Основы электробезопасности

Основные причины электротравм. Факторы, определяющие степень воздействия электрического тока на человека. Условия поражения электрическим током. Опасность при замыкании тоководов на землю. Классификация условий работ по степени электроопасности.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид учебное пособие
Язык русский
Дата добавления 01.05.2010
Размер файла 3,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Количество стержней п заземляющего устройства находим по формуле

где rо-допускаемое сопротивление заземляющего устройства, принимаемое менее 4 Ом.

Заземлитель из n1 длинных электродов длиной 11 по сравнению с заземлителем из n2 коротких электродов длиной l2 при одинаковом их расходе {п1 l1==п2 l2} обеспечивает более низкое сопротивление из-за меньшего взаимного влияния электродов при меньшем их числе.

Для определения сопротивления очага вертикальных заземлителей необходимо знать расположение и расстояние а между ними: a= (1…3) l

Сопротивление вертикальных заземлителей:

где з - коэффициент использования (экранизации) вертикальных электродов.

Коэффициент з определяют по табл. 3 с учётом отношения а/1, количества электродов п и условий их размещения.

Стержни объединяются в очаг заземления соединительной полосой (шиной) и располагаются по замкнутому контуру длиной

(3.4 30)

При расположении стержней в ряд, длина полосы

(3.4 31)

Сопротивление полосы связи

где h - глубина заложения полосы, м.

Таблица 2.

Схема

Тип заземлителя

Формулы

Труба, стержень у поверхности земли

Труба, стержень на глубине h'; h= h'+1/2

Протяженный заземлитель (полоса, труба) на глубине А, ширина b

Кольцевой заземлитель (полоса, труба) на глубине h

Круглая пластина на поверхности земли (диаметр d)

В заключение определяется сопротивление растеканию тока заземляющего устройства при данном количестве стержней с учетом полосы связи:

где з1 - коэффициент экранирования (использования) между полосой связи и вертикальными электродами. В табл.3.4.4 приводятся значения коэффициента з1 с учетом отношения а/1, расположения электродов и их количества.

При отсутствии естественных заземлителей устраивают искусственные, в качестве которых применяют металлические трубы, стержни или угловую сталь, забитые в землю на 0,5-0,8 м ниже уровня земли и приваренные к шине, уложенной на глубине 0,5-0,8 м. Расстояние между вертикально забитыми заземлителями должно быть не менее их длины.

Таблица 3.

Количество электродов п

Коэффициент использования з при отношении

расстояния между электродами к их длине

a/1=1

a/1=2

a/1=3

При размещении электродов в ряд

2

0,84-0,87

0,90-0,92

0,93-0,95

3

0,76-0,80

0,85-0,88

0,90-0,92

5

0,67-0,72

0,79-0,83

0,85-0,88

10

0,56-0,62

0,72-0,77

0,79-0,83

15

0,51-0,56

0,66-0,73

0,75-0,80

20

0,47-0,50

0,65-0,70

0,74-0,79

При размещении электродов по контуру

4

0,66-0,72

0,76-0,80

0,84-0,86

6

0,58-0,65

0,71-0,75

0,78-0,82

10

0,52-0,58

0,66-0,71

0,74-0,78

20

0,44-0,50

0,61-0,66

0,68-0.73

40

0,38-0,44

0,55-0,61

0,64-0,69

60

0,36-0,42

0,52-0,58

0,62-0,67

100

0,33-0,39

0,49-0,55

0,59-0,65

Таблица 4.

Отношение расстояния между трубами (уголками) к их длине

Коэффициент использования з1 при числе труб (уголков)

4

6

8

10

20

30

50

70

При размещении электродов в ряд,

1

2

3

0,77

0,89

0,92

0,72

0,84

0,88

0,67

0,79

0,85

0,62

0,75

0,82

0,42

0,56

0,68

0,31

0,46

0,58

0,21

0,36

0,49

0, 19

0,32

0,42

При размещении электродов по контуру

1

2

3

0,45

0,55

0,70

0,40

0,48

0,64

0,36

0,43

0,60

0,34

0,40

0,56

0,27

0,32

0,45

0,24

0,30

0,41

0,21

0,28

0,37

0, 20

0,26

0,35

В качестве вертикальных электродов используют стальные трубы, угловую и круглую (прутковую) сталь длиной l=2…10 м. Наименьшие поперечные размеры допускаются у круглых электродов - d=6 мм, толщина полок угловой стали - 4 мм и толщина стенок стальных труб - b=3,5 мм. Такие размеры электродов обусловлены необходимостью надежной работы заземлителя при коррозии и могут быть увеличены из условий достаточной механической, прочности при погружении их в грунт.

Горизонтальные полосовые заземлители в виде лучей, колец или контуров используются как самостоятельные заземлители или как элементы сложного заземлителя из горизонтальных и вертикальных электродов. Для горизонтальных заземлителей применяется полосовая сталь сечением не менее 48 мм2 и толщиной 4 мм и круглая сталь диаметром не менее 10 мм.

В однородном грунте глубина заложения вертикальных электродов h=0,5...1 м мало влияет на снижение их сопротивления.

Соединение элементов заземляющих устройств осуществляется с помощью сварки, а корпуса машин и аппаратов соединяются с проводниками заземляющих устройств сваркой, надежными болтовыми соединениями. Минимальное поперечное сечение заземляющих голых медных проводов должно быть 4 мм2, алюминиевых - 6 мм2, стальных - 24 мм2. Сечение изолированных медных проводов должно быть не менее 1,5 мм2, алюминиевых - 2,5 мм2.

