Производственная безопасность

Предмет, содержание и задачи производственной безопасности. Опасность как фактор производственной среды, основные положения теории риска. Категорирование и классификация производственных объектов как мера оценки опасности, производственный травматизм.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид лекция
Язык русский
Дата добавления 03.11.2009
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рис. 1. Упрощённая электрическая схема замещения сопротивления тела человека

Ra - активная (омическая) составляющая; Rс - ёмкостная составляющая

Наличие ёмкостной составляющей обусловлено тем, что между электродом, касающимся тела человека (корпус электрооборудования, провода электросети и т.п.), и землёй (пол, площадка для обслуживания оборудования и т.п.), на которой стоит человек, расположен роговой слой кожного покрова - практически диэлектрик, что образует конденсаторную систему (электрическую ёмкость). Если через человека протекает постоянный ток, то он воздействует только на активную составляющую общего сопротивления (Ra), так как электрическая ёмкость для постоянного тока является разрывом цепи. Переменный ток протекает и через активную и через ёмкостную составляющие общего сопротивления человека (Ra и Rс), что, при прочих равных условиях, приводит к бьльшему отрицательному воздействию на организм.

С повышением частоты переменного тока (относительно 50 Гц) его общее негативное действие снижается, сравниваясь на частоте ~ 1000 Гц с действием постоянного тока. На частоте ~ 50 Гц и выше переменный ток общего действия на человека практически не оказывает. Это явление можно объяснить тем, что наибольшая плотность зарядов (ионов, электронов) в плоскости поперечного сечения проводника при протекании переменного тока высокой частоты наблюдается на периферии этого сечения; если в качестве проводника рассматривать человека, то на периферии поперечного сечения туловища и конечностей мы увидим кожный покров, обладающий сопротивлением, близким к таковому у диэлектриков. Местное действие переменного тока высокой частоты при этом сохраняется.

Это положение справедливо лишь до напряжений 250…300 В. При более высоких напряжениях постоянный ток более опасен, чем переменный с частотой 50 Гц.

Путь тока через тело человека играет существенную роль в исходе поражения, т.к. электрический ток может пройти через жизненно важные органы: сердце, лёгкие, головной мозг и др. Влияние пути тока на исход поражения определяется также величиной сопротивления кожного покрова человека на различных участках его тела.

Количество возможных путей тока через тело человека, называемых петлями тока, достаточно много. Чаще всего встречаются ток протекает по петлям: рука-рука; рука-ноги; нога-нога; голова-руки; голова-ноги. Наиболее опасными являются петли: голова-руки и голова-ноги, но они возникают относительно редко.

Условия внешней среды и факторы трудового процесса оказывают существенное влияние на величину сопротивления кожного покрова и в целом тела человека. Так, например, повышенная температура (~ 30 °С и выше) и относительная влажность воздуха (~ 70 % и выше) способствуют повышенному потоотделению, а, следовательно, резкому уменьшению активного сопротивления тела человека. Интенсивная физическая работа приводит к аналогичному результату.

13.2 Анализ условий поражения человека электрическим током в трехфазных сетях переменного тока

Поражение человека электрическим током возможно лишь при замыкании электрической цепи через его тело, т.е. при прикосновении не менее чем к двум точкам электрической цепи, между которыми существует разность потенциалов (напряжение).

Напряжение между двумя точками цепи тока, к которым одновременно прикасается человек, называется напряжением прикосновения.

Опасность такого прикосновения определяется силой тока, проходящего через тело человека, которая зависит от следующих факторов:

- схемы замыкания цепи тока через тело человека;

- напряжения электрической сети;

- схемы сети, режима работы её нейтрали (заземлена или изолирована);

- сопротивления изоляции токоведущих частей относительно земли;

- величины ёмкости токоведущих частей относительно земли.

13.2.1 Характеристика основных систем «электроустановка - трёхфазная электрическая сеть переменного тока», использующихся в производственных условиях

Электроустановка - совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования её в другие виды энергии.

Наибольшее распространение на производстве получили системы, в которых в качестве источника энергопитания используются трёхфазные электрические сети переменного тока (далее электросети) с изолированной и заземлённой нейтралью. В соответствии с требованиями, изложенными в «Правилах устройства электроустановок» (ПУЭ), для таких систем напряжением до 1 кВ приняты следующие обозначения:

система IT - система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены (рис. 2а);

система TN - система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников (рис. 2б,в,г);

система TN-С - система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении (рис. 2б);

система TN-S - система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении (рис. 2в);

система TN-C-S - система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания (рис. 2г);

система ТТ - система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземлённой нейтрали источника (рис. 2д).

Первая буква условного обозначения системы характеризует состояние нейтрали источника питания относительно земли:

Т - заземленная нейтраль;

I - изолированная нейтраль.

Вторая буква условного обозначения системы характеризует состояние открытых проводящих частей относительно земли:

– Т - открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;

– N - открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.

Последующие (только после N) буквы характеризуют совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:

– S - нулевой рабочий (N) и нулевой защитный (РЕ) проводники разделены;

– С - функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN-проводник).

Условные обозначения на схемах (рис. 2):

– N - - нулевой рабочий (нейтральный) проводник;

– РЕ - - защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов);

– PEN - - совмещенный нулевой защитный и нулевой рабочий проводники.

Глухозаземлённая нейтраль источника энергопитания - нейтраль трансформатора или генератора, присоединённая непосредственно к заземляющему устройству.

Изолированная нейтраль источника энергопитания - нейтраль трансформатора или генератора, неприсоединённая к заземляющему устройству или присоединённая к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств.

а) б)

в) г)

д)

Рис. 2. Трёхфазные электрические системы переменного тока с изолированной и заземлённой нейтралью энергоисточника напряжением до 1 кВ

а) - система IT; б) - система TN-С; в) - система TN-S; г) - система TN- С- S; д) - варианты системы TT.

