Реконструкция котла - утилизатора КСТ-80
Анализ энергетического хозяйства цеха теплогазоснабжения ОАО "Урал Сталь". Реконструкция котла-утилизатора КСТ-80 с целью установки конденсационной турбины. Автоматизация и механизация производственных процессов. Безопасность труда и экологичность.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 17.02.2009 |
Размер файла | 600,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Определим возможную наибольшую реактивную мощность, Q1р, квар, которая может быть передана через трансформаторы в сеть 0,4 кВ:
, (48)
квар.
Суммарная мощность конденсаторных батарей Qнк1 квар, на стороне 0,4 кВ составит:
Qнк1= Qрн+Q1р=641,18-777,8=-136,62, квар.
Так как в расчетах оказалось, что Qнк1 меньше нуля, то установка низковольтных компенсирующих устройств на первом этапе расчета не требуется.
Дополнительная мощность, Qнк2 квар, НБК для данной группы трансформаторов определяется:
Qнк2= Qрц+Qнк1-?Nопт ?Sнт,
где - коэффициент, зависящий от расчетных параметров Кр1, Кр2 (Кр1=12, Кр2=2, тогда =0,55).
Qнк2= 641,18+0-0,55?2 ?630=-51,82,
Так как Qнк2 меньше нуля, то принимаем Qнк2=0 и, следовательно, установка НБК в цехе не требуется.
2.6.8 Расчет питающей линии 10 кВ
Определяем сечение по экономической плотности тока Fэ, мм2:
Fэ = Ip/j-э, (49)
где Iр - расчетный ток линии в нормальном режиме, А;
, (50)
где Sp - расчетная нагрузка секции подстанции;
n - количество кабельных линий;
j-э - экономическая плотность тока.
А
Fэ= 21,9/1,4 = 15,6 мм2
По справочнику /9, 45/ принимаем кабель ААБ с бумажной изоляцией и алюминиевыми жилами сечением F=16 мм2 (Iдл.ток.=75 А)
Определяем расчетный ток Iрк, А одного кабеля
Iрк =Ip/n, (51)
где n - число запараллеленных кабелей в одной линии;
Iрк =21,9/2 = 10,95 А;
Проверяем выполнение условия по нагреву в нормальном режиме
I'дл.доп. ? Iрк, (52)
Определяем длительно допустимый ток I'дл.доп., А, кабеля
I'дл.доп. = Iдл.ток ?Кл?Кt, (53)
где Кл - поправочный коэффициент на количество прокладываемых кабелей в одной траншее; по /11, 28/ Кп = 0,9;
Кt - поправочный коэффициент на температуру окружающей среды; при нормальных условиях Кt = 1.
I'дл.доп. = 75?0,9?1 = 67,5 А
Отсюда видно, что условие (52) выполняется, следовательно, кабель по нагреву проходит.
Определим ток одного кабеля IАВ, А, в послеаварийном режиме:
IАВ=2? Iрк (54)
IАВ=2?21,9=43,8 А.
Проверим выбранный кабель по условию нагрева в послеаварийном режиме:
- рассчитаем допустимый ток кабеля I'АВ, А в послеаварийном режиме:
I'АВ= I'дл.доп?КАВ, (55)
где КАВ - коэффициент аварийной перегрузки;
I'АВ=67,5?1,25=84,37 А.
- проверим выполнение условий по нагреву в послеаварийном режиме:
I'АВ? IАВ
84,37?43,8
Проверка выбранного сечения по допустимой потере напряжения
?Uдоп ? ?Up, (56)
где ?Up = ,
здесь n - число кабелей в линии;
P, Q - расчетные нагрузки в кабельной линии;
r=1,95 , x=0,113 - сопротивления одного кабеля Ом/км;
l=0,012 км
?Up = %
Проверка кабеля на термическую стойкость производится по условию:
, (57)
где - установившийся ток короткого замыкания линии, А;
С - коэффициент, учитывающий изменение температуры до и после короткого замыкания; по /11, с. 53/ С = 95;
tпр = tз + tв = 1+ 0,075=1,075 с; (58)
Для вычисления токов короткого замыкания, составим расчетную схему и схему замещения. Расчет производится в относительных единицах, точным методом.
Рисунок 11. Расчетная схема
Рисунок 12. Схема замещения
Задаемся базисными условиями.
Принимаем базисную мощность Sб = 6 МВА (6000кВА)
Базисные напряжения Uб=10,5 кВ
Определим сопротивления элементов схемы, приведенные к базисным условиям.
1) ЭДС генератора Ег:
(59)
2) Сопротивление кабельных линий:
(60)
3) Сопротивление генератора:
(61)
Определим результирующее сопротивление в точке К1:
(62)
Определим базисный ток Iб, кА
(63)
Определим установившийся ток, Iк, кА:
(64)
Определим термически стойкое сечение Fт, мм2:
(65)
Окончательно принимаем сечение кабеля 10 кВ, Fк=16 мм2 - ААБ-10-2 (3?16).
2.6.9 Конструктивное выполнение сети 0,4 кВ
От подстанции до РП сеть 0,4 кВ выполнена проводами АПВ и кабелем ВВГ, проложенными открытым способом по стене на скобах, вбитых в стену.
Провода от РП к электроприемникам проложены скрытым способом, в пластмассовых трубах под полом на глубине 100 мм, при котором обеспечивается высокая надежность и хорошая механическая защита проводов.
2.7 Энергоутилизационная мини-ТЭЦ
После проведенных обследований и расчетов приходим к выводу, что реализовав ряд мероприятий, имеется возможность преобразовать котельную УСТК в энерго-утилизационную мини-ТЭЦ, с установкой двух конденсационных турбогенераторов.
Таблица 27 - Характеристика устанавливаемых блочных турбогенераторов
Параметр |
Значение |
|
Тип блочного турбогенератора |
ТГ-3/6,3-С-1 |
|
Номинальная мощность, кВт |
3 000 |
|
Частота вращения, об/мин: |
||
ротора турбины |
3 000 |
|
ротора генератора |
3 000 |
|
Параметры 3-х фазного электрического тока: |
||
напряжение, В |
6 300 (10 000)* |
|
частота, Гц |
50 |
|
Номинальные параметры сухого насыщенного пара (рабочий диапазон): |
||
абсолютное давление, МПа |
1,4 (1,0 - 1,8) |
|
температура, °С |
280 - 380 |
|
Номинальный расход пара, т/ч |
25,02 |
|
Номинальные параметры охлаждающей воды: |
||
температура, °С |
30 |
|
расход, м3/ч |
900 |
|
Масса турбогенератора, т |
27 |
|
Масса поставляемого оборудования, т |
29,7 |
|
Габариты турбогенератора, м: |
||
длина |
5,8 |
|
ширина |
3,4 |
|
высота |
2,8 |
|
Тип генератора* |
ТК-4 |
* Напряжение и тип электрогенератора оговариваются при заказе.