Заземляющие проводники, расположенные в помещениях, должны быть доступны для осмотра, защищены от коррозии. Каждый заземляемый элемент установки должен быть присоединен к заземлителю или заземляющей магистрали посредством отдельного ответвления (параллельное заземление). Последовательное включение в заземляющий проводник нескольких заземляемых частей установки запрещается. При приемке в эксплуатацию каждого заземляющего устройства необходимо иметь: паспорт, включающий исполнительные чертежи и схемы заземляющего устройства с указанием расположения подземных коммуникаций; акты на подземные работы по укладке элементов заземляющего устройства; протоколы приемо-сдаточных испытаний заземляющего устройства.

Измерение сопротивления заземляющих устройств производится в первый год эксплуатации, а в дальнейшем - не реже одного раза в три года, для цеховых электроустановок - не реже одного раза в год. Измерение сопротивления заземлителей, удельного сопротивления грунта проводится в периоды наименьшей проводимости (летом, зимой). Срок службы заземлителей - 25-30 лет.

Зануление. Занулением называется присоединение металлических корпусов электрических машин, трансформаторов и других токоведущих металлических частей электрооборудования, которые не находятся под напряжением при нормальной работе, к многократно заземленному нулевому проводу.

Нулевым проводом называется провод сети, соединенный с глухозаземленной нейтралью трансформатора или генератора или со средним нулевым проводом сети постоянного тока.

Многократное заземление нулевого провода - это дополнительная, но обязательная мера защиты, осуществляемая через каждые 200 м по его длине. Надежная защита возможна, если сечение нулевого четвертого провода (Sн. пр) будет равно (не менее) 50% сечения фазного провода сети (Sф) при изготовлении их из одного материала:

Обычно нулевой провод изготавливается из стали, а фазные провода - из цветных металлов. В этом случае необходимо учитывать, что сопротивление их зависит от плотности тока.

На основе экспериментальных данных для выбора эквивалентных по сечению проводников из стали и цветных металлов получены следующие соотношения.

Если провода линии изготовлены из алюминия (Sф^A1)

если провода линии изготовлены из меди (Sф^М),

Назначение защитного зануления - устранение опасности поражения электрическим током при соприкосновении человека с металлическими частями электрооборудования, оказавшимися под напряжением при замыкании фазы на корпус или землю.

Область применения зануления - трехфазные четырехпроводники сети напряжением до 1000В с глухозаземленной нейтралью или глухозаземленным выводом источника однофазного тока.

Принцип действия зануления основан на превращении пробоя на корпус в однофазное короткое замыкание (замыкание между фазой и нулевым проводом) с целью вызвать ток большой силы, способный обеспечить срабатывание защиты (плавких вставок, средств автоматики).

Рис. 8. Схема зануления.

Для того, чтобы произошло быстрое и надежное срабатывание средств защиты, необходимо, чтобы ток короткого замыкания, превышал ток отключения (оплавление плавкой вставки и отключение аппарата).

(3.4 37)

где, Ік. з. - ток короткого замыкания, А

к - коэффициент кратности тока короткого замыкания относительно тока отключения;

Іном - номинальный ток оплавления плавкой вставки или срабатывания автомата, А.

Согласно ПУЭ, проводники зануления подбирают таким образом, чтобы ток короткого замыкания превышал не менее, чем в 3 раза, номинальный ток плавкой вставки.

Время срабатывания отключения поврежденной электроустановки с момента появления напряжения на корпус электроустановки составляет 5-7с при защите плавкими вставками и 1-2с - при защите автоматами.

В аварийный период, с момента возникновения замыкания фазы на корпус и до автоматического отключения поврежденной электроустановки от сети, заземление электроустановок через нулевой защитный проводник снижает напряжение между корпусом и землей.

Повторное заземление позволяет снизить напряжение нулевого провода и корпуса зануленного оборудования относительно земли при замыкании фазы на корпус, как при нормальном режиме, так и при обрыве нулевого провода.

При отсутствии повторного заземления нулевого провода при замыкании фазы на корпус участок нулевого провода в месте замыкания и прикосновения к нему корпуса по отношению к земле находится под напряжением:

где, Iк - ток, протекающий по участку: фазный - нулевой провод (ток замыкания), А;

Zн - сопротивление участка нулевого провода от источника питания до места присоединения поврежденного оборудования, Ом,

Rф и Rн - активное сопротивление фазного и нулевого проводов сети, Ом.

При наличии повторного заземления нулевого провода появляется цепь тока замыкания через это заземление.

Автоматическое отключение сетей.

Помимо заземления, профилактика электротравматизма заключается в правильном подборе и эксплуатации изоляции электросетей и установок, в автоматическом отключении, применении пониженных напряжений и различных блокировок, в разработке и применении индивидуальных средств защиты.

В тех случаях, когда безопасность не может быть обеспечена устройством заземления, применяются защитные устройства, основными элементами которых являются магнитные пускатели и реле защитного отключения.

Наиболее универсальными устройствами являются те, которые для обеспечения высокой эксплуатационной надежности выполняются на новых полупроводниковых приборах.

Например, в СНГ предложено устройство защиты от утечки тока в землю с использованием переменного оперативного тока пониженной частоты. Устройство обладает высокой чувствительностью и может осуществить защиту при токах утечки от 15 мА и выше.

В устройстве защиты от короткого замыкания в электросетях, запатентованном в ФРГ, используется оперативный ток повышенной частоты, что обеспечивает время отключения короткого замыкания 1 мс.