1 - заземлитель нейтрали энергоисточника; 1а - сопротивление заземления нейтрали источника питания (если имеется, например, через приборы или устройства, имеющие большое сопротивление); 2 - открытые проводящие части электроустановки; 3 - заземлитель открытых проводящих частей электроустановки

13.2.2 Основные схемы включения человека в электрическую цепь

Трёхфазная трёхпроводная электрическая сеть переменного тока с изолированной нейтралью (в системе IT).

Двухфазное прикосновение к токоведущим частям (рис. 3).

Рис. 3. Двухфазное (двухполюсное) прикосновение к токоведущим частям в системе IT

Uф - фазное напряжение; Ih - сила тока, протекающего через человека;

Rh - сопротивление человека; L1, L2, L3 - фазные проводники.

Сила тока (Ih, А), протекающего через человека, определяется по формуле

, (16)

где Uл - линейное напряжение, В;

Uф - фазное напряжение, В;

Rh - сопротивление человека, Ом.

Например, в электросети с линейным напряжением 380 В (Uф = 220 В) при сопротивлении тела человека 1000 Ом сила тока, протекающего через человека, составляет:

.

Эта сила тока смертельно опасна для человека.

При двухфазном прикосновении ток, проходящий через человека, практически не зависит от режима работы нейтрали. Опасность прикосновения не уменьшится и в том случае, если человек будет надёжно изолирован от земли.

Однофазное прикосновение (рис.4.) происходит во много раз чаще, чем двухфазное, но оно менее опасно, поскольку напряжение, под которым оказывается человек, не превышает фазного, т.е. меньше линейного в 1,73 раза и, кроме того, ток, протекающий через человека, возвращается к источнику (электросети) через изоляцию проводов, которая в исправном состоянии обладает большим сопротивлением.

Рис.4. Однофазное (однополюсное) прикосновение к токоведущим частям в системе IT

r1, r2, r3 - сопротивление изоляции проводов электросети; с1, с2, с3 - ёмкость проводов электросети

Сила тока (Ih, А), протекающего через человека, для этого случая определяется по формуле

(17)

где Rп - переходное сопротивление, Ом (сопротивление пола, на котором стоит человек и обуви); Z - сопротивление изоляции фазного провода относительно земли, Ом (активная и емкостная составляющие).

В наиболее неблагоприятной ситуации, когда человек имеет токопроводящую обувь и стоит на токопроводящем полу (Rп ~ 0), сила тока, протекающего через тело, определяется по формуле

если Uф = 220 В, Rh = 1 кОм, Z = 90 кОм, то Ih = 220/(1000 + (90000 / 3)) = 0,007 А (7 мА).

Трёхфазная четырёхпроводная электрическая сеть переменного тока с заземлённойнной нейтралью (в системе TN).

Однофазное прикосновение к токоведущим частям.

Рис.5. Однофазное (однополюсное) прикосновение к токоведущим частям в системе TN

R0 - сопротивление заземления нейтрали электросети

В четырёхпроводной электрической сети переменного тока с глухозаземлённой нейтралью (система TN) ток, проходящий через человека, возвращается к источнику (электросети) не через изоляцию проводов, как в предыдущем случае, а через сопротивление заземления нейтрали (R0) источника тока (рис. 5). Сила тока, проходящего через тело человека, определяется при этом по формуле:

(19)

где R0 - сопротивление заземления нейтрали источника тока, Ом.

Сопротивление заземляющего устройства, к которому присоединена нейтраль источника тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В. Это сопротивление должно быть обеспечено с учётом использования естественных заземлителей, а также заземлителей повторных заземлений PEN- или PE-проводника воздушных линий электропередач (ВЛ) напряжением до 1 кВ. Сопротивление заземлителя, расположенного в непосредственной близости от нейтрали источника тока, должно быть не более 15, 30 и 60 Ом соответственно при тех же линейных напряжениях 660, 380 и 220 В.

Пример. В наиболее неблагоприятной ситуации, рассмотренной выше, при Uф = 220 В, Rh = 1000 Ом, Rп ~ 0 Ом R0 = 30 Ом сила тока, протекающего через тело человека, составит:

Ih = 220/1000 + 30 = 0,214 А (214 мА), что смертельно опасно для человека.

Если обувь не токопроводящая (например, резиновые галоши с сопротивлением 45 кОм) и человек стоит на не токопроводящем полу (например, деревянный пол с сопротивлением 100 кОм), т.е. Rп = 145 кОм, то сила тока, протекающего через тело человека, составит:

Ih = 220/1000 + 60 + 145000 = 0,0015 А (1,5 мА), что опасности для человека не представляет.

Таким образом, при прочих равных условиях прикосновение человека к одному фазному проводу электросети сети с изолированной нейтралью менее опасно, чем в электросети с заземлённой нейтралью.

Рассмотренные выше схемы включения человека в электрическую цепь трёхфазного переменного тока справедливы для нормальных (безаварийных) условий работы электрических сетей.

В аварийном режиме работы трёхфазной электрической сети переменного тока один из фазных проводов, например, электросети с заземлённой нейтралью (в системе TN) может быть замкнут на землю (при срабатывании системы защитного заземления, падении фазного провода на землю и т.п.) через сопротивление Rзм (рис. 6).

Рис. 6. Однофазное (однополюсное) прикосновение к токоведущим частям в аварийном режиме работы электросети.

Rзм - сопротивление замыкания фазного провода (L2) на землю

Сила тока, проходящего через тело человека, касающегося в этой ситуации одного из исправных фазных проводов (L1, L3), определяется из уравнения

, (20)

где Rзм - сопротивление замыкания фазного провода на землю, Ом.

Если при этом Rзм ~ 0 или намного меньше и R0, и Rh, то им можно пренебречь, тогда сила тока, проходящего через тело человека, будет определяться по формуле

, (21)

т. е. человек будет включаться в электрическую цепь двухфазно, причём вторая фаза подключается к нему через ноги и на величину Ih будет оказывать существенное влияние переходное сопротивление Rп.

При напряжениях до 1000 В в производственных условиях широкое распространение получили обе рассмотренные выше схемы трехфазных электрических сетей переменного тока: трёхпроводная с изолированной нейтралью (система IT) и четырёхпроводная с заземлённой нейтралью (система TN).