Охлаждение конденсаторов турбин будет обеспечиваться оборотной технической водой с насосной станции №15, для этого планируется демонтировать два устаревших насоса и на их место поставить новые.
Отдельно устанавливаются: эжектор пароструйный, блок откачки конденсата (регулятор уровня конденсата, два конденсатных электронасоса), аварийный маслобак или аварийный масляный насос, щит КИП.
Турбогенераторы планируется разместить в помещении электромастерской (в настоящий момент используется как склад) непосредственно примыкающей к основному корпусу котельной УСТК
Турбогенераторы состоят из турбины в сборе, синхронного генератора и вспомогательного оборудования, размещенного на общей раме, со встроенными масляным баком и конденсатором
Выводы по специальной части
Произведенные расчеты показывают техническую возможность преобразования котельной УСТК цеха теплогазоснабжения в энергоутилизационную мини-ТЭЦ, что отвечает требованиям современного развития промышленной энергетики. В данном дипломе предусматривается установка 2-х турбогенераторов типа ТГ-3/6,3-С-1, с суммарной электрической мощностью 6 МВт, краткие параметры турбогенераторов представлены в таблице 24.
Таблица 28 - Характеристика блочного турбогенератора
Наименование параметров |
Значение параметров |
|
Номинальная электрическая мощность, кВтПараметры свежего параабсолютное давление, МПатемпература, ?СРасход охлаждающей воды, м3/часНоминальный расход пара, т/час |
3 0001,4 (1,0- 1,8)280- 38090025,02 |
Установка турбин позволит повысить выработку собственной электроэнергии ОАО «Урал Сталь» на 2%.
Демонтаж третьей предвключенной поверхности нагрева позволяет увеличить межремонтный период работы котлов и уменьшить затраты на ремонт. Надежность работы повышается.
3 Автоматизация и механизация производственных процессов
Правильный выбор схемы регулирования и её параметров имеет весьма важное, практически определяющее значение. Этот выбор зависит от тщательного учета требований, которые ставятся условиями регулирования данного агрегата. Так как практически никогда нельзя в полной мере удовлетворить всем требованиям, необходимо особенно тщательно отобрать главные и на их выполнении сосредоточить основное внимание при разработке системы регулирования.
При проектировании системы регулирования необходимо соблюдать условие, при котором всякий выход из строя узла или линии связи должен приводить к остановке агрегата или снижению нагрузки на него. Если этому требованию не удовлетворяет работа какого-либо элемента системы регулирования, то необходимо обеспечить максимальную надёжность этого элемента в любых условиях эксплуатации. Недостаточная надёжность какого-либо узла в системе регулирования может практически сделать нецелесообразным применение автоматического регулирования. Отказ в работе системы или её ложное срабатывание могут привести к более тяжелым последствиям, чем отсутствие регулирования, а уход за ненадежными системами зачастую требует более квалифицированного персонала, чем обслуживание регулируемого агрегата.
Для всякой силовой установки, казалось бы, автоматическое регулирование должно приводить в соответствие производимую и потребляемую мощность. В действительности при такой постановке задачи не выполняется требование о поддержании определенного качества энергии. Для установок переменного тока качество энергии определяется постоянством частоты тока и его напряжения. Поэтому соответствие между потребляемой и производимой мощностью должно обеспечиваться при одновременном поддержании заданного уровня частоты и напряжения переменного тока. Единственный параметр, однозначно определяющий баланс потребления и производства энергии, - частота сети. Любое изменение нагрузки системы обязательно вызывает изменение частоты сети. Поэтому только измерение и поддержание этого параметра на неизменном уровне позволяют выбранным способом не только поддерживать баланс энергий, но и сохранять высокое качество переменного тока. С другой стороны, измерение частоты может производиться в любой точке системы.
В современных условиях экономически нецелесообразно все изменения частоты полностью воспринимать всеми агрегатами энергетической системы. В последнем случае все агрегаты должны быть настолько недогруженными, чтобы у них сохранялась способность воспринять дополнительную нагрузку полностью. Эта недогрузка должна выбираться с большим запасом с учётом недостаточной приемистости блоков. Но недогрузка мощных блоков должна покрываться увеличением нагрузки менее экономичных агрегатов, существующих во всех энергетических системах. Поэтому более целесообразно мощные агрегаты недогружать лишь настолько, чтобы они воспринимали начальное отклонение частоты. Одновременно на наименее экономичных электростанциях следует устанавливать прецизионные регуляторы частоты, которые передавали бы регулируемым агрегатам соответственно увеличенную команду, что приведет к более быстрому изменению их нагрузки и частота системы восстановится раньше, чем мощные агрегаты воспримут все её изменения. Станционный регулятор частоты выполняет так называемое вторичное регулирование. Соответственно этому изменяются условия работы систем регулирования.
В аварийных ситуациях необходимо значительно большее быстродействие, чем это было раньше, поскольку системы регулирования выполняют функции не только поддержания частоты, но одновременно и защиты.
Автоматизация технологических процессов является одним из решающих факторов повышения производительности, обеспечения оптимальных режимов работы оборудования, повышения надежности систем и безопасности работы персонала.
Система контроля позволяет осуществить измерение параметров работы котла по щитовым и местным приборам и своевременно выявлять нарушения важнейших параметров с помощью звуковой и световой сигнализации. Система предназначена для обеспечения экономичной, безопасной эксплуатации и оперативного управления работой котла и его оборудования.
Система защит (блокировок) предусматривает оперативное предотвращение повреждений оборудования при достижении предельных параметров работы котла.
Применяемые в котлах-утилизаторах средства автоматического управления представляют собой комплекс, включающий элементы:
- технологический контроль;
- сигнализацию (предупредительную, аварийную и контрольную);
- технологическую защиту котла-утилизатора от нарушения рабочего процесса;
- автоматическое регулирование (стабилизацию заданного значения регулируемого параметра);
- дистанционное управление запорными и регулирующими органами, операциями пуска и останова механизмов, узлов, агрегатов;
- запорно-регулирующую и аварийную блокировку;
Автоматическое регулирование - важнейший элемент средств автоматического управления, служащий для поддержания заданного значения регулируемого параметра.
Автоматическое регулирование независимо от свойств регулируемого параметра состоит из характерных элементов:
- объекта регулирования;
- автоматического регулятора.
4 Безопасность жизнедеятельности и экологичность
4.1 Анализ опасностей и вредностей на проектируемом объекте
К работе по обслуживанию котлов-утилизаторов допускаются лица не моложе 18 лет, прошедшие медицинское освидетельствование, обученные по профессии аттестованные на знание инструкции по охране труда и имеющие удостоверение на право обслуживания выше указанных объектов, заверенное государственным инспектором Ростехнадзора. Допуск осуществляется после прохождения стажировки по эксплуатации на объектах цеха теплогазоснабжения распоряжением по цеху.