Во Франции запатентовано защитное устройство, которое также реагирует на токи повышенной частоты и отличается простотой конструкции.

Защитное отключение (ЗО) - это система автоматического отключения электроустановки при возникновении в ней опасности поражения человека электрическим током (быстродействующая защита).

ЗО должно обеспечивать защиту в следующих случаях: при замыканиях на землю или корпус, при появлении токов утечки. Защитное отключение используют в тех случаях, когда нет уверенности в надежности заземления или зануления.

К устройствам защитного отключения (УЗО) предъявляются следующие требования: высокая чувствительность (реагирование на незначительные изменения входной величины), короткое время срабатывания (время отключения не должно превышать 0,2 с), способность отключить напряжение выборочно от поврежденного оборудования, надежность и самоконтроль (отключение при неисправности УЗО)

Эффективно применение защитного отключения в электроустановках напряжением до 1000В: в передвижных электроустановках с изолированной нейтралью; в стационарных установках для защиты электрифицированного инструмента; в условиях повышенной опасности в стационарных электроустановках с глухозаземленной нейтралью; на отдельных установках высокой мощности.

Электрозащитные средства.

Электрозащитные средства (ЭЗС) - это переносимые и перевозимые средства, служащие для защиты людей, работающих с электроустановками, от поражения электрическим током, от воздействия электрической дуги и электромагнитного поля.

По характеру применения средства защиты, согласно ГОСТ 12.4 011-89 "Средства защиты работающих. Общие требования", классифицируются на две категории:

средства коллективной защиты;

средства индивидуальной защиты.

По степени защиты ЭЗС подразделяются на: основные и дополнительные.

Основные ЭЗС - это средства защиты, изоляция которых длительно выдерживает рабочее напряжение электроустановок, что позволяет безопасно соприкасаться с источникам тока.

Дополнительные ЭЗС - это средства, которые сами по себе не могут при данном напряжении обеспечить защиту от поражения током и применяются как дополнительные меры защиты к основным средствам.

К основным защитным средствам, которые позволяют работать непосредственно на токоведущих частях, находящихся под напряжением до 1000В, относятся: изолирующие оперативные измерительные штанги, токоизмерительные изолирующие клещи, указатели напряжения, изолирующие тяги, захваты, инструмент с изолированными рукоятками, диэлектрические перчатки.

Испытательное напряжение для основных защитных средств зависит от рабочего напряжения установки и должно быть не меньше трехкратного значения линейного напряжения в электроустановках с изолированной нейтралью и не меньше трехкратного фазного напряжения в установках с глухозаземленной нейтралью.

К дополнительным средствам индивидуальной защиты, применяемым в электроустановках напряжением до 1000В, которые усиливают изолирующее действие основных средств, относятся: диэлектрические галоши, диэлектрические резиновые коврики, различные виды изолирующих лестниц, подставок, площадок, ограждения, предупредительные плакаты, переносные заземления и т.д.

К основным защитным средствам при работе в электроустановках с напряжением выше 1000В относятся: изолирующие штагы, изолирующие и электроизмерительные клещи, указатели напряжения; изолирующие устройства и приспособления для работы на высоковольтных линиях (ВЛ) с непосредственным прикосновением электромонтера к токоведущим частям (изолирующие лестницы, площадки, изолирующие тяги, канаты, корзины телескопических вышек и др.)

Рис. 9. Индивидуальные электрозащитные средства:

1 - выключающая штанга; 2 - пасатижы; 3 - защитные очки; 4 - изолирующий коврик; 5 - изолирующая подставка; 6 - изолирующие перчатки; 7 - отвертка; 8 - клещи; 9 - технические галоши и клещи; 10 - токоизмерительные клещи.

К дополнительным ЭЗС, применяемые в электроустановках с напряжением выше 1000В относятся: диэлектрические перчатки, боты, ковры, изолирующие подставки и накладки; диэлектрические колпаки, переносные заземления; оградительные устройства; плакаты безопасности.

Кроме перечисленных ЭЗС, в электроустановках применяют также такие средства индивидуальной защиты: очки, маски, противогазы, рукавицы, предохранительные пояса и страховочные канаты.

Таблица 5. Нормы и сроки электрических испытаний средств защиты в электроустановках напряжением до 1000 В.

Средства защиты

Испытательное напряжение,

кВ

Продолжитель-ность испытаний, мин

Допустимый

ток,

МА

Периодичность испытаний, в мес.

Изолирующие штанги

40

5

-

24

Изолирующие электроизмерительные

клещи

2

5

-

24

Указатели напряжения:

однополюсные

0,75

1

0,6

12

Двухполюсные

0,60

1

4

12

Диэлектрические перчатки

6

1

6

6

Инструменты с изолирующими рукоятками

2

1

-

12

Диэлектрические галоши

3,5

1

2

12

Перед каждым применением средств индивидуальной защиты персонал обязан: очистить и протереть пыль; проверить исправность и отсутствие внешних повреждений; диэлектрические перчатки проверить на отсутствие проколов, а диэлектрические коврики - на отсутствие трещин, пузырей, каверн, заусенцев. Прокол диэлектрических перчаток легко установить закручиванием последних к пальцам. Герметичность проверяют по отсутствию выхода воздуха из перчаток или пузырей при погружении их в воду. Дефекты в диэлектрических ковриках очень легко обнаружить при их перегибах. Необходимо также проверить по штампу, для какого напряжения допустимо применение данного защитного средства и не истек ли срок периодического испытания. Пользоваться средствами индивидуальной защиты, у которых срок эксплуатации истек, категорически запрещается. Диэлектрические перчатки подлежат периодическим испытаниям один раз в 6 мес., диэлектрические коврики - один раз в два года. (табл.3.4 5)