Электрическую сеть с изолированной нейтралью целесообразно применять в тех случаях, когда имеется возможность поддерживать высокий уровень сопротивления изоляции фазных проводов и незначительную ёмкость последних относительно земли. Такими являются электрические сети малоразветвлённые, не подверженные воздействию агрессивной среды и находящиеся под постоянным надзором квалифицированного персонала. Так, например, в угольных шахтах используются только электросети с изолированной нейтралью.

Электрическую сеть с заземлённой нейтралью следует применять там, где невозможно обеспечить хорошую изоляцию проводов (например, из-за высокой влажности или агрессивной среды), когда нельзя быстро отыскать или устранить повреждение изоляции, либо когда ёмкостные токи электросети вследствие значительной её разветвлённости достигают больших значений, опасных для человека.

При напряжении выше 1000 В по технологическим причинам электрические сети напряжением до 35 кВ включительно имеют изолированную нейтраль, свыше 35 кВ - заземлённую. Поскольку такие электросети имеют большую ёмкость проводов относительно земли, для человека одинаково опасным является прикосновение к их фазным проводам независимо от режима работы нейтрали энергоисточника. Поэтому режим работы нейтрали электросети напряжением выше 1000 В по условиям безопасности не выбирается.

13.3 Явления при стекании электрического тока в землю. Напряжение шага

Стекание электрического тока в землю происходит только через проводник, находящийся в непосредственном контакте с землёй. Такой контакт может быть случайным или преднамеренным. В последнем случае проводник, находящийся в контакте с землей, называется заземлителем или электродом.

Для упрощения дальнейших рассуждений считаем, что земля во всём своём объёме однородна, т.е. в любой точке обладает одинаковым удельным электрическим сопротивлением (с, Ом · м). В этом случае ток будет растекаться во все стороны одинаково по радиусам полушария (рис. 7).

Рис. 7. Схема образования напряжения шага

а) - общая схема; б) - растекание тока с опорной поверхности ног человека.

А, Б - опорные точки ног человека; З - точка замыкания на землю; Uз - напряжение замыкания;

Uш - напряжение шага; а - ширина шага; ц - электрический потенциал; x - радиальное расстояние от точки замыкания на землю

В объёме земли, где проходит ток, возникает так называемое «поле растекания тока», имеющее полусферическую конфигурацию. Теоретически оно простирается до бесконечности. Однако в реальных условиях уже на расстоянии 20-ти м от точки замыкания сечение слоя земли, по которому проходит ток, оказывается настолько большим, что плотность тока здесь практически равна нулю. На поверхности земли при этом возникает неравномерное электрическое (для постоянного тока) или электромагнитное (для переменного тока) круговое поле с максимумом потенциала (ц, В) в точке замыкания на землю.

Если в этой ситуации человек будет радиально шагать к точке замыкания на землю по её поверхности, то его ноги при каждом шаге будут оказываться под всё бульшей разностью потенциалов (см. рис. 7а).

Напряжением шага называется напряжение между двумя точками на поверхности земли, расположенными на расстоянии 1 м одна от другой (принимается равным длине шага человека), обусловленное растеканием тока замыкания на землю.

Основной путь тока при этом пролегает через ноги и тазобедренную часть тела, где расположены гонады - одна из важнейших составляющих половой системы человека. Указанное обстоятельство, кроме рассмотренных выше негативных факторов воздействия на человека электрического тока, нарушает нормальное состояние репродуктивной функции организма. Действие электрического тока в этой ситуации может усугубиться тем, что из-за судорожных сокращений мышц ног, возможно падение человека, после чего цепь тока замыкается на его теле через другие жизненно важные органы (мозг, сердце, лёгкие и др.). Кроме того, рост человека, который больше ширины шага, обусловливает бульшую разность потенциалов (напряжение, приложенное к телу).

13.4 Классификация помещений по опасности поражения электрическим током

Состояние окружающей среды, а также окружающая обстановка могут усиливать или ослаблять опасность поражения электрическим током. Так, сырость, токопроводящая пыль, едкие пары и газы разрушающе действуют на изоляцию электроустановок, резко снижая её сопротивление и создавая угрозу перехода напряжения на корпуса, станины, кожухи и другие нетоковедущие проводящие части электрооборудования, к которым может прикасаться человек.

Вместе с тем, в этих же условиях, как и при высокой температуре окружающего воздуха, понижается сопротивление тела человека, что ещё больше увеличивает опасность поражение его электрическим током.

По действующим «Правилам устройства электроустановок» (ПУЭ) все помещения делятся по степени опасности поражения людей электрическим током на три класса: без повышенной опасности; повышенной опасности; особо опасные.

К помещениям без повышенной опасности относятся сухие, беспыльные помещения с нормальной температурой воздуха, с изолирующими (например, с сухими деревянными) полами, в которых отсутствуют заземлённые предметы или их очень мало.

На производстве к таким помещениям могут относиться лишь только некоторые вспомогательные помещения (помещения культурного обслуживания, управления и общественных организаций и др.).

К помещениям повышенной опасности относятся:

– сырые, в которых относительная влажность воздуха превышает 75 %;

– жаркие, в которых под воздействием тепловых излучений температура воздуха превышает постоянно или периодически (более 1 сут.) 35°С;

– пыльные, с токопроводящей пылью, в которых по условиям производства выделяется токопроводящая технологическая пыль в таком количестве, что она может оседать на провода, проникать внутрь машин, аппаратов;

– с токопроводящими полами (металлическими, земляными, железобетонными, кирпичными и др.);

– в которых возможно одновременное прикосновение человека к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам с одной стороны и к металлическим корпусам электрооборудования - с другой.

Помещениями повышенной опасности являются практически все вспомогательные и некоторые производственные.

К особо опасным помещениям относятся:

– особо сырые с относительной влажностью воздуха близкой к 100 %;

– с химически активной или органической средой, разрушающей изоляцию и токоведущие части электрооборудования (агрессивные газы, пары; отложение плесени и др.);

– имеющие два или более признаков, свойственных помещениям с повышенной опасностью.

