение содержания кислорода в воздухе на 31% (уменьшит содержание кислорода в воздухе до 15--16%), и горение прекратится.
Тушение пеной
Пеной называется дисперсная система, в которой газ заключен в ячейки, отделенные одна от другой жидкостными стенками.
Пена нашла широкое применение для тушения пожара твердых веществ и особенно легковоспламеняющихся жидкостей, которые имеют удельный вес менее 1,0 и не растворяются в воде.
Основным огнегасительным свойством пены является изоляция зоны горения путем образования на поверхности горящей жидкости
паронепроницаемого слоя определенной структуры и стойкости. Химическая пена имеет широкое применение в ручных огнетушителях.
Пенные огнетушители получили большое распространение благодаря следующим достоинствам:
а) наличию заряда огнегасительного вещества, всегда готового к действию; б) простоты, легкости и быстроты приведения огнетушителя в действие силами одного человека;
в) выбрасыванию заряда огнегасительной пены в виде струи, что беспечивает эффективность ее использования.
Тушение углекислотой (двуокисью углерода) заключается в том, что она, попадая в воздух очага горения, снижает в нем содержание кислорода до предела, при котором горение прекращается.
Двуокись углерода применяется для быстрого тушения пожара (в течение 2--10 с), особенно при тушении небольших поверхностей горючих жидкостей, стендов для испытания двигателей внутреннего сгорания, сушильных печей, электрических двигателей и установок, находящихся под напряжением (двуокись углерода не электропроводна). Применение двуокиси углерода исключается для тушения веществ, которые горят без доступа воздуха. Для тушения этих веществ применяют азот или аргон.
Тушение специальными химическими веществами
Горящие металлы трудно поддаются тушению. Это особенно относится к калию, натрию, литию, цирконию, урану, торию, титану и магнию. Двуокись углерода ускоряет сгорание магния. Тушение горящего металла водой может вызвать взрыв и разлетание горящих частиц металла на большие расстояния.
Песок (даже сухой) может реагировать с горящим металлом и усиливать горение. При значительных размерах пожара происходит реакция разложения песка с образованием свободного кремния и кремнистых соединений; последние реагируют с влагой, в результате чего образуются горючие и ядовитые газы. Обычно для тушения горящего металла применяют сухие огнегасительные порошки. Для тушения горящих металлов применяют хлористый и двууглекислый натрий,
порошковые графит, углекислый магний, окись магния или их смеси, сжиженные инертные газы.
Для тушения горящих магниевых сплавов используют сухие молотые флюсы, употребляемые при плавке магниевых сплавов; образующаяся на поверхности металла жидкая пленка изолирует его от воздуха.
В порошковых применяются твердые огнегасительные вещества (хлориды щелочных и щелочноземельных металлов), углекислая и двууглекислая сода и др. Их действие заключается в изоляции очага горения и выделении при нагреве углекислого газа.
43. Применяемые способы при тушении пожаров. Взрывоопасность
При любом пожаре тушение должно быть направлено на устранение причин его возникновения и создание условий, при которых продолжение горения будет невозможно.
Тушение пожара может быть осуществлено:
а) сильным охлаждением горящих материалов с помощью веществ, обладающих большой теплоемкостью;
б) изоляцией горящих материалов от атмосферного воздуха;
в) снижением содержания кислорода в воздухе, поступающем к очагу горения;
г) специальными химическими средствами.
Для тушения пожара могут быть использованы: вода, водяной пар, химическая и воздушно-механическая пена, негорючие газы, твердые огнегасительные порошки, специальные химические вещества и составы.
44. Огнетушащие свойства воды. Применение воды при тушении пожара
Вода является одним из наиболее доступных, дешевых и широко распространенных огнегасительных средств, пригодных для тушения как малых, так и больших пожаров. Огнегасительные свойства воды заключаются в том, что она имеет большую теплоемкость, способна отнимать от горящих веществ значительное количество тепла, снижая температуру очага горения до такой, при которой горение становится невозможно. Воду нельзя применять:
· для тушения веществ, вступающих с ней в реакцию, например, металлов калия и натрия. Выделяющийся водород в смеси с воздухом образует взрывоопасную смесь.