При выполнении различных видов работ для соблюдения безопасности обычно применяют переносные заземления. Переносное заземление - надежное средство защиты при работе на отключенных участках, оборудовании или линиях на случай ошибочной подачи напряжения на участок работ. Переносное заземление состоит из гибких медных проводов (для заземления и закорачивания между собой всех трех фаз установки) сечением не менее 25 мм2 и зажимов для присоединения закорачивающих проводов к заземляющей шине (полосе) или электроду. Допускается применение отдельного переносного заземления для каждой фазы.

Работы по устройству переносного заземления осуществляются в следующей последовательности. Вначале присоединяют заземляющий провод к "земле" (очагу заземления), после чего проверяют отсутствие напряжения на заземляемых токоведущих частях. При отсутствии напряжения с помощью штанг или руками в диэлектрических перчатках накладывают зажимы закорачивающих проводов. Снимают заземление в обратном порядке. Все операции по наложению и снятию переносного заземления выполняются в диэлектрических перчатках.

8. Мероприятия, предупреждающие об опасности поражения электротоком

Мероприятия по предупреждению поражения электрическим током являются надежной мерой по снижению электротравматизма. Звуковая и световая сигнализация, применяемые в большинстве случаев одновременно, являются, в данном случае, наиболее распространенным и доступным средством. Электролампочки своим цветом указывают работающему лицу на состояние установки. Зеленая, например, сигнализирует о снятии напряжения электроустановки, красная - о подаче опасного напряжения на электроустановку. Таким образом, звонок, сирена или красная лампочка обычно предупреждают о появлении опасного напряжения на электроустановке.

Другим видом сигнализации, предупреждающей персонал об опасности, являются плакаты и схемы, размещаемые в соответствующих местах электроустановок.

Плакат - одно из наиболее эффективных и доступных средств пропаганды правил и мер безопасности. Предупредительные плакаты являются предостерегающими, запрещающими, разрешающими и напоминающими.

Маркировка оказывает также существенное влияние на предупреждение электротравм, служит для распознавания назначения и принадлежности различных частей электрооборудования, кабелей и проводов. В первую очередь следует маркировать распределительные устройства, распределительные пункты и щиты.

Маркировка должна устанавливаться стандартами и широко использоваться для различного рода предупреждающих обозначений и сигналов.

9. Электробезопасность на производстве

Воздушные линии электропередачи. Обеспечение электроэнергией производство начинается с сооружения ЛЭП. Монтаж линий и все монтируемые электроустановки должны удовлетворять требованиям Правил устройства электроустановок (ПУЭ). На опорах воздушных линий нулевой провод должен располагаться ниже фазных проводов, а провода наружного освещения (если они необходимы) прокладываются под нулевым проводом. Расстояние от нижнего провода до земли, пола, настила при наибольшей стреле провеса должно быть не менее (м): 2,5 - над рабочими местами; 3,5 - над проходами; 6,0 - над проездами (ГОСТ 12.1 013-78).

Одним из опаснейших мест на производство является невысокая подвеска проводов временных электролиний в местах проезда машин. Опасность поражения может возникнуть при провозке грузов с большими габаритами, при движении по скользкой дороге, имеющей уклон, с поднятым кузовом при движении и работе автокранов.

Крючья и штыри изоляторов фазных проводов на железобетонных опорах должны быть заземлены через стальную арматуру опоры или через проложенные по опорам заземления в сетях с изолированной нейтралью, а в сетях с заземленной нейтралью арматура железобетонных опор должна быть соединена с нулевым заземленным проводом.

Минимальное сечение проводов из условия механической прочности должно быть не менее (мм2): 16 - для алюминиевых, однопроволочных; 5 - для оцинкованных стальных однопроволочных; 25 - для стальных многопроволочных проводов.

Периодический осмотр воздушной линии производится электромонтером один раз в месяц, а внеочередной - после аварий, ураганов, при морозе ниже 40°С, гололеде, пожаре вблизи линии.

Электродвигатели. Различные виды работ на производство выполняют с помощью электроустановок. При этом устройство электрических сетей осуществляется так, чтобы можно было отключать все электроустановки в пределах участков работ.

Электромонтажные работы (присоединение и отсоединение проводов, ремонт, наладка) выполняет персонал, имеющий квалификационную группу по технике безопасности, после снятия напряжения со всех токоведущих частей и их заземления. Зона производства работ ограждается сплошным или сетчатым ограждением. На производство работ выдается наряд-допуск, в котором указываются меры по электробезопасности. Перед допуском к работе с действующими электроустановками рабочих инструктируют на рабочем месте.

Рабочее напряжение на вновь смонтированную электроустановку может быть подано только по решению рабочей комиссии.

Выключатели, контакторы, магнитные пускатели, рубильники, пускорегулирующие устройства, предохранители должны иметь надписи, указывающие, к какому двигателю они относятся.

При производстве работ по регулировке выключателей и разъединителей, соединенных проводами, должны быть приняты меры по предупреждению непредвиденного включения. При кнопочном включении и отключении оборудования и механизмов кнопки должны быть заглублены на 3-5 мм за габариты пусковой коробки.