Территория открытых электроустановок в отношении опасности поражения людей электрическим током приравнивается к особо опасным помещениям.

Особо опасными являются: бульшая часть производственных помещений; подземные выработки; рабочая зона с открытой подстилающей поверхностью.

13.5 Основные меры защиты от поражения человека электрическим током

Поражение производственного персонала электрическим током возможно как при прямом прикосновении - электрический контакт людей с токоведущими частями электрооборудования, находящимися под напряжением, так и при косвенном прикосновении - электрический контакт людей с открытыми проводящими частями электрооборудования, оказавшимися под напряжением при повреждении изоляции.

Для предупреждения поражения электрическим током в нормальном режиме работы Электросети должны быть применяются по отдельности или в сочетании следующие меры защиты от прямого прикосновения:

основная изоляция токоведущих частей;

ограждения и оболочки;

установка барьеров;

размещение токоведущих частей вне зоны досягаемости;

применение сверхнизкого (малого) напряжения (СНН).

Для дополнительной защиты от прямого прикосновения в электроустановках напряжением до 1 кВ применяются также устройства защитного отключения (УЗО).

Защита от прямого прикосновения не требуется, если электрооборудование находится в зоне системы уравнивания потенциалов (см. ниже), а наибольшее рабочее напряжение не превышает 25 В переменного или 60 В постоянного тока в помещениях без повышенной опасности и 6 В переменного или 15 В постоянного тока - во всех случаях.

Для защиты от поражения электрическим током в случае повреждения изоляции применяются по отдельности или в сочетании следующие меры защиты при косвенном прикосновении:

защитное заземление;

автоматическое отключение питания;

уравнивание потенциалов;

выравнивание потенциалов;

двойная или усиленная изоляция;

сверхнизкое (малое) напряжение;

защитное электрическое разделение цепей;

изолирующие (непроводящие) помещения, зоны, площадки.

Защиту при косвенном прикосновении следует выполнять во всех случаях, если напряжение в электроустановке превышает 50 В переменного и 120 В постоянного тока.

В помещениях с повышенной опасностью, особо опасных и в наружных электроустановках защита при косвенном прикосновении производится при более низких напряжениях: 25 В переменного и 60 В постоянного тока - в помещениях с повышенной опасностью; 12 В переменного и 30 В постоянного тока - в особо опасных помещениях и в наружных электроустановках.

Далее рассмотрим принципы указанных способов защиты.

Защита от прямого прикосновения.

Основная изоляция токоведущих частей:

Основная изоляция токоведущих частей должна иметь сопротивление, обеспечивающее утечки тока через неё, не превышающие безопасных величин (1 мА для переменного тока промышленной частоты). Для изоляции используются материалы, обладающие также механической прочностью, устойчивостью к воздействию агрессивных сред, повышенных температур и др. производственных факторов. Широкое распространение на практике получили изоляционные материалы на основе каучука, пластических масс, керамики, стекловолокна и др. Лакокрасочные покрытия не являются изоляцией, защищающей от поражения электрическим током. Изоляция электроустановок перед вводом их в эксплуатацию подвергается испытанию в соответствии с требованиями ПУЭ. Например, для электроустановок напряжением до 1 кВ сопротивление изоляции должно быть не < 0,5 МОм при испытании напряжением 1 кВ.

Ограждения и оболочки:

Ограждения и оболочки в электроустановках напряжением до 1 кВ представляют собой сплошные или сетчатые устройства, предотвращающие несанкционированный доступ к открытым токоведущим частям электроустановок. Вход за ограждение или вскрытие оболочки должны быть возможны только при помощи специального ключа или инструмента либо после снятия напряжения с токоведущих частей.

Установка барьеров:

Барьеры предназначены для защиты от случайного прикосновения к токоведущим частям в электроустановках напряжением до 1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше 1 кВ, но не исключают преднамеренного прикосновения и приближения к токоведущим частям при обходе барьера. Для удаления барьеров не требуется применения ключа или инструмента, однако они должны быть закреплены так, чтобы их нельзя было снять непреднамеренно. Барьеры должны быть изготовлены из изолирующего материала.

Размещение токоведущих частей вне зоны досягаемости:

Эта мера применяется для защиты от прямого прикосновения к токоведущим частям в электроустановках напряжением до 1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше 1 кВ при невозможности сооружения ограждений, оболочек и барьеров. При этом расстояние между доступными одновременному прикосновению проводящими частями в электроустановках напряжением до 1 кВ должно быть не менее 2,5 м. Внутри зоны досягаемости не должно быть частей, имеющих разные потенциалы и доступных одновременному прикосновению.

Установка барьеров и размещение токоведущих частей вне зоны досягаемости допускаются только в помещениях, доступных квалифицированному персоналу.

Сверхнизкое (малое) напряжение (СНН):

СНН применяется для защиты от поражения электрическим током при прямом и/или косвенном прикосновениях в электроустановках напряжением до 1 кВ в сочетании с защитным электрическим разделением цепей или в сочетании с автоматическим отключением питания (см. ниже). Суть этой меры защиты заключается в обеспечении наименьшей вероятности поражения человека электрическим током за счёт применения малой величины напряжения питания электроустановок.

При этом величина такого напряжения составляет: не > 25В переменного и не > 60 В постоянного тока - в помещениях с повышенной опасностью; не > 12В переменного и не > 30 В постоянного тока - в особо опасных помещениях и в наружных электроустановках.

Защита от косвенного прикосновения

Защитное заземление:

Защитное заземление представляет собой преднамеренное электрическое соединение с землёй нетоковедущих проводящих (электропроводных) частей электрооборудования, которые в результате нарушения изоляции могут оказаться под напряжением. Такой частью электрооборудования, как правило, является его металлический корпус.

Принцип защитного действия защитного заземления можно объяснить следующим образом: при параллельном включении в электрическую цепь «аварийный корпус - заземление» сопротивлений заземляющего устройства и человека ток по ним по закону Кирхгоффа для разветвлённых электрических цепей распределяется обратно пропорционально величинам сопротивлений, оставаясь практически неизменным в сумме.