В процессе работы на оператора (машиниста-кочегара) котлов-утилизаторов могут воздействовать опасные производственные факторы, основными из которых являются:
1) воздействие движущихся и вращающихся частей механизмов - при проникновении в опасную зону во время работы механизма (насосы - НКУ-250, ПЭ-100-53 (56), дымососы - ДН-12, мельничные вентиляторы - ВМ-160/850);
2) термические ожоги при прикосновении к неизолированным частям технологических агрегатов, трубопроводов, а также при не использовании средств индивидуальной защиты (СИЗ) или при повреждении тепловой изоляции на поверхности оборудования, трубопроводов (температура неизолированных паропроводов - до 380 °С, трубопроводов питательной воды - до 105 °С);
3) поражение электрическим током при прикосновении с токоведущими частями механизмов, находящихся под напряжением, при отсутствии или неисправности заземления (напряжение: циркуляционные насосы - 0,4 кВ, питательные насосы - 3 кВ, при силе тока до 83 А);
4) разрушение конструкций, трубопроводов и элементов котла (избыточное давление: паропроводы до 1,6 МПа, трубопроводы питательной воды - до 5,6 МПа, барабан котла - 1,8 МПа). В связи с высокими рабочими параметрами котлов-утилизаторов КСТ-80, данное оборудование зарегистрировано в Ростехнадзоре.
5) высота при неисправности перильных ограждений обслуживающих и переходных площадок (максимальная отметка обслуживаемого оборудования 15,5 м);
6) повышенный шум в рабочей зоне при неиспользовании СИЗ (в районе работающих мельничных вентиляторов - 136,5 дБ, насосов - 123 дБ);
7) химические ожоги при проведении щелочения, кислотной либо реагентной промывке оборудования при неиспользовании СИЗ или неосторожном обращении с хим.растворами (NaOH)
Микроклимат рабочего места.
Установленные нормы оптимального микроклимата в рабочей зоне в зависимости от сезона года и тяжести работы приведены в таблице 29.
Таблица 29 - Нормы оптимального микроклимата в рабочей зоне; относительная влажность 60-40%
Сезон года, температура наружного воздуха |
Категория работ |
Температура в рабочей зоне, ?С |
Скорость движения воздуха, м/с |
|
Холодный и переходной; менее +10 ?С |
Легкая I Средней тяжести II а Средней тяжести II б Тяжелая III |
20 - 23 18 - 20 17 - 19 16 - 18 |
0,2 0,2 0,3 0,3 |
|
Теплый; +10 ?С и более |
Легкая I Средней тяжести II а Средней тяжести II б Тяжелая III |
22 - 25 21 - 23 20 - 22 18 - 20 |
0,2 0,3 0,4 0,5 |
На участке УСТК микроклимат в рабочей зоне соответствует требованиям категории работ средней тяжести (II б).
Допустимая область влажности воздуха 40-75%. При влажности более 75% затрудняется испарение пота, менее 40% - наступает пересыхание слизистой оболочки.
Допустимая область подвижности воздуха 0,2-1 м/с. Застойный воздух затрудняет конвекцию; слишком подвижный вызывает сквозняк.
Человеку необходим чистый естественный воздух без примесей пыли, вредных аэрозолей, газов, паров. При наличии в воздухе частиц ядовитых веществ возможно отравление, вредной пыли - заболевание легких (пневмокониоз), угольной пыли (что характерно для участка котельной УСТК) - антрокоз легких.
Избыточная теплота.
Нагретые поверхности котлов, паропроводов, турбин излучают тепловую энергию инфракрасного спектра мощностью в несколько тысяч Вт/м2, в то время как допустимое облучение тела человека в этом диапазоне спектра - не более 350 Вт/м2. Применяют следующие способы защиты от избыточной теплоты: теплоизоляцию горячих поверхностей; экранирование источников излучения поглощающими и отражающими теплоту экранами; воздушные души и вентиляцию; защитную одежду; ограничение длительности работы при больших тепловых нагрузках.
Согласно санитарным нормам температура наружных поверхностей оболочек теплоизоляции не должна превышать 45 ?С. Поэтому излучающие поверхности покрывают тепловой изоляцией: шамотом, изделиями из диатомового кирпича, шлаковой ватой, асбестом со слюдой, минеральной ватой, асбестом, стеклополотном, торкретмассой.
Освещенность рабочих мест и производственных помещений.
Для обеспечения нормальных условий работы все производственные, вспомогательные и бытовые помещения, а также проходы, проезды и определенные участки предприятия должны освещаться. Особенно благоприятен естественный свет, вследствие большого рассеяния, оптимального спектра излучения, наличия ультрафиолетового излучения,
необходимого для жизни человека (длина волны 297 нм) и обеззараживания воздуха (максимальный эффект обеззараживания при длине волны 254 нм).
В производственных помещениях УСТК в данное время применяется естественное освещение, а в вечернее и ночное время - искусственное. Естественное освещение осуществляется тремя способами: боковое через окна; верхнее через световые фонари и комбинированное. Естественная освещенность на рабочем месте в помещении характеризуется коэффициентом естественной освещенности - КЕО. Значения КЕО для производственных зданий расположенных между 45 и 60 ° северной широты, приведены в таблице 30.
Коэффициент естественной освещенности
Искусственное освещение осуществляется комбинацией общего освещения с местным освещением рабочих мест. Выбор системы освещения регламентируется строительными нормами и правилами и зависит от требований технологического процесса, размеров объектов различения и характера зрительных работ.
Таблица 30 - Значения КЕО
Разряд работы |
Характер работ, выполняемых в помещениях |
Размер объекта различения, мм |
Коэффициент естественной освещенности |
||
при комбинированном освещении |
при боковом освещении |
||||
I II III IV V VI |
Особо точные Высокой точности Точные Малой точности Грубые Работы, требую-щие общего на-блюдения за ходом производственного процесса |
0,1 и менее 0,1-0,3 0,3-1,0 1-10 Более 10 - |
10 7 5 3 2 1 |
3,5 2 1,5 1,5 0,5 0,25 |
Таблица 31 - Нормы освещенности некоторых помещений теплоэнергетических установок
Рабочие места |
Освещенность, лк, не менее |
|
Пульты управления, измерительные приборы, указа-тели уровня воды на котлах Машинный зал Фронт котлов, подвал машинных залов, помещения дымососов, вентиляторов топливоподачи, электропо-мещения Зольное помещение, площадки обслуживания, про-ходы за котлами Лестницы оборудования |
300 200 100 50 10 |
По результатам мониторинга микроклимата рабочих мест, предоставленным управлением промышленной безопасности Общества, нормы освещенности и КЕО на участке УСТК соответствуют нормам.
Производственный шум и вибрация.