· при тушении электрических установок, находящихся под напряжением, а также при тушении карбида кальция из-за возможности взрыва выделяющегося при этом ацетилена.
Для пожаротушения вода применяется в виде компактных струй, в распыленном состоянии, тонкодисперсном состоянии, а также в виде воздушно-механической пены. Применять компактные струи при тушении горящих легковоспламеняющихся жидкостей нельзя, так как при этом происходит растекание жидкости, всплывающей на поверхность воды, что способствует увеличению зоны горения.
Если воду применять в распыленном состоянии, в виде мелкодисперсных частиц, когда большинство капель распыленной воды имеет размер менее 0,1 мм, то при этом увеличивается поверхность соприкосновения воды с горящими веществами, что способствует более интенсивному отбору водой тепла от очага горения и образованию пара, способствующего тушению. Распыленная струя воды при пожарах в помещениях может быть применена для снижения температуры и осаждения дыма. Вода в распыленном состоянии может применяться для тушения горящих нефтепродуктов с температурой-вспышки свыше 120° С.
Добавление к воде 0,2--2,0% (по массе) пенообразователей способствует понижению поверхностного натяжения, в результате чего улучшаются ее огнегасительные свойства, в 2--2,5 раза уменьшается расход воды, сокращается время тушения.
45. Пожароопасные свойства материалов и веществ. Первичные средства пожаротушения
Основными показателями пожарной опасности, определяющими критические условия возникновения и развития процесса горения, являются температура самовоспламенения и концентрационные пределы воспламенения.
Температура самовоспламенения характеризует минимальную температуру вещества или материала, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения.
Минимальная концентрация горючих газов и паров в воздухе, при которой они способны загораться и распространять пламя, называется нижним концентрационным пределом воспламенения; максимальная концентрация горючих газов и паров, при которой еще возможно распространение пламени, называется верхним концентрационным пределом воспламенения. Область составов и смесей горючих газов и паров с воздухом, лежащих между нижним и верхним пределами воспламенения, называется областью воспламенения.
Концентрационные пределы воспламенения не постоянны и зависят от ряда факторов. Наибольшее влияние на пределы воспламенения оказывают мощность источника воспламенения, примесь инертных газов и паров, температура и давление горючей смеси.
Изменение пределов воспламенения с повышением температуры может быть оценено по следующему правилу: при повышении температуры на каждые 100° величины нижних пределов воспламенения уменьшаются на 8--10%, а верхних пределов воспламенения увеличиваются на 12--15%.
Концентрация насыщенных паров жидкостей находится в определенной взаимосвязи с ее температурой.
Используя это свойство, можно концентрационные пределы воспламенения насыщенных паров выразить через температуру жидкости, при которой они образуются.
Способностью образовывать с воздухом воспламеняющиеся с большой скоростью (взрывоопасные) смеси обладают также взвешенные в воздухе пыли многих твердых горючих веществ. Та минимальная концентрация пыли в воздухе, при которой происходит ее загорание, называется нижним пределом воспламенения пыли. Поскольку достижение очень больших концентраций пыли во взвешенном состоянии практически нереально, термин «верхний предел воспламенения» к пылям не применяется.
К показателям пожарной опасности, характеризующим критические условия образования достаточного для горения газообразных горючих продуктов испарения или разложения конденсированных веществ и материалов, относятся температуры вспышки и воспламенения, а также температурные пределы воспламенения.
Температурой вспышки называется самая низкая (в условиях специальных испытаний) температура горючего вещества, при которой над поверхностью образуются пары и газы, способные вспыхивать в воздухе от источника зажигания, но скорость их образования еще недостаточна для последующего горения. Пользуясь этой характеристикой, все горючие жидкости по пожарной опасности можно разделить на два класса:
1) жидкости с температурой вспышки до 61° С (бензин, этиловый спирт, ацетон, серный эфир, нитроэмали и т. д.), они называются легковоспламеняющимися жидкостями (ЛВЖ);
2) жидкости с температурой вспышки выше 61° С (масло, мазут, формалин и др.), они называются горючими жидкостями (ГЖ).