Подбор величины сопротивления заземляющего устройства, при которой сила тока, протекающего через человека, будет равна или меньше безопасных значений обеспечит его защиту от поражения. Наибольшая величина сопротивления заземляющего устройства, при которой обеспечивается указанное выше условие, называется допустимым сопротивлением защитного заземления.

Защитное заземление эффективно только в том случае, когда ток замыкания на землю не увеличивается с уменьшением сопротивления заземляющего устройства. Поэтому защитное заземление применяется в качестве основной меры защиты в электросетях с изолированной нейтралью, т.к. только в них при глухом замыкании на землю любого из фазных проводов ток замыкания не зависит от сопротивления заземления.

Конструктивно заземляющее устройство состоит из заземлителей, размещённых в грунте (земле), заземляющего проводника и заземляющей шины (последние расположены вне грунта и служат для подключения заземлителей к электрооборудованию).

Варианты конструкций, схемы размещения в грунте, материалы для изготовления конструктивных элементов, способы расчёта и др. сведения о заземляющих устройствах рассматриваются на лабораторных и практических занятиях.

Согласно требованиям ПУЭ сопротивление заземляющего устройства, используемого для защитного заземления открытых проводящих частей в системе IT напряжением до 1 кВ, должно соответствовать условию:

Rзу Uпр /Iзм, (22)

где Rзу - сопротивление заземляющего устройства, Ом;

Uпр - напряжение прикосновения, значение которого принимается равным 50 В;

Iзм - полный ток замыкания на землю, А.

Как правило, не требуется принимать значение сопротивления заземляющего устройства менее 4 Ом. Допускается принимать сопротивление заземляющего устройства до 10 Ом, если соблюдено приведенное выше условие, а мощность источника тока не превышает 100 кВА.

Защитному заземлению подлежат металлические нетоковедущие части оборудования, которые из-за неисправности изоляции могут оказаться под напряжением и к которым возможно прикосновение людей.

Автоматическое отключение питания:

Автоматическое отключение питания применяется для быстрого отключения энергоисточника от аварийного электрооборудования. При этом время отключения не должно превышать нормированные значения (табл. 1,2), т.к. в противном случае человек, касающийся в этот момент электроустановки, получит опасную дозу электрической энергии. При выполнении автоматического отключения питания в электроустановках напряжением до 1 кВ открытые проводящие части присоединяются к глухозаземлённой нейтрали источника питания, если применена система TN, и заземлены, если применены системы IT или ТТ.

В электроустановках, в которых в качестве защитной меры применено автоматическое отключение питания, должно быть выполнено уравнивание потенциалов (см. ниже).

Для автоматического отключения питания могут быть применены защитно-коммутационные аппараты и устройства защитного отключения (УЗО).

Таблица 1

Наибольшее допустимое время защитного автоматического отключения для системы TN

Номинальное фазное напряжение uф, В

Время отключения, с

127

0,8

220

0,4

380

0,2

Более 380

0,1

Таблица 2

Наибольшее допустимое время защитного автоматического отключения для системы IT

Номинальное линейное напряжение Uл, В

Время отключения, с

220

0,8

380

0,4

660

0,2

Более 660

0,1

Уравнивание потенциалов:

Система уравнивания потенциалов предназначена для ликвидации разности потенциалов между любыми точками открытых проводящих частей электроустановок, здания, инженерных коммуникаций и т.п.

Основная система уравнивания потенциалов в электроустановках до 1 кВ должна соединять между собой следующие проводящие части:

нулевой защитный РЕ- или РЕN-проводник питающей линии в системе TN;

заземляющий проводник, присоединённый к заземляющему устройству электроустановки, в системах IT и ТТ;

заземляющий проводник, присоединенный к заземлителю повторного заземления на вводе в здание (если есть заземлитель);

металлические трубы коммуникаций, входящих в здание (горячего и холодного водоснабжения, канализации, отопления, газоснабжения и т.п.);

металлические части каркаса здания;

металлические части централизованных систем вентиляции и кондиционирования;

заземляющее устройство системы молниезащиты;

заземляющий проводник функционального (рабочего) заземления, если такое имеется и отсутствуют ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления;

металлические оболочки телекоммуникационных кабелей.

Проводящие части, входящие в здание извне, должны быть соединены как можно ближе к точке их ввода в здание.

Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине при помощи проводников системы уравнивания потенциалов.

Система дополнительного уравнивания потенциалов должна соединять между собой все одновременно доступные прикосновению открытые проводящие части стационарного электрооборудования и сторонние проводящие части, включая доступные прикосновению металлические части строительных конструкций здания, а также нулевые защитные проводники в системе TN и защитные заземляющие проводники в системах IT и ТТ, включая защитные проводники штепсельных розеток.

Для уравнивания потенциалов могут быть использованы специально предусмотренные проводники либо открытые и сторонние проводящие части, если они удовлетворяют требованиям к защитным проводникам в отношении проводимости и непрерывности электрической цепи.

Выравнивание потенциалов:

Система выравнивания потенциалов предназначена для снижения разности потенциалов (шагового напряжения) на поверхности земли или пола при помощи защитных проводников, проложенных в земле, в полу или на их поверхности и присоединенных к заземляющему устройству, или путём применения специальных проводящих покрытий земли.

Двойная или усиленная изоляция:

Защита при помощи двойной или усиленной изоляции может быть обеспечена применением электрооборудования класса II (табл. 3) или заключением электрооборудования, имеющего только основную изоляцию токоведущих частей, в изолирующую оболочку.

Проводящие части оборудования с двойной изоляцией не должны быть присоединены к защитному проводнику и к системе уравнивания потенциалов.

Защитное электрическое разделение цепей:

Защитное электрическое разделение цепей предназначено для уменьшения опасности однофазного прикосновения в разветвлённых электросетях большой протяжённости, имеющих большую электрическую ёмкость и малое сопротивление изоляции проводов относительно земли.