Работа некоторого оборудования промышленных установок сопровождается значительным шумом, вибрацией и сотрясением. К такому оборудованию относятся дробилки, мельницы, компрессоры, двигатели, вентиляторы, пневматический инструмент и др. Шум, вибрации и сотрясения отрицательно влияют на организм человека и при длительном воздействии могут вызвать профессиональные заболевания.
Основными характеристиками шума являются частотный спектр интенсивности звука и звуковое давление.
Органы слуха человека воспринимают частоты от 20 Гц до 20000 Гц и звуковое давление от до 20 Па. Уровень звукового давления, достигающий болевого порога, составляет 130 дБ при частоте 1000 Гц.
Санитарными нормами установлены допустимые уровни звукового давления. Они приведены в таблице 32.
Таблица 32 - Предельно допустимые уровни звукового давления шума, действующие более 4 часов
Рабочие места, помещения |
Уровни звукового давления, дБ, в октавных полосах со среднегеометрическими частотами, Гц |
||||||||
63 |
125 |
250 |
500 |
1000 |
2000 |
4000 |
8000 |
||
Котельный участок - щит котлов Турбинный участок - щит управления |
95 83 |
87 74 |
82 68 |
78 63 |
75 60 |
73 57 |
71 55 |
69 54 |
Вибрация оборудования, передаваемая через конструкции и пол организму человека, вызывает заболевания с потерей трудоспособности. Предельно допустимые вибрации на рабочем месте в зависимости от частоты колебаний, амплитуды, скорости и ускорения колебательных движений приведены в таблице 33.
Таблица 33 - Предельно допустимые вибрации на рабочем месте
Частота колебаний, Гц |
Амплитуда колебаний, мм |
Скорость колебательных движений, см/с |
Ускорение колебательных движений, см/с2 |
|
До 3 3-5 5-8 8-15 15-30 30-50 50-75 75-100 |
0,6-0,4 0,4-0,15 0,15-0,05 0,05-0,03 0,03-0,009 0,009-0,007 0,007-0,005 0,005-0,003 |
1,12-0,76 0,76-0,46 0,46-0,28 0,28-0,25 0,25-0,23 0,23-0,22 0,22-0,19 0,19-0,17 |
12-14 14-15 15-18 18-27 27-32 32-70 70-112 112-120 |
Для ослабления вибраций под основание оборудования устанавливают виброгасители в виде эластичных прокладок, пружины или пневматические демпферы. Для исключения вибраций и сотрясений от работы машин несущие конструкции здания и площадки не должны соприкасаться с фундаментами машин.
Опасность поражения электрическим током.
Проектирование электроустановок должно осуществляться в соответствии с Правилами устройства электрических установок.
Поражение человека электрическим током может быть в следующих случаях:
прикосновения к токоведущим частям - к одной фазе (полюсу) при нахождении ног на земле или токопроводящем полу;
прикосновение к нетоковедущим, конструктивным частям электроустановки, случайно оказавшимся под напряжением вследствие повреждения изоляции;
разряда через человека, конденсатор или кабель, отключенный от источников питания, но заряженный в соответствии с их его электрической емкостью;
ожогов тела электрической дугой;
воздействия электромагнитного поля.
Степень поражения человека электрическим током зависит от характера помещения, в котором произошло включение человека в цепь тока.
Рекомендуемые номинальные напряжения для электроустановок приведены в таблице 30.
Таблица 34 - Номинальные напряжения для электроустановок и область их применения
Напряжение, В |
Область применения |
|
12 36 65 200 220, 380, 660 Выше 1000 |
Для ручных светильников в помещениях особо опасных Для ручного инструмента Для ручной сварки Для стационарных осветительных установок Для электропривода Для технических целей, кроме освещения, ручных электроприборов |
Взрыво- и пожароопасность.
Помещение котельной УСТК относится к категории пожароопасности В. Для локализации возникших пожаров, опасными факторами при которых являются: открытый огонь, повышенная температура воздуха и предметов, дым, недостаток кислорода в воздухе, предусмотрены укомплектованные по правилам пожарной безопасности пожарные щиты, в комплект которых входит: багор, топор, лом, ведра, огнетушители (ОУ-2 - 2 шт, ОУ-5 - 2 шт, ОУ-10 - 2 шт, ОУ-20 - 2 шт.), ящики с песком.
4.2 Обеспечение безопасности труда
В дополнение к существующим инструкциям по охране труда для операторов котельной УСТК, после проведения мероприятий предлагаемых в данном дипломном проекте, необходимо разработать инструкцию по охране труда для машинистов турбинных установок, в которой в обязательном порядке должны быть рассмотрены:
а) режим пуска и нагружения турбоагрегата по отдель-ным операциям;
б) условия, при которых эксплуатация турбины запре-щается - предельные давление и температура пара- перед турбиной, давление в контрольной ступени, давление отра-ботавшего пара, температура пара в выхлопном патрубке турбины, давление масла в маслопроводе к подшипникам и на регулирование, температура масла после маслоохладителей и в подшипниках;
в) предельный пропуск пара через цилиндры (части);
г) аварийные случаи, при которых турбина должна быть немедленно остановлена.
Пуск турбины должен производиться под руко-водством начальника смены или машиниста цеха (старше-го машиниста), а после выхода из ремонта самой турбины - под руководством начальника цеха или его заместителя.
Для турбин, не имеющих валоповоротного устройства, в местной инструкции должен быть предусмотрен режим пуска в зависимости от времени простоя турбины, а также установлен промежуток времени после останова турбины, в течение которого повторный пуск ее не допускается.
Пуск турбины в эксплуатацию запрещается при следующих дефектах регулирования:
а) если регулирование турбины не удерживает холо-стого хода и при мгновенном сбросе нагрузки скорость вра-щения ротора превышает 110% номинальной величины или величины, указанной заводом-изготовителем турбины для настройки автомата безопасности;
б) при неисправности стопорного клапана, автомата безопасности, электромагнитного выключателя турбины, масляных насосов и устройств их автоматического включения, а также при заедании органов регулирования.
При неисправности обратного клапана отбора работа турбины с соответствующим отбором не разрешается.
Подача пара на уплотнения и прогрев ротора в неподвижном состоянии запрещается, если на этот счет нет специальных указаний завода - изготовителя турбины.
Система регулирования турбины должна удовлетворять следующим требованиям:
а) устойчиво удерживать турбину на холостом ходу при полностью открытых запорных задвижках;
б) обеспечивать при изменении нагрузки плавное, (без толчков) перемещение регулирующих клапанов;
в) удерживать скорость вращения ротора, не вызывающую срабатывания автомата безопасности при мгновенном сбросе нагрузки - от полной до нуля;
г) обеспечивать плотное закрытие стопорных клапанов; у турбин давлением 9,0 МПа и выше плотность закрытия клапанов может быть признана удовлетворительной, если при полном их закрытии установившаяся скорость вращения ротора не превышает 50% от номинального значения;
д) неравномерность регулирования турбины должна быть 4,0±1,0%, а степень нечувствительности - не более 0,5 %.