Для предупреждения несчастных случаев кнопки пуска (аппараты управления) следует располагать непосредственно у механизма и блокировать их со звуковой и световой сигнализацией. При перегрузке электродвигателей устанавливается аварийная защита на их отключение. Плавкие вставки предохранителей должны быть калиброваны с указанием на клейме завода-изготовителя номинального тока вставки Iст.

Выбор плавких вставок для защиты от многофазных замыканий электродвигателей механизмов с легкими условиями пуска определяется номинальным током вставки:

Для двигателей механизмов с тяжелыми условиями пуска (частые пуски)

(3.4 40)

Для наблюдения за пуском и работой электродвигателей механизмов на пусковом щитке устанавливается амперметр, измеряющий ток в цепи статора электродвигателя.

Вибрация электродвигателя, измеренная в каждом подшипнике, не должна превышать значений, приведенных ниже.

Таблица6.

Синхронная частота вращения, об/мин

3000

1500

1000

750 и ниже

Допустимая амплитуда вибрации подшипника, мм

0,05

0,10

0,13

0,16

Электродвигатели немедленно отключаются, если создается угроза несчастного случая, при появлении дыма, огня, вибрации выше допустимых норм, поломке приводимого механизма, перегреве подшипников и электродвигателя.

Распределительные устройства (щиты, пульты, щитки) должны соответствовать требованиям ПУЭ и закрываться сплошными ограждениями. Если распределительные устройства содержатся в помещениях, доступных для не электротехнического персонала, они должны находиться на высоте не менее 2,5 м.

Все щитки на производство должны быть снабжены надписями, указывающими номер щитка, назначение или номер, каждой отходящей линии, положения "Включено" и "Отключено". При монтаже и эксплуатации необходимо следить, чтобы расстояния между укрепленными голыми частями разной полярности, а также между ними и неизолированными металлическими частями были не менее 12 мм по воздуху, а плавкие калиброванные вставки соответствовали данному типу предохранителей.

Для предупреждения электротравматизма распределительные устройства подлежат осмотру и чистке не реже одного раза в три месяца, текущему ремонту не реже одного раза в год и капитальному ремонту не реже одного раза в три года.

Электроинструменты. На производство электроинструменты должны храниться в сухом помещении.

Контроль сохранности и исправности электроинструмента осуществляется специально назначенным лицом, имеющим квалификационную группу по технике безопасности не ниже III.

Исправность инструмента заключается: в быстром включении и отключении (но не самопроизвольно) от электросети, отсутствии доступных для случайного прикосновения токоведущих частей и проводов, отсутствии обрыва заземляющего провода электроинструмента. Один раз в месяц необходимо убедиться в отсутствии замыканий на корпус инструмента, осмотреть целостность изоляции проводов. Перед выдачей электроинструмента рабочему проверяется затяжка болтов, крепящих узлов, отдельных деталей, исправность редуктора вращением шпинделя рукой при отключенном электродвигателе, состояние щеток и коллектора, целостность изоляции, отсутствие оголенных проводов, исправность заземления. Выдавать рабочим инструмент, имеющий дефекты, категорически запрещается.

Эксплуатация электроинструмента и ручных электрических машин.

Согласно ГОСТ 12.2 007.0-75* и ГОСТ 12.2 013-75*, электроинструмент и ручные электрические машины по способу защиты человека от поражения электрическим током делятся на три класса:

І класс - изделия с рабочей изоляцией всех деталей, находящихся под напряжением, и штепсельными вилками с заземляющим контактом;

ІІ класс - изделия, у которых все детали, находящиеся под напряжением имеют двойную или усиленную изоляцию. Эти изделия не имеют устройства для заземления;

ІІІ класс - изделия с номинальным напряжением не более 42В, у которых ни внутренние, ни внешние электрические цепи не находятся под другим напряжением тока.

В зависимости от степени защиты от влаги электроинструмент и ручные электрические машины изготовляют в следующих исполнениях: незащищенные, брызгозащищенные, водонепроницаемые.

При работе в помещениях без повышенной опасности напряжение электроинструмента должно быть не более 220В. При работе в помещениях с повышенной опасностью и вне помещений напряжение электроинструмента должно быть не более 36В.

При невозможности подать напряжение 36В разрешается работа электроинструмента напряжением до 220В при наличии защитного отключения или надежного заземления корпуса с использованием защитных средств (коврика, галош, диэлектрических перчаток). В данных условиях необходимо применять электрические машины II и III классов по ГОСТ 12.2 007.0-75.

При работе машин II класса необходимо применять средства индивидуальной защиты. В особо опасных помещениях разрешается работать электроинструментом на напряжение 36В с обязательным применением защитных средств. В данных условиях необходимо применять электрические машины III класса.

Корпус электроинструмента на напряжение более 36В должен иметь специальный зажим для присоединения заземляющего провода с отличительным знаком "З", или "Земля". Для присоединения электроинструмента к сети должен применяться кабель, а при применении гибкого многожильного провода (типа ПРГ) с изоляцией на напряжение не ниже 500В этот провод помещается в резиновый шланг (рис. 10).

Рис. 10. Подключение электроинструмента в сеть через понижающий трансформатор и его заземление: а, б - сеть однофазного тока, напряжение 36В и более; сеть трехфазного тока, напряжение 36В, 1-заземляющий зажим; 2-заземляющий провод; 3-крепление заземляющей жилы провода к корпусу электроинструмента; 4-шнур.