Защитное электрическое разделение цепей источника тока и электроприёмника осуществляется при помощи разделительного трансформатора и применяется, как правило, для одной питающей цепи, которая при этом имеет малую электрическую ёмкость, большое сопротивление изоляции проводов относительно земли, а, следовательно, меньшую опасность при однофазном прикосновении.

Таблица 3

Классификация по способу защиты человека от поражения электрическим током и условия применения электрооборудования в электроустановках напряжением до 1 кВ

Класс по ГОСТ 12.2.007.0

Р МЭК536

Маркировка

Назначение защиты

Условия применения электрооборудования в электроустановке

Класс 0

-

При косвенном прикосновении

1. Применение в непроводящих помещениях.

2. Питание от вторичной обмотки разделительного трансформатора только одного электроприёмника

Класс I

Защитный зажим, знак или буквы РЕ, или желто-зелёные полосы

При косвенном прикосновении

Присоединение заземляющего зажима электрооборудования к защитному проводнику электроустановки

Класс II

Знак

При косвенном прикосновении

Независимо от мер защиты, принятых в электроустановке

Класс III

Знак

От прямого и косвенного прикосновений

Питание от безопасного разделительного трансформатора

Изолирующие (непроводящие) помещения, зоны, площадки:

Изолирующие (непроводящие) помещения, зоны и площадки применяются в электроустановках напряжением до 1 кВ, когда требования к автоматическому отключению питания не могут быть выполнены, а применение других защитных мер невозможно либо нецелесообразно.

Сопротивление относительно земли изолирующего пола и стен таких помещений, зон и площадок в любой точке должно быть не менее:

50 кОм при номинальном напряжении электроустановки до 500 В включительно;

100 кОм при номинальном напряжении электроустановки более 500 В;

Если сопротивление в какой-либо точке меньше указанных величин, такие помещения, зоны, площадки не должны рассматриваться в качестве меры защиты от поражения электрическим током.

Для изолирующих (непроводящих) помещений, зон, площадок допускается использование электрооборудования класса 0 (табл.3) при соблюдении одного из следующих условий:

открытые проводящие части удалены одна от другой и от сторонних проводящих частей не менее чем на 2 м.

открытые проводящие части отделены от сторонних проводящих частей барьерами из изоляционного материала;

сторонние проводящие части покрыты изоляцией, выдерживающей испытательное напряжение не менее 2 кВ в течение 1 мин.

Пол и стены таких помещений не должны подвергаться воздействию влаги.

Кроме рассмотренных основных способов защиты персонала от поражения электрическим током используются: защитное зануление; блокировка; предупредительная сигнализация; электрозащитные средства (изолирующие штанги, диэлектрические коврики и др.).

13.6 Защита от статического и атмосферного электричества

13.6.1 Защита от статического электричества

13.6.1.1 Возникновение заряда статического электричества

В производственных условиях широко используются и получаются вещества, обладающие диэлектрическими свойствами, что способствует возникновению зарядов статического электричества (СЭ). Электрические разряды в таких системах часто являются причиной взрывов и пожаров. Кроме того, статическое электричество является причиной снижения точности показаний электрических приборов и надёжности работы средств автоматики. Определённое негативное воздействие статическое электричество оказывает на человека, приводя, например, к рефлекторным телодвижениям при кратковременном (доли секунды) протекании электрического тока во время электрических разрядов. Это обстоятельство может вызвать травмирование персонала, например, при падении с высоты или попадании в опасную зону машин и механизмов.

По современным представлениям статическое электричество возникает в результате сложных процессов, связанных с перераспределением электронов и ионов при соприкосновении двух поверхностей неоднородных жидких или твёрдых веществ. При этом на поверхности соприкосновения образуется двойной электрический слой, состоящий из расположенных определённым образом электрических зарядов противоположных знаков.

Двойной электрический слой образуется в месте контакта поверхностей. При разделении материалов происходит механический разрыв зарядов двойного слоя, создаётся разность потенциалов (U, В) и заряды начинают перемещаться в точку начала разделения поверхностей веществ А (рис. 8). При достаточно большой величине U в зазоре разрыва поверхностей возникает газовый разряд. При перемещении зарядов по разделяемым поверхностям и газовому промежутку возникает соответственно ток омического сопротивления (Iо, А) и ток газового разряда (ионизации) (Iи, А). Если время разделения поверхностей будет меньше времени перемещения зарядов в точку А, то поверхности после разделения будут иметь остаточные электрические заряды, что и создаёт разность потенциалов, а вместе с нею и электростатическое поле. Такое явление называется электризацией. Электризация твёрдых тел на производстве возможна, например, при движении ремённых передач, транспортёрных лент, запылённых газов в трубопроводах, пневмотранспорте сыпучих материалов, дроблении, перемешивании и в др. ситуациях. Электризации подвержены также жидкости с низкой электропроводностью, например, нефтепродукты, движущиеся по трубопроводам или перемешивающиеся в ёмкостях, аппаратах.

Рис. 8. Схема электризации твёрдых материалов при разделении

Iо - ток, обусловленный омической проводимостью разделяемых поверхностей; Iи - ток ионизации в зазоре между разделяемыми поверхностями; А - точка начала разделения поверхностей

Явление возникновения электрических зарядов при взаимном трении двух диэлектриков, полупроводников или металлов с различными физико-химическими свойствами называется трибоэлектризацией (от греч. tribos - трение).

В производственных условиях электризация зависит от многих факторов и, прежде всего, от физико-химических свойств перерабатываемых (перемещаемых) материалов и характера технологического процесса.

Так, например, степень электризации зависит от величины удельного электрического сопротивления материала (с, Ом·м). При с 1·106 Ом·м электризация практически не происходит. Вещества, имеющие с 1·108 Ом·м электризуются хорошо (полистирол, стекло, жидкие углеводороды, синтетические волокна, прорезиненные ткани и др.).

На степень электризации влияет также относительная влажность воздуха и его температура, скорость движения жидкости и материала, степень дробления твёрдого материала и жидкости и др. факторы.

13.6.1.2 Опасность разрядов статического электричества в производственных условиях

Разряд статического электричества происходит тогда, когда напряжённость электростатического поля над поверхностью диэлектрика или проводника достигает критической (пробивной) величины, которая для воздуха составляет около 30 кВ/см.