Состояние стопорного клапана должно проверяться ежедневно путем перемещения шпинделя на некоторую часть хода, если это допускает конструкция.
Автомат безопасности должен быть отрегулирован на срабатывание при повышении скорости вращения ротора турбины на 10-12% сверх номинальной или до величины, указанной заводом - изготовителем.
Проверка автомата безопасности должна производиться после разборки системы защиты и регулирования, длительной стоянки (более 1 мес.) и через каждые 4 месяца работы турбины. При этом после разборки системы регулирования автомат безопасности проверяется посредством повышения числа оборотов; в остальных случаях допускается проверка без повышения числа оборотов.
Аксиальное положение ротора должно проверяться при холостом ходе и наборе нагрузки, при резких изменениях режима работы и при приемке смены.
Для контроля за проточной частью турбин и заносом ее солями должна производиться проверка величины давлений и перепадов давлений по ступеням, а также проверка степени открытия паровпускных клапанов при различных режимах работы.
Для каждой турбины должны быть установлены предельные величины давления в контрольных ступенях.
Масляный пусковой насос, вспомогательные масляные насосы смазки и устройства их автоматического, включения должны проверяться в работе 1 раз в неделю и перед каждым остановом турбины.
Основные паровые эжекторы при наличии резервных групп должны чередоваться в работе каждый месяц.
Маховики задвижек и вентилей, установленных на маслопроводах перед маслоохладителями, должны быть запломбированы.
Вибрация подшипников турбины, турбогенератора и возбудителя должна проверяться:
а) при вводе в эксплуатацию после монтажа;
б) 1 раз в 3 мес.;
в) перед выводом агрегата в капитальный ремонт и при вводе его в работу после капитального ремонта;
г) при заметном повышении вибрации подшипников;
Сетки фильтров охлаждающей воды, у масло- и воздухоохладителей, фильтров в масляном баке и на паропроводах к основным эжекторам должны осматриваться и очищаться по графику, учитывающему местные условия.
Для достижения максимальной экономичности при эксплуатации турбинной установки должны обеспечиваться:
а) нормальные параметры пара, экономический вакуум и отсутствие переохлаждения конденсата;
б) частота проточной части турбины и теплообменных поверхностей, конденсаторов, подогревателей и испарителей;
в) подогрев конденсата и питательной воды в регенеративной установке в соответствии с давлением греющего пара;
г) открытие регулирующих клапанов в соответствии с тепловой и электрической нагрузкой турбины.
Турбина должна быть немедленно отключена воздействием на автомат безопасности и генератор отключен от сети (при отсутствии или отказе в работе соответствующих защит) в случаях:
а) возникновения внезапной сильной вибраций;
б) гидравлического удара;
в) воспламенения масла на турбине и невозможности быстро потушить огонь;
г) появления дыма из подшипников или из генератора;
д) отказа в работе автомата безопасности при повышении скорости вращения ротора турбины до величины, на которую настроек автомат безопасности;
е) понижения уровня масла в баке за нижний предельный уровень;
ж) появления металлического шума в турбине;
з) осевого сдвига ротора, превышающего установленную предельную величину;
и) понижения вакуума до аварийной величины;
к) отклонения параметров свежего пара против установленных верхних и нижних предельных величин;
При заедании стопорных и регулирующих клапанов и невозможности устранения его на ходу турбина должна быть разгружена открытием главных запорных задвижек, а затем остановлена воздействием на автомат безопасности.
Для каждой турбины должна быть определена длительность выбега, соответствующая останову турбоагрегата при нормальном вакууме. В эксплуатации длительность выбега проверяется при всех остановах турбины и записывается в сменный журнал. При отклонении выбега от нормального должна быть выявлена причина отклонения и приняты меры по устранению.
После останова турбины должны быть открыты вентили обеспаривания, а также все дренажи цилиндров (частей) и паровых коробок клапанов.
Насосы конденсатные, циркуляционные, дренажные, грязевые и технической воды имеющие резервные агрегаты, должны чередоваться в работе. Простой каждого из этих насосов в резерве не должен превышать 1 месяц.
При эксплуатации конденсационной установки должны производиться:
а) периодическая проверки воздушной плотности конденсатора с устранением всех неплотностей;
б) проверка водяной плотности конденсатора путем химического контроля качества конденсата с устранением всех неплотностей;
в) профилактические мероприятия; по предотвращению загрязнений конденсатора; если по местным условиям проведение этих мероприятий затруднено, допускается в качестве временной меры периодическая очистка конденсаторов механическим или химическим способом; необходимость применения химических промывов конденсаторов устанавливается в каждом отдельном случае главным инженером электростанции.
Испытания турбины в процессе эксплуатации должны производиться после внесения изменений в ее проточную часть или в тепловую схему установки. Объем и программа испытаний утверждаются главным инженером электростанции. В объеме испытаний должны включаться испытания конденсационной установки и системы регулирования.
Для ремонта турбоагрегатов машинный зал должен быть оборудован одним или двумя подъемными кранами грузоподъемностью, соответствующей весу статора генератора, или самой тяжелой части турбины, поднимаемой при ремонте, если монтаж статора генератора производится специальным приспособлением. Кроме того, цех должен иметь набор такелажных и ремонтных приспособлений и инструмента.
Детали турбин должны быть маркированы, и иметь контрольные шпильки для облегчения и ускорения сборки. Детали оборудования весом более 0,5 т должны иметь на видном месте клеймо с указанием веса.
Капитальный ремонт турбоагрегата должен производиться через год после ввода в эксплуатацию и в дальнейшем 1 раз в 2 года. С разрешения главного инженера энергосистемы допускается в случае необходимости производство капитального ремонта турбоагрегата ежегодно, а также удлинение периода работы между капитальными ремонтами до 3 лет и более, если турбоагрегат работает нормально и по своему состоянию может обеспечить надежную работу в дальнейшем.
Текущий ремонт турбинной установки производится по мере необходимости.
При капитальном ремонте производиться проверка и наладка работы системы регулирования и защитных устройств и определяться статическая характеристика регулирования. Статическая характеристика регулирования определяется также после изменения схемы регулирования.
Зазоры в проточной части турбины, подшипниках, уплотнениях и прочих элементах, установленные заводом-изготовителем, должны строго выдерживаться. При ремонтах должно производиться тщательное измерение этих зазоров с внесением результатов измерения в формуляр турбины. Измерение зазоров в проточной части должно производиться при полном охлаждении турбины.
Подшипники и масляная система всего турбоагрегата находятся в ведении турбинного участка. Проверка и балансировка турбоагрегата выполняются турбинным участком. Ремонт электрической части генератора, включая выемку и обратную установку ротора, а также системы охлаждения генератора выполняется электроцехом.