К работе с электроинструментом и ручными электрическими машинами допускаются лица, имеющие 1 группу по электробезопасности, а к работе с инструментом и машиной класса 1 в помещениях с повышенной опасностью поражения током, особо опасных помещениях и вне помещений - с группой по электробезопасности не ниже 2.

Следует применять инструмент и машины только в соответствии с назначением, указанным в паспорте завода-изготовителя. Машины и инструмент должны иметь инвентарный номер.

И ручной электроинструмент и вспомогательное оборудование подлежат периодической проверке не реже одного раза в 6 мес. В периодическую проверку входят: внешний осмотр; измерения сопротивления изоляции; контроль исправности цепи заземления; проверка работы на холостом ходу в течение не менее 5 мин.

Проверка исправности цепи заземления инструмента и машин класса 1, в соответствии с ГОСТ 12.2 013-75*, должна быть выполнена устройством на напряжении 12В с подключением к заземляющему контакту штепсельной вилки и к доступной для прикосновения металлической части инструмента и машины. Инструмент и машину считают неисправными, если устройство покажет наличие тока.

При организации рабочего места необходимо предусматривать подвеску проводов, кабелей так, чтобы они не соприкасались с металлическими, горячими, влажными, масляными поверхностями или предметами.

Во время перерыва в работе и прекращения подачи тока электроинструмент должен отключаться от сети.

Рабочим, которые получили электроинструменты, категорически запрещается: передавать инструмент другим лицам, разбирать и производить его ремонт, держаться за провод и касаться режущих и вращающихся частей, удалять стружки, опилки и пыль во время работы или до полной остановки, работать на высоте 2,5 м с использованием приставных лестниц. При работе на улице в период грозы, тумана, дождя все работы должны быть прекращены.

Основное силовое электрооборудование (трансформаторы, магнитные станции, распределительные щиты) проверяется и испытывается непосредственно после установки на производство. Электронагреватели бункеров, самосвалов инвентарные щиты греющей опалубки проверяются систематически не реже одного раза в смену. Эта проверка заключается в визуальном осмотре и контроле сопротивления изоляции кабелей, проводов, потреблением тока, то есть - в проверке равномерности загрузки трансформатора по фазам и отсутствии перегрузки по контрольным амперметрам. Периодические испытания изоляции, заключающиеся в замерах сопротивления и электрической прочности изоляции, являются одной из основных мер предупреждения травматизма.

Сопротивление изоляции проводов в установках с напряжением до 1000В на отдельных участках (между предохранителями и токоприемником) должно быть не менее 0,5 МОм (500000 Ом). В сырых помещениях, где изоляция может поглощать влагу и терять свои защитные свойства, сопротивление изоляции проверяют один раз в год, а в особо сырых - не реже двух раз в год.

В тех случаях, когда силовые осветительные проводки имеют пониженное сопротивление, необходимо немедленно принимать меры по восстановлению изоляции или замене проводов. По нормам допускается нагрев проводов до 40°С сверх температуры окружающей среды 25° С. При нагреве проводов до 48°С время службы изоляции сократится наполовину, а при нагреве до 64° С - в 8 раз. Проведенные исследования показывают, что продолжительность службы изоляции класса А (хлопок, бумага, пропитанные или погруженные в изоляционный материал) в электродвигателях при температуре 105°С составляет 15-20 лет. При повышении температуры до 140°С срок эксплуатации сокращается до нескольких месяцев. Быстрое старение сопровождается уменьшением эластичности и механической прочности. Изоляция трескается, ломается и даже возможен ее пробой. В результате перегрева проводов, кроме травмирования рабочих, появляется возможность возникновения пожаров. Если мгновенно не отключить такой участок сети, неизбежно загорание изоляции проводов. Поэтому расстояние от сгораемых конструкций зданий до реостатов (всех исполнений), а также до электродвигателей и аппаратов (за исключением закрытых) должно быть не менее 1,5 м.

Следовательно, важно правильно выбирать сечение проводов, чтобы возрастание тока не привело к перегрузке, т.е. к длительному превышению допустимых значений тока. Это явление часто наблюдается в строительной практике, когда подключаются дополнительные потребители, не учтенные расчетом.

При обследовании электрических сетей, машин, аппаратов важно установить, наблюдаются ли перегрузки в сети. Для этого рабочий ток в сети измеряют амперметром, включенным в начале испытываемого участка. Однако такой способ измерений связан с разрывом электросети, что не всегда возможно. Поэтому ток удобнее измерять электроизмерительными клещами, когда электроцепь не разрывается и напряжение не снимается.

Кроме определения силы тока с помощью приборов ее можно установить, подсчитав общую мощность всех потребителей, включенных на данном участке электрической цепи.

Величина рабочего, тока:

для двухпроводной сети

для трехпроводной

для четырехпроводной сети

для силовой сети трехфазного переменного тока

где Рн - номинальная мощность потребителя; Uл - линейное напряжение в сети; kс - коэффициент спроса, зависящий от количества электроприемников, степени их загрузки, одновременности работы; - коэффициент полезного действия; cos - номинальные токи электрических машин и аппаратов (указаны в паспортных табличках или заводских каталогах).

Перегрузку электросетей, машин и аппаратов устанавливают сравнением рабочего тока, замеренного одним из способов или рассчитанного по формулам, с допустимыми длительными токовыми нагрузками, опреляемыми по таблицам в зависимости от их марок и способа прокладки. Перегрузку электросетей, машин и аппаратов также можно определить, измерив их температуру и сравнив ее с максимально допустимой. Для этой цели используют термометры, термопары и различные термоиндикаторы. В качестве термоиндикаторов широко используются термокраски и термокарандаши, фиксирующие превышение температуры на поверхности двигателя путем изменения окраски.