Безопасной считается такая степень электризации поверхности веществ, при которой максимальные значения поверхностной плотности заряда не превосходят предельно допустимой величины для данной среды. За предельно допустимую величину поверхностной плотности заряда принято такое её значение, при котором максимально возможная энергия разряда (W, Дж) не превышает 0,25 минимальной энергии воспламенения (зажигания) горючих смесей различных веществ с воздухом.

Энергия разряда при этом определяется по формуле:

W = 0,5CU2 = 0,5QU (23)

где W - энергия разряда (искры), Дж;

C - электрическая ёмкость разрядной цепи, Ф;

U - разность потенциалов между электродами, В;

Q - величина заряда, Кл.

Минимальная энергия зажигания некоторых веществ в смеси с воздухом составляет (W, мДж): водород - 0,019; ацетилен - 0,19; метан - 0,28; монооксид углерода - 8,0; уголь (пыль) - 40; алюминий (порошок) - 50.

Разность потенциалов (U, В) относительно земли при электризации диэлектриков может достигать: при выпуске из баллона ацетилена, увлажнённого ацетоном - 900; при выпуске из баллона - 8000 (по резиновому шлангу - 10000); при завихрении угольной пыли - 10000; при движении резиновой ленты транспортёра - 45000; при движении кожаного приводного ремня - 80000.

Заряды статического электричества могут накапливаться и на людях. Электризация тела человека происходит при ношении одежды из синтетических тканей, работе с наэлектризованными предметами и в др. случаях. Накопление зарядов на теле человека возможно и тогда, когда он изолирован от земли и заземлённых предметов диэлектрическими обувью, полами, перчатками.

Количество накопившихся на людях зарядов статического электричества может быть достаточным для искрового разряда при контакте с заземлённым предметом, например, с железобетонной колонной здания. При этом энергия разряда (Wч, мДж) определяется формулой:

(24)

где Н - рост человека, см;

k - коэффициент, характеризующий материал покрытия пола.

В производственных условиях Wч составляет около ~ 50 мДж, что достаточно для зажигания газовоздушных смесей, а также некоторых аэрозолей.

13.6.1.3 Основные способы и средства защиты от разрядов статического электричества

Главными направлениями в предупреждении проявления опасных и вредных факторов статического электричества являются предупреждение возникновения и накопления зарядов, а также создание условий их рассеивания.

К основным инженерным мерам защиты от СЭ относятся:

заземление оборудования и коммуникаций, выполненных из электропроводных материалов;

уменьшение электрического сопротивления перерабатываемых веществ;

снижение интенсивности возникновения зарядов СЭ;

нейтрализация зарядов СЭ;

отвод зарядов СЭ, накапливающихся на людях.

Заземление оборудования и коммуникаций:

Заземление - наиболее простая и часто применяемая на практике мера защиты от статического электричества. Каждую систему аппаратов и трубопроводов, где возможно появление зарядов СЭ, следует заземлять не менее, чем в двух местах. Особое внимание при этом уделяется дробилкам, смесителям, компрессорам, насосам, фильтрам, пневмосушилкам, транспортёрам, сливо-наливным устройствам и др. оборудованию, в котором быстро возникают опасные потенциалы статического электричества.

Резиновые шланги с металлическими наконечниками, предназначенные для налива (слива), например, нефтепродуктов, заземляются медной проволокой (диаметром около 3 мм), обвитой по шлангу снаружи (шаг 100 мм) с припайкой одного её конца к металлическому трубопроводу, а другого - к наконечнику шланга.

Предельно допустимое сопротивление заземляющего устройства при этом составляет 100 Ом.

Неметаллическое оборудование считается электрически заземлённым, если сопротивление любой его точки относительно заземляющего устройства не превышает 100 МОм.

Уменьшение электрического сопротивления перерабатываемых веществ:

Если заземлением оборудования не удаётся предотвратить накопление зарядов статического электричеств, то принимаются меры по уменьшению поверхностных и объёмных электрических сопротивлений обрабатываемых материалов. Это достигается повышением относительной влажности, химической обработкой поверхности, применением антистатических веществ, нанесением электропроводных плёнок. Эффективный отвод зарядов СЭ обеспечивается при относительной влажности воздуха 65…70 %, т.к. при этом на поверхности материала и оборудования образуется электропроводная плёнка воды.

Для уменьшения электрического сопротивления твёрдых диэлектриков и диэлектрических жидкостей в них вводятся антистатические присадки, увеличивающие объёмную проводимость этих материалов (графит, сажа, мелкодисперсный металл).

Если оборудование выполнено из диэлектрического материала, то оно покрывается проводящими электрический ток веществами и заземляется (например, металлизация пластмасс, окраска электропроводными эмалями и др.).

Снижение интенсивности возникновения зарядов СЭ:

Достигается этот результат подбором скорости движения веществ, исключением разбрызгивания жидкостей и дробления твёрдых материалов, отводом зарядов СЭ, очисткой газов и жидкостей от взвешенных примесей и др.

Безопасные скорости транспортировки жидких и пылевидных веществ зависят от их удельного объёмного электрического сопротивления (сv, МОм·м). Так, например, для жидкостей с сv < 0,1 МОм·м допустимая скорость транспортировки ? 10 м/с, а при с сv < 1000 МОм·м - ? 5 м/с.

При наполнении жидкостями ёмкостей необходимо исключать их разбрызгивание, распыление и бурное перемешивание, подавая струю под слой жидкости вдоль наиболее длинной стенки со скоростью 0,5…0,7 м/с. Во время наполнения или опорожнения ёмкостей отбор горючих жидкостей из них производить нельзя, т.к. возможный искровой разряд СЭ может воспламенить пробу.

Нейтрализация зарядов СЭ:

Если вышеуказанными способами цель не достигается, то для защиты от СЭ применяется нейтрализация зарядов ионизацией воздуха в местах их возникновения и накопления. Ионизаторы воздуха в зависимости от принципа действия делятся на индукционные, радиоизотопные и комбинированные.