4.3 Предупреждение и ликвидация чрезвычайных ситуаций
Чрезвычайные ситуации (ЧС) - это нарушение нормальных условий жизни и деятельности работника ОАО «Урал Сталь» и членов их семей, вызванное аварией, катастрофой, стихийным или экологическим бедствием, применением боевых средств поражения и приведшее или могущее привести к людским и материальным потерям.
О возникновении ЧС вас известят длительные гудки электросирен, автомобилей или речевое сообщение по громкоговорящей связи диспетчера ОАО «Урал Сталь».
Наиболее опасные ЧС встречающие на ОАО «Урал Сталь»:
1) авария с выливом (взрывом) или пожаром бензола на складе КХП, железнодорожных цистернах УЖДТ, при транспортировке.
5) газовые аварии с природным, доменным и коксовым газами.
6) пожары ГСМ, маслоподвалов прокатных цехов, кабельных тоннелей ЦСП, природного и коксового газов и т. д.
К ЧС которые потенциально могут произойти в районе котельной УСТК, относятся ситуации под пунктами 1, 5 и 6.
Газовые аварии с природным, доменным и коксовым газами
Поражающие факторы: Сильнодействующие ядовитые, агрессивные жидкости. Зона заражения может накрыть весь комбинат и город. Угарный газ, СО, из состава доменного газа, вытесняет кислород из гемоглобина крови. Утечка газов может сопровождается взрывами, большой разрушительной силы. Характеристика некоторых газов приведена в таблице 35.
Таблица 35 - Характеристика горючих газов
Газы |
ПДК |
Смертельные концентрации мг/л |
Предел взрываемости |
||
% |
мг/л |
||||
природный |
2,28 г/м3 |
- |
5-15 |
28,5-85,5 |
|
доменный |
20 мг/м3 |
3,4-5,7 за 20 - 30 мин |
46-68 |
598-884 |
|
коксовый |
20 мг/м3 |
5-30 |
25-150 |
Способы и средства защиты: Срочная эвакуация кратчайшим путем. Вызывать газоспасателей. Немедленное прекращение огневых работ, устранение источников огня, искр, соблюдение мер пожарной безопасности. Избегать низких, непроветриваемых мест. Держаться наветренной стороны.
Защита: изолирующие противогазы, респираторы, защиту от доменного газа (по угарному газу СО) обеспечивают промышленные противогазы марки: СО, СОХ, М.
Меры первой помощи пострадавшим: быстро вынести в лежачем положение на свежий воздух, освободить стесняющую дыхание одежду. При отсутствии дыхания - сделать искусственное дыхание, дать понюхать нашатырный спирт. При необходимости - дать кислород. Провентилировать помещение. Госпитализировать в ЛПУ МСЧ ОАО «Урал Сталь».
Необходимые действия по ликвидации ЧС: изолировать районы аварии. Провести разведку. В зоне аварии входить в изолирующем противогазе, кислородном респираторе после определения взрывобезопасных концентраций. Соблюдать правила взрыво-пожаробезопасности. Работы выполнять с обязательной страховкой. Главные усилия направлять на перекрытие подачи газа. Перевести цех на аварийный режим работы.
Пожары ГСМ, маслоподвалов прокатных цехов, кабельных тоннелей ЦСП, природного и коксового газов
Поражающие факторы: Быстрое распространение огня, создание зон опасного задымления, выделение угарного газа СО, высокотоксичных веществ может охватить до 25% цехов, а зона задымления накроет весь комбинат и город. Под воздействием угарного газа СО появляется оцепенелость, слабость, безучастность и смерть.
ПДК СО - 20 мг/м3
Опасная концентрация СО - 1 мг/л.
Смертельная доза СО - 25 мг/л.
Пожары, как правило, сопровождаются взрывами емкостей, газов, жидкостей с большим материальным ущербом.
Способы и средства защиты: принять меры по ликвидации очага загораний или локализации огня. Немедленная эвакуация из зоны огня и опасного задымления в сторону противоположную направлению распространения пожара.
Защита: спецодежда, подручные материалы, вода, изолирующие противогазы, кислородные респираторы. Защиту по угарному газу обеспечивают промышленные противогазы: СО, СОХ.
Меры первой помощи пострадавшим: ликвидировать воздействие на тело человека огня, горячих поверхностей, газа или пара. Промыть пораженные участки тела струей холодной воды или обложить снегом на 1520 минут. Вынести из зоны огня, сильного задымления. При первых признаках шока необходимо дать выпить 20 капель валерьяны. При ожогах глаз - холодные примочки из раствора борной кислоты (0,5 чайной ложки на стакан воды). Нельзя касаться руками обожженных участков, вскрывать пузыри. Нельзя срывать обувь и одежду - их надо разрезать и осторожно снять.
При тяжелых обширных ожогах - завернуть в простыню, укрыть потеплее, дать 1-2 таблетки анальгина или амидопирина, напоить теплым чаем. Госпитализировать в ЛПУ МСЧ ОАО «Урал Сталь».
Необходимые действия по ликвидации ЧС: Вызвать ОВПО-3, добровольные пожарные дружины, ВВО. Изолировать район пожара. Взводу особого риска обеспечить тушение пожара в условиях СДЯВ, газов.
Действовать в соответствии с планом пожарной защиты. Усилия направить в соответствии с планом взаимодействия. Тушение электропроводок, газопроводов, кабельных тоннелей осуществлять после отключения, прекращения подачи. Постоянно вести химическую разведку очага пожара, контроль взрывоопасных концентраций. Основные усилия направить на локализацию очага пожара с последующей ликвидацией. Перевести цех на аварийный режим работы.
Авария с выливом (взрывом) или пожаром бензола на складе КХП, железнодорожных цистернах УЖДТ, при транспортировке.
Поражающие факторы: Сильнодействующее ядовитое, вещество. Зона заражения может накрыть весь комбинат и город. Пары бензола нарушают функции нервной системы, печени, проникают через кожу, накапливаются и отравляют организм человека.
ПДК - рабочей зоны - 5мг/м3. ПДК - вне зоны - 1,5 мг/м3.
Смертельные концентрации: 65 мг/л за 5-10 мин.
Опасные концентрации: 25 мг/л за 0,5 часа.
Способы защиты: Срочная эвакуация. Избегать низких и непроветриваемых мест.
Защита: промышленный противогаз марки: А, М, БКФ или гражданский противогаз ГП-5(7) на непродолжительное время. Держаться наветренной стороны, соблюдать меры пожарной безопасности.
5. Анализ технико-экономических показателей и обоснование экономической целесообразности принятых в проекте решений
В связи с резким повышение цен на топливо и энергоресурсы, развитием рыночной экономики одной из первоочередных задач энергетики является внедрение энергосберегающих технологий, рациональное использование ТЭР. Эти факторы приводят к внедрению новых эффективных технологий.