Если установлено, что рабочий ток превышает допустимые длительные токовые нагрузки, то немедленно находят причины перегрузок и принимают меры по их устранению.

К факторам, повышающим безопасность работ (при напряжении менее 1000 В), относится окраска металлических частей, оборудования, приборов, которые могут оказаться под напряжением. Там, где окраска не повреждена, сопротивление находится в пределах l0…l08 Ом.

10. Статическое электричество и меры защиты людей и оборудования при его эксплуатации от зарядов статического электричества

Электрические заряды, накопленные на диэлектриках вследствие трения их друг о друга или о металл, называют статическим электричеством. При трении в местах соприкосновения на поверхности диэлектрика возникает электрический заряд большой плотности, который вследствие малой электропроводности диэлектрика исчезает весьма медленно.

Электризация возникает также посредством индукции. На металле проявляется электрический заряд противоположного знака, который растекается с равномерной плотностью по его поверхности. Явления электризации возникают в самых разных условиях: при движении жидкости по трубопроводам; при сливе, наливе, перекачке и переливании жидкости падающей струей; при движении по трубопроводам и выходе из сопла сжатых и сжиженных газов; при перемешивании веществ в смесителях; при фильтрации воздуха и газа; при работе ременных передач, выполненных из различных непроводящих материалов, при измельчении, обработке и транспортировке материалов на органической или полимерной основе и т.п.

Разность потенциалов при электризации диэлектриков может достигать очень высоких напряжений. Так, например, при перекачивании бензина через трубопровод, имеющий изолированный участок, величина потенциалов между изолированным участком трубопровода и землей колеблется в пределах 1460-14600 В.

Накопившаяся энергия представляет большую опасность и может проявиться в виде искрового разряда. Освободившаяся в виде искры энергия 0,01 Дж способна обусловить возникновение пожара и взрыва. Опасность искрового разряда в воздухе возникает уже при напряжении 300 В. Для выравнивания потенциалов и предотвращения искрения все параллельно идущие трубопроводы, при расстоянии между ними до 100 мм, следует соединить между собой перемычками через 20-25 м. Каждая система оборудования и трубопроводов должна быть заземлена не менее, чем в двух местах. Наличие заземления необходимо проверять мегомметром или тестером не реже одною раза в шесть месяцев и после каждого ремонта оборудования.

Для снятия электростатических зарядов, возникающих при наливе, перекачке и транспортировке нефтепродукта, все металлические насосы, трубопроводы, цистерны и другие устройства необходимо металлически соединить между собой. Ручные приемники (бочки, бидоны) должны быть хорошо заземлены либо посредством специального соединения, либо плотного контакта с объектом, если конструкция системы, снабжающей нефтепродуктом, сама хорошо заземлена.

При разливе жидкостей-диэлектриков в сосуды из изолирующих материалов (стекла и др.) следует применять воронки из электропроводящего материала, которые заземляются и с помощью медного троса соединяются с подводящим шлангом. Воронка должна достигать дна сосуда, в противном случае конец заземленного троса необходимо пропустить через воронку до дна сосуда, чтобы жидкость стекала по этому тросу.

При защите жидких и газообразных веществ от статического электричества необходимо знать, что более интенсивная электризация характерна для жидкостей, которые имеют более высокое электрическое сопротивление. При электрической проводимости менее 109 Ом/см жидкости склонны к сильной электризации.

Интенсивность электризации прямо пропорциональна скорости подачи жидкого нефтепродукта. Подача сплошной и плавной струей способствует электризации в меньшей степени, чем при свободно падающей струе с разбрызгиванием. Разность потенциалов при свободном падении струи жидкости в емкость, а также при длительном времени и большой скорости истечения жидкостей достигает 18 000-20 000 В.

Наибольшая электризация наблюдается в трубопроводах, изготовленных из низкоуглеродистых сталей. Шероховатость поверхности трубопроводов приводит к завихрениям жидкости при ее движении, из-за чего усиливается электризация нефтепродукта.

Электризация жидкости возникает и усиливается лишь в некоторых наиболее благоприятных для электризации местах (клапаны, насосы, изменения сечения трубопровода). На других участках электризованная жидкость или теряет свои заряды, или только сохраняет полученный заряд.

При наполнении емкостей следует загрузочные трубы доводить до днища; загрузку производить через отверстия с большим поперечным сечением, не допуская соприкосновения струи жидкости со стенками емкости и поверхностью жидкости. При загрузке в пустую емкость, а также если выпускаемое отверстие загрузочного патрубка невозможно погрузить в жидкость, заполнение следует производить со скоростью, не превышающей 0,5-0,7 м/с. Введение в состав нефтепродуктов антистатических присадок повышает их электропроводность, а следовательно, ослабляет опасные проявления статической электропроводности.

Сливные резиновые шланги с металлическими наконечниками для налива в бочки должны быть заземлены медной проволокой, обвитой по шлангу снаружи с шагом 0,1м или пропущенной внутри, с припайкой одного конца к металлическим частям продуктопровода, а другого - к наконечнику шланга. Наконечники шлангов должны быть изготовлены из металла (бронза, алюминий), не дающею искры при ударе. Отбор проб жидкостей из емкостей (резервуаров) во время их заполнения или опорожнения запрещается, следует производить лишь после того, как жидкость придет в спокойное состояние.