Температура воспламенения -- температура горючего вещества, при которой оно выделяет горючие пары и газы с такой скоростью, что после воспламенения их от источника зажигания возникает устойчивое горение. Температурные пределы воспламенения -- температуры, при которых насыщенные пары вещества образуют в данной окислительной среде концентрации, равные соответственно нижнему и верхнему концентрационным пределам воспламенения жидкостей.
Пожароопасность веществ характеризуется линейной (выраженной в см/с) и массовой (г/с) скоростями горения (распространения пламени) и выгорания (г/м2-с или см/с), а также предельным содержанием кислорода, при котором еще возможно горение. Для обычных горючих веществ (углеводородов и их производных) это предельное содержание кислорода составляет 12--14%, для веществ с высоким значением верхнего предела воспламенения (водород, сероуглерод, окись этилена и др.) предельное содержание кислорода составляет 5% и ниже.
Помимо перечисленных параметров для оценки пожарной опасности важно знать степень горючести (сгораемости) веществ. В зависимости от этой характеристики вещества и материалы делят на:
· горючие (сгораемые),
· трудногорючие (трудносгораемые)
· негорючие (несгораемые).
К горючим относятся такие вещества и материалы, которые при воспламенении посторонним источником продолжают гореть и после его удаления. К трудногорючим относят такие вещества, которые не способны распространять пламя и горят лишь в месте воздействия импульса; негорючими являются вещества и материалы, не воспламеняющиеся даже при воздействии достаточно мощных импульсов.
46. Автоматические огнетушащие установки. Причины пожаров на производстве
Применяют в помещениях в повышенной пожароопасностью.
1) спилинкерные: выходное отверстие сплинклерной головки закрыто пластинками, кот. при воздействии температуры расплавляются и вода из системы под давлением выходит из отверстия головки и орошает конструкции помещения или оборудования в зоне действия спринклерной головки. Одна головка орошает площадь 10-12 м.
недостатки: инертность, необходимо время. Чтобы произошло расплавление пластины, нельзя механически включить
достоинства: безотказно
Устройство: 1- подающее устройство, 2- спринклерные головки, 3- двойной клапан, 4- трубопровод.
Применяется в помещениях, где недостаточный контроль обслуживающего персонала
2) дренчерные: системный трубопровод, на кот. располагаются спец. головки (дренчеры) с открытым выходным отверстием. Маховичок, вентиль, датчик обнаружения пожара (открывает вентиль), дренчерная головка.
+: можно включить вручную, быстро включается и открывает все головки.
Причины пожаров на производстве: 1) нарушение техники безопасности, 2) неисправность электрооборудования 3) плохая подготовка оборудования к ремонту 4) самовозгорание материалов 5) искры при электро и газо сварках 6) ремонт оборудования на ходу.
47. Как утроена вытяжная вентиляция? Расчет требуемого воздухообмена
Вытяжная система предназначена для удаления воздуха из помещения. При этом в нем создается пониженное давление и воздух соседних помещений или наружный воздух поступает в данное помещение. Вытяжную систему целесообразно применять в том случае, если вредные выделения данного помещения не должны распространяться на соседние, например, для вредных цехов, химических и биологических лабораторий.
Установки вытяжной вентиляции (б) состоят из вытяжных отверстий или насадков 8, через которые воздух удаляется из помещения; побудителя движения 5; воздуховодов 2; устройств для очистки воздуха от пыли или газов 9, устанавливаемых для защиты атмосферы, и устройства для выброса воздуха 10, которое располагается На 1.-1,5 м выше конька крыши. Чистый воздух поступает в производственное помещение через неплотности в ограждающих конструкциях, что является недостатком данной системы вентиляции, так к неорганизованный приток холодного воздуха (сквозняки) может вызвать простудные заболевания.
При организации воздухообмена в помещениях необходимо учитывать и физические свойства вредных паров и газов и в первую очередь их плотность. Если плотность газов ниже плотности воздуха, то удаление загрязненного воздуха происходит в верхней зоне, а подача свежего -- непосредственно в рабочую зону. При выделении газов с плотностью, большей плотности воздуха, из нижней части помещения удаляется 60...70 % и из верхней части 30...40 % загрязненного воздуха. В помещениях со значительными выделениями влаги вытяжка влажного воздуха осуществляется в верхней зоне, а подача свежего в количестве 60 % -- в рабочую зону и 40 % -- в верхнюю зону.