Индукционные ионизаторы работают по принципу создания коронного (тихого) разряда в воздухе за счёт создания электрического поля высокой напряжённости вблизи заряженного статическим электричеством тела. Образующиеся при этом ионы нейтрализуют накопленные заряды. Индукционные ионизаторы просты и дёшевы и поэтому наиболее распространены на практике.

Радиоизотопные нейтрализаторы представляют собой радиоактивные вещества - источники ионизирующих излучений (б, в, г), причём, целесообразно использовать б и в лучи, обладающие наибольшей ионизирующей способностью. На практике применяются такие радиоактивные вещества, как: 239Pu (Плутоний); 147Pm (Прометий); 3Н (Тритий). Радиоизотопные нейтрализаторы сами по себе опасны для человека из-за наличия ионизирующего излучения, поэтому находят ограниченное применение.

При сильной электризации оборудования применяются комбинированные ионизаторы - сочетание радиоизотопных и индукционных ионизаторов.

Отвод зарядов СЭ, накапливающихся на людях:

Основными способами отвода зарядов СЭ являются:

устройство электропроводящих полов или заземлённых зон, помостов и рабочих площадок;

заземление ручек дверей, поручней лестниц, рукояток приборов, машин и аппаратов;

обеспечение персонала токопроводящей обувью и антистатической спецодеждой. Кроме того, на предприятиях, где возможно появление СЭ, целесообразно не носить одежду из синтетических материалов (найлона, перлона, и др.) и шёлка, а также колец и браслетов, на которых аккумулируются заряды СЭ.

Покрытие пола и обувь считаются электропроводящими, если удельное сопротивление между электродом, установленным на полу (внутри обуви) и землёй не превышает 100 кОм·м (бетон, кирпич, метлахская плитка и др. материалы).

К непроводящим покрытиям относятся: асфальт; настил из обычной резины; линолеум.

13.6.2 Защита от атмосферного электричества

13.6.2.1 Возникновение зарядов статического электричества в атмосфере

Электрические заряды, формирующие грозовые разряды возникают в облачном воздухе атмосферы. Электричество безоблачной атмосферы (атмосферы «хорошей» погоды) является фоном для электрических процессов в облаках.

Электрическое поле «хорошей» погоды направлено сверху вниз, т.е. земля заряжена отрицательно, а атмосфера - положительно. Это направление поля считается нормальным, а вертикальный градиент электрического потенциала (далее - потенциала) - положительным. У поверхности земли градиент потенциала составляет в среднем ~ 130 В/м.

Электричество «хорошей» погоды обусловлено наличием в атмосфере так называемых лёгких аэроинов, которые появляются за счёт ионизации воздуха при распаде радиоактивных веществ как в земле (почве), так и в атмосфере. Кроме того, ионизация воздуха происходит под действием космических лучей, однако в тропосфере этот процесс малоинтенсивен.

За счёт наличия градиента потенциала в атмосфере «хорошей» погоды в воздухе протекают токи диффузии, конвекции и проводимости, величина которых в совокупности составляет ~ 3•10-12 А/м2.

С появлением в атмосфере различного рода аэрозолей напряжённость электрического поля (градиент потенциала) несколько возрастает, однако существенно величина электрических токов при этом не увеличивается.


Подобные документы

  • Опасность - центральное понятие сферы безопасности жизнедеятельности и промышленной безопасности, их виды и сферы проявления. Основные положения теории риска, его классификация и типы. Анализ и управление риском. Устойчивость промышленных объектов.

    дипломная работа [634,0 K], добавлен 03.02.2011

  • Биохимические и физиологические процессы, происходящие в организме при выполнении физической и умственной работы. Понятие производственной травмы и производственного травматизма. Требования безопасности, предъявляемые к производственным помещениям.

    шпаргалка [516,2 K], добавлен 23.01.2011

  • Предмет, цели и задачи охраны труда. Особенности состояния охраны и гигиены труда в мире. Требования безопасности при выполнении работ на токарных станках. Основные причины и оценка рисков производственного травматизма и профессиональной заболеваемости.

    контрольная работа [33,9 K], добавлен 16.02.2011

  • Методы определения категорий помещений и зданий по взрывопожарной опасности. Требования норм противопожарной безопасности зданий при их категорировании. Организационные решения, минимизирующие риск пожара при эксплуатации производственных объектов.

    реферат [31,4 K], добавлен 22.09.2015

  • Понятие безопасности производственной деятельности и принципы её обеспечения. Идентификация опасностей и оценка риска. Классификация и характеристика средств индивидуальной защиты. Организация обеспечения работников средствами индивидуальной защиты.

    реферат [173,5 K], добавлен 13.02.2015

  • Основные понятия и терминология безопасности труда. Классификация негативных факторов. Классификация условий труда по тяжести и напряженности трудового процесса. Эргономические основы безопасности труда. Метеорологические условия производственной среды.

    лекция [2,6 M], добавлен 22.08.2010

  • Задачи безопасности жизнедеятельности: идентификация, защита и ликвидация опасности. Презумпция потенциальной опасности деятельности. Угрозы естественного и антропогенного происхождения. Оценка рисков по результату воздействия негативных факторов.

    презентация [254,8 K], добавлен 28.04.2014

  • Идентификация факторов производственной опасности, характерных для производства. Количественная оценка пространственных масштабов полей поражающих факторов, возникающих в результате техногенного происшествия на рассматриваемом и соседних объектах.

    курсовая работа [422,9 K], добавлен 07.04.2014

  • Цели и задачи введения в школьную учебной программу дисциплины "Безопасность жизнедеятельности". Факторы риска окружающей среды, влияющие на здоровье человека. Условия трудовой деятельности человека и главные негативные факторы производственной среды.

    контрольная работа [29,3 K], добавлен 25.07.2009

  • Государственный надзор и общественный контроль за охраной труда. Основные факторы производственной безопасности. Организация службы охраны труда и природы на предприятии. Обучение безопасности труда и виды инструктажа. Травматизм и методы его изучения.

    курсовая работа [45,7 K], добавлен 17.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.