Значительное накопление статического электричества может происходить на технологическом оборудовании и представляет опасность для окружающих. Для предупреждения возможности опасных искровых разрядов с поверхности оборудования предусматривают следующие меры:

заземление всех металлических и электропроводящих частей технологического оборудования;

уменьшение удельного поверхностного электрического сопротивления материалов-диэлектриков; повышение относительной влажности воздуха до 65 - 70% (если это позволяет условия производства);

охлаждение электризующих поверхностей до температуры на 10оС ниже температуры окружающей среды;

нейтрализация разрядов статического электричества путем ионизации воздуха рабочего пространства (воздействие сильного электрического поля или радиоактивного излучения); - применение нейтрализаторов коронного разряда;

применение гидрофильных добавок при возможности увлажнения продуктов и материалов или применение гидрофобных добавок с высокими электропроводными свойствами;

изменение режима технологического процесса (ограничение скорости транспортировки, обработки, истечения), замена взрыво- и пожароопасных веществ на менее опасные и т.д.

применение токопроводящих полов.

Покрытие пола и обувь считаются электропроводящими, если сопротивление между электродом, установленным на полу, и землей или между электродом внутри обуви и наружным электродом не превышает 106 Ом/см2.

Заряды статическою электричества могут накапливаться на теле человека, особенно при пользовании обувью с непроводящими электричество подошвами, одеждой и бельем из шерсти, шелка и искусственных волокон, при передвижении по непроводящему покрытию пола и при выполнении ряда ручных операций с веществами-диэлектриками.

Высокое поверхностное сопротивление тканей человека затрудняет стечение зарядов, которые накапливаются на теле, и человек длительное время может находиться под большим потенциалом. Потенциал изолированного от земли тела человека может достигать 7000В и более, а максимальная энергия, освобождающаяся при искровом разряде с него, может составлять 2,5-7,5 мДж. Человек под воздействием электростатических разрядов испытывает неприятные ощущения, удары, теряет равновесие.

При работе со взрывоопасными веществами в стесненных условиях, в помещениях, где возможно образование на теле человека электростатических зарядов, следует избегать ношения одежды из синтетических материалов (нейлона, перлона и т.п.) и шелка, а также не рекомендуется ношение колец, браслетов, на которых аккумулируются заряды статического электричества. При выполнении работ в зоне с возможным накоплением статического электричества рекомендуется его отводить при помощи электропроводной обуви, антистатического халата, электропроводной подушки стула, легко снимаемых электропроводных браслетов, соединенных с землей через сопротивление 105 - 107Ом. Хорошими электропроводными свойствами обладают покрытия из бетона, антистатического линолеума, электропроводной резины и т.д.


Подобные документы

  • Опасность поражения человека электрическим током. Влияние электрического тока на организм человека, основных параметров электротока на степень поражения человека. Условия поражения электрическим током. Опасность при замыкании тоководов на землю.

    реферат [1,0 M], добавлен 24.03.2009

  • Понятие и особенности электротравм. Действие электрического тока на человека. Факторы окружающей среды, электрического и неэлектрического характера, влияющие на опасность поражения человека током. Методы безопасной эксплуатации электроустановок.

    реферат [54,0 K], добавлен 22.02.2011

  • Величина тока и его действие на организм, электрическое сопротивление тела человека. Степени электрических ударов, их характеристика. Причины смерти от электрического тока. Правила электробезопасности и методы защиты от поражения электрическим током.

    реферат [19,8 K], добавлен 16.09.2012

  • Виды поражения организма человека электрическим током. Факторы, определяющие исход воздействия электричества. Основные способы обеспечения электробезопасности. Оказание помощи пострадавшему от электрического тока. Безопасное напряжение, его значения.

    презентация [2,1 M], добавлен 17.09.2013

  • Виды поражений электрическим током. Электрическое сопротивление тела человека. Основные факторы, влияющие на исход поражения током. Критерии безопасности для электрического тока. Организационные меры по обеспечению электробезопасности на производстве.

    реферат [29,1 K], добавлен 20.04.2011

  • Сущность и значение электробезопасности, законодательные требования к ее обеспечению. Особенности действия электрического тока на организм человека. Анализ факторов, влияющих на исход поражения электрическим током. Способы защиты от этого вида поражения.

    контрольная работа [34,7 K], добавлен 21.12.2010

  • Виды поражений электрическим током, электрическое сопротивление тела человека, основные факторы, влияющие на исход поражения током. Виды защиты от опасности поражения электрическим током и принцип их действия, мероприятия по электробезопасности.

    контрольная работа [37,6 K], добавлен 01.09.2009

  • Воздействие электрического тока на организм человека. Четыре степени электротравм. Вероятные причины поражения. Основные принципы оказания первой помощи. Положение пострадавшего при транспортировке. Бинтовые повязки головы и шеи, грудной клетки и живота.

    реферат [29,3 K], добавлен 24.04.2012

  • Действие электрического тока на организм человека. Факторы, определяющие исход поражения электрическим током. Влияния частоты на организм человека. Продолжительность действия тока. Схема, принцип действия и область применения защитного зануления.

    контрольная работа [463,7 K], добавлен 14.04.2016

  • Группы по электробезопасности. Статистика электротравматизма и травм. Факторы, определяющие исход поражения. Величина тока и напряжения. Продолжительность воздействия тока. Сопротивление тела человека. Организация эксплуатации электроустановок.

    презентация [620,1 K], добавлен 09.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.