С переходом предприятия на самоокупаемость и самофинансирование, объем внедрения оборудования будет определяться его экономической эффективностью.
Для оценки денежных потоков, которые будут генерировать применяемое техническое решение, необходимо определить объём средств, требуемых для реализации технической части проекта (объём инвестиций) и разницу между доходными и расходными статьями (калькуляция себестоимости).
Ниже рассмотрены механизмы расчёта объёма инвестиций, анализ калькуляции себестоимости до и после реконструкции, построение на основе этого анализа 3-х отчётов: отчёт о себестоимости, отчёт о наращении прибыли, отчёт о движении денежных средств и рассчитаны показатели экономической эффективности (NPV, PI, IRR, PP).
5.1 Метод ЮНИДО в оценке коммерческой эффективности инвестиционного проекта
Для коммерческой оценки эффективности инвестиционного проекта в его развитии применяют специальный метод ЮНИДО, разработанный институтом развития и организации - ООН.
Оценка коммерческой эффективности инвестиционного проекта |
Финансовая оценка |
|
Экономическая оценка |
- отчёт о себестоимости; - простые методы;
- отчёт о прибылях и убытках; - чистая текущая стоимость
- отчёт о движении денежных средств; (NPV);
- прогнозный балансовый отчёт - индекс рентабельности (PI);
(финансовые коэффициенты). - внутренняя норма
доходности (IRR);
- период окупаемости (PP).
Экономическая оценка инвестиций показывает, каков экономический эффект, выраженный в рублях, приносит данный проект за весь период экономической жизни, с учётом удовлетворения требований инвестора.
Чистая текущая стоимость (NPV): этот показатель рассчитывается на основе сравнения доходов и расходов по инвестиционному проекту за весь период экономической жизни:
NPV=I+PV, (68)
где: I - инвестиции, руб.
PV - сумма доходов, руб.
Для определения будущей стоимости FV, руб, сегодняшних денег в финансовой математики используют метод наращения:
FV=P?(1+R)n, (69)
где: P - денежный поток, руб.
R - ставка дисконтирования, %
n - период планирования, лет.
Стоимость будущих денег сегодня PV, руб:
PV=FV/(1+R)n, (70)
Тогда окончательно чистая текущая стоимость NPV, руб, будет равна:
, (71)
Уравнение (71) может иметь 3-и решения:
если I>PVNPV<0, то проект не окупается;
если I=PVNPV=0, то проект только окупается и не приносит доход;
если I<PVNPV>0, то проект окупается и приносит доход, проект принимается.
Индекс рентабельности (PI): этот показатель показывает, сколько денежных единиц суммарной текущей стоимости доходов по проекту приходится на одну денежную единицу вложенных инвестиций в этот проект.
, (72)
Уравнение (33) может иметь 3-и решения:
если PV<IPI<1 и NPV<0, то проект не окупается;
если PV=IPI=1 и NPV=0, то проект только окупается и не приносит доход;
если PV>IPI>1 и NPV>0, то проект окупается и приносит доход, проект принимается.
Внутренняя норма доходности (IRR): этот показатель отвечает на вопрос, какая величина прибыли достигается при реализации проекта.
, % (73)
Уравнение (34) может иметь 3-и решения:
если IRR<RNPV<0, то проект не окупается;
если IRR=RNPV=0, то проект только окупается и не приносит доход;
если IRR>RNPV>0, то проект окупается и приносит доход, проект принимается.
5.2 Расчет себестоимости
1) затраты на химически очищенную воду (ХОВ).
Суммарная производительность котлов - 82 т/ч,
цена 1 м3 ХОВ с ТЭЦ - 8,34 руб.,
утечки составляют 10%, тогда годовые затраты на ХОВ Ззп, руб/год, котельной УСТК составляют:
, руб/год
2) затраты на заработанную плату.
Количество рабочих на участке УСТК - 44 человека:
котельное отделение - 4 смены по 3 человека;
турбинное отделение - 4 смены по 2 человека;
лаборатория - 4 смены по 2 человека;
деаэраторы - 4 смены по 2 человека;
рабочая бригада слесарей - 8 человек.
Средняя заработанная плата с учетом роста 10 000 руб./чел. в месяц, начисления на зарплату - 26%, тогда затраты на зарплату Ззп, руб/год составляют:
, руб/год
3) затраты на ремонт и содержание основных фондов.
По калькуляции за 2006 год по участку УСТК затраты на ремонт составляют 4 919 333 руб. (с учетом капитальных ремонтов). Поскольку турбины устанавливаются новые, то расход только на их содержание по калькуляции 1%, тогда затраты на ремонт и содержание основных фондов Зсоф, руб/год составляют:
, руб/год
4) затраты на общецеховые расходы.
По калькуляции за 2006 год затраты составляют 3 352 590 руб., а с вводом турбогенераторов увеличится на 20%, тогда затраты на общецеховые расходы Зор, руб/год составляют:
, руб/год
Годовые затраты З, руб/год:
руб/год
За год вырабатывается электроэнергии, N, МВт?ч/год:
МВт?ч/год
Себестоимость электроэнергии, Ц, руб/кВт?ч:
руб/кВт?ч
5.3 Расчет объема инвестиций
По данным, приводимым в литературе и интернет-информации стоимость 1 кВт установленной электрической мощности (турбина+электрогенератор) составляет порядка $200. Предлагаемый в данной работе проект предусматривает установку 6 МВт электрической мощности.
Принимаем курс доллара США - 26 руб.
Общие затраты N, руб, составят:
руб.
Воспользовавшись, методическими указаниями к дипломному проекту оцениваем полные капиталовложения.
Таблица 36 - Укрупненная структура сметы капитальных затрат на строительство ТЭС
Наименование главы сметы |
Удельный вес, % |
Затраты, тыс. руб |
|
1 |
2 |
3 |
|
Глава 1. Подготовка территории строительства |
0,5 |
223 |
|
Глава 2. Основные объекты строительства |
70 |
31 200 |
|
Глава 3. Объекты подсобного назначения |
4 |
1 782 |
|
Глава 4. Объекты транспорта и связи |
5 |
2 229 |
|
Глава 5. Наружные сети водоснабжения и канализации |
2 |
891 |
|
Глава 6. Благоустройство и озеленение территории |
1 |
446 |
|
Глава 7. Временные здания и сооружения |
4 |
1 782 |
|
Глава 8. Прочие работы и затраты |
5 |
2 229 |
|
Главы 9, 10. Содержание дирекции и подготовка эксплуатационных кадров |
0,5 |
223 |
|
Глава 11. Проектно-изыскательские работы |
5 |
2 229 |
|
Непредвиденные работы и затраты |
3 |
1 338 |
|
Всего капитальные затраты |
100 |
44 572 |
Таким образом, общие капиталовложения составят 44 млн. 572 тыс. рублей.