, где L-необходимый воздухообмен, W-кол-во ВВ(лимитирующее ВВ-явл.то, отношение кол-ва которого ПДК max), qуд и qпр -концентрации данного ВВ, соот-но в удаляемом и приточном воздухе, n- коэф., учитывающий схему расположения установки. При затруднении определения qуд и qпр, qуд=ПДК, qпр=0,3ПДК.
2) если требуется избавиться от избытков теплоты, то , где Qизб - избытки явной теплоты, С - теплоёмкость, tуд, tпр - t' удаляемого и приточного воздуха, пр - плотность приточного воздуха
Нв=Нвс+Нд+Ннагн, (всасывания, динамики, нагнетательная), Нд=*V2/2q, - объёмный вес воздуха, V - скорость воздуха в вентиляторе, q - ускорение силы тяжести = 9,8м/с2
Нвс(наг)= Ri*li+zj, Ri - сопротивление перемещения воздуха i-го участка на 1 погонный м, li - длина i-го участка в м, z- местное сопротивление
3)подбирается вентилятор по L, Hm и max К,П,Д, 4) определяем мощность на валу вентилятора Nв=L*Hв/3600*102*в, где в-КПД вентилятора 5)определяем установочную мощность на валу электродвигателя Ny=K3*Nв/n, где К3 - коэф. Запаса, n - КПД передачи.
Подобные документы
Индивидуальные средства защиты органов слуха от вибрации и шума. Классификация помещений по характеру окружающей среды и опасности поражения электрическим током. Правила безопасности обслуживания электрических установок в производственных помещениях.
реферат [380,3 K], добавлен 05.05.2015Государственный надзор и общественный контроль за охраной труда. Основные факторы производственной безопасности. Организация службы охраны труда и природы на предприятии. Обучение безопасности труда и виды инструктажа. Травматизм и методы его изучения.
курсовая работа [46,5 K], добавлен 10.08.2011Виды поражений электрическим током, электрическое сопротивление тела человека, основные факторы, влияющие на исход поражения током. Виды защиты от опасности поражения электрическим током и принцип их действия, мероприятия по электробезопасности.
контрольная работа [37,6 K], добавлен 01.09.2009Виды поражения электрическим током. Основные факторы, влияющие на исход поражения током. Основные меры защиты от поражения. Классификация помещений по опасности поражения током. Защитное заземление. Зануление. Защитные средства. Первая помощь человеку.
доклад [8,7 K], добавлен 09.04.2005Гигиеническое нормирование шума, вибрации, инфра-, ультразвук. Озоновый слой: местонахождение, защитные функции, динамика. Биологические, химические, физические загрязнения водоема. Защита от поражения электрическим током. Средства индивидуальной защиты.
контрольная работа [42,7 K], добавлен 07.08.2010Виды поражения электрическим током. Задачи и функции защитного заземления и зануления. Первая помощь человеку, пораженному электрическим током, виды защитных средств. Воздействие на организм человека вредных веществ, содержащихся в воздухе рабочей зоны.
контрольная работа [30,8 K], добавлен 28.02.2011Виды инструктажа персонала. Тепловые излучения, их воздействие на человека. Меры защиты от тепловых излучений. Классификация шумов. Классификация производственных помещений по опасности поражения электрическим током. Условия возникновения горения.
контрольная работа [28,9 K], добавлен 31.08.2012Структура службы охраны труда и численность ее работников. Обязанности по обеспечению безопасных условий труда. Обеспечение безопасности производственного оборудования. Средства индивидуальной защиты. Обучение безопасности труда и виды инструктажа.
реферат [17,8 K], добавлен 14.12.2011Правовые основы обеспечения охраны труда. Документы, регламентирующие безопасность дорожного движения. Государственный контроль состояния охраны труда. Инструктаж и обучение технике безопасности. Организация безопасного движения транспортных средств.
контрольная работа [33,2 K], добавлен 07.02.2011Государственный надзор и общественный контроль за охраной труда. Основные факторы производственной безопасности. Организация службы охраны труда и природы на предприятии. Обучение безопасности труда и виды инструктажа. Травматизм и методы его изучения.
курсовая работа [45,7 K], добавлен 17.03.2011