5.4 Расчет основных экономических показателей
Рассматривается инвестиционный проект стоимостью 44,572 млн. руб. Себестоимость выработки электроэнергии составляет 529 руб./МВт?ч. Цена покупной электроэнергии 1 084 руб./МВт?ч.
Учитываем, что рентабельность активов предприятия составляет R=14,39%, а период экономической жизни проекта 10 лет. Установленная электрическая мощность Nуст=6 МВт, время генерации электроэнергии 7 000 часов в год. Амортизация 10% от инвестиций.
За базовый год вырабатывается 42 000 МВт?ч электроэнергии при себестоимости 529 руб./МВт?ч. Годовые затраты составляют 22 234 302 руб/год.
При покупке такого же количества электроэнергии (42 000 МВт?ч) у ОАО «Межрайонные электрические сети» годовые затраты составят: 45 528 000 руб/год.
Экономия на издержках составляет: 23 293 698 руб/год.
Показатели |
Интервалы планирования, год |
|||||||||||
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
||
Приток: |
||||||||||||
Приток инвестиций, тыс. руб. |
-44 572 |
|||||||||||
Экономия на издержках, тыс. руб. |
23 293 |
23 293 |
23 293 |
23 293 |
23 293 |
23 293 |
23 293 |
23 293 |
23 293 |
23 293 |
||
Амортизация, тыс. руб. |
4 457 |
4 457 |
4 457 |
4 457 |
4 457 |
4 457 |
4 457 |
4 457 |
4 457 |
4 457 |
||
Итого, тыс. руб: |
27 750 |
27 750 |
27 750 |
27 750 |
27 750 |
27 750 |
27 750 |
27 750 |
27 750 |
27 750 |
||
Отток: |
||||||||||||
Налог на прибыль (24%), тыс. руб. |
5 590 |
5 590 |
5 590 |
5 590 |
5 590 |
5 590 |
5 590 |
5 590 |
5 590 |
5 590 |
||
Налог на имущество, тыс. руб. |
595 |
535 |
476 |
416 |
357 |
297 |
238 |
178 |
119 |
59 |
||
Дивиденды, (14,39%), тыс. руб. |
3 352 |
3 352 |
3 352 |
3 352 |
3 352 |
3 352 |
3 352 |
3 352 |
3 352 |
3 352 |
||
Итого, тыс. руб: |
9 537 |
9 478 |
9 418 |
9 359 |
9 299 |
9 240 |
9 180 |
9 121 |
9 061 |
9 002 |
||
Сальдо денежных средств, тыс. руб. |
18 213 |
18 273 |
18 332 |
18 392 |
18 451 |
18 511 |
18 570 |
18 630 |
18 689 |
18 749 |
Таблица 37 - Отчет о движении денежных средств
Таблица 38 - Отчет о приращении прибыли
Показатели |
Интервалы планирования, год |
|||||||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Итого |
||
Экономия на издержках, тыс. руб. |
23293 |
23293 |
23293 |
23293 |
23293 |
23293 |
23293 |
23293 |
23293 |
23293 |
232930 |
|
Налог на имущество, тыс. руб. |
595 |
535 |
476 |
416 |
357 |
297 |
238 |
178 |
119 |
59 |
3272 |
|
Налог на прибыль 24%, тыс. руб. |
5590 |
5590 |
5590 |
5590 |
5590 |
5590 |
5590 |
5590 |
5590 |
5590 |
55903 |
|
Наращение прибыли, тыс. руб. |
17108 |
17167 |
17227 |
17286 |
17346 |
17405 |
17465 |
17524 |
17584 |
17643 |
173755 |
|
Дивиденды, 14,39%, тыс. руб. |
3352 |
3352 |
3352 |
3352 |
3352 |
3352 |
3352 |
3352 |
3352 |
3352 |
33519 |
|
Нераспределенная прибыль, тыс. руб. |
13756 |
13815 |
13875 |
13934 |
13994 |
14053 |
14113 |
14172 |
14232 |
14291 |
140236 |
Таблица 39 - Показатели финансовой оценки инвестиционного проекта
n |
Инвестиции, I тыс. руб |
Денежный поток Pi тыс. руб |
(1+R)n |
Текущая стоимость PV=Pi/(1+R)n, тыс. руб |
Чистая текущая стоимость NPV=I+?PV тыс. руб |
|
0 |
-44 572 |
|
|
|
|
|
1 |
|
18 213 |
1,14 |
15 922 |
-28 650 |
|
2 |
|
18 273 |
1,31 |
13 964 |
-14 686 |
|
3 |
|
18 332 |
1,50 |
12 248 |
-2 438 |
|
4 |
|
18 392 |
1,71 |
10 742 |
8 303 |
|
5 |
|
18 451 |
1,96 |
9 421 |
17 724 |
|
6 |
|
18 511 |
2,24 |
8 262 |
25 986 |
|
7 |
|
18 570 |
2,56 |
7 246 |
33 232 |
|
8 |
|
18 630 |
2,93 |
6 355 |
39 587 |
|
9 |
|
18 689 |
3,35 |
5 573 |
45 160 |
|
10 |
|
18 749 |
3,84 |
4 888 |
50 048 |
|
Итого |
184 808 |
94 620 |
В результате расчётов с использованием экономико-математической модели получено значение NPV проекта равное 50 048 000 руб.
Результаты расчёта внутренней нормы прибыли проекта также приводится в таблице 39. Осуществляя этот расчёт методом итерации, остановились на значении ставки R равном 0,4768. При таком значении ставки R величина внутренней нормы прибыли проекта NPV близка к нулю. Следовательно, внутренняя норма прибыли проекта IRR составляет около 0,397 (?39,7 %).
Применяя формулу (72) определяем индекс рентабельности инвестиций:
руб/руб
Так как PI > 1, то проект принимается.
Срок окупаемости инвестиций равен:
года
Анализ полученных результатов показывает, что капиталовложения полностью покрываются дисконтированными доходами проекта на 2-ом интервале планирования от начала эксплуатации проекта. Следовательно, период окупаемости капиталовложений составляет 3 года 83 дня.
Список используемых источников
1. Л.Н. Сидельковский. Котлы-утилизаторы и энерготехнологические агрегаты: учебник / А.П.Воинов, В.А.Зайцев, Л.И. Куперман, Л.Н. Сидельковский - М.: Энергоатомиздат, 2003.- 272 с.- ISBN 5-283-00264-0
2. В.А.Григорьев, В.М.Зорин. Промышленная теплоэнергетика и теплотехника: справочник / А.М. Бакластов, В.М. Бродянский, Б.П.Голубев, В.А. Григорьев, В.М. Зорин: - М.: Энергоатомиздат, 1983.-552 с.
Подобные документы
Назначение и компоновка котла-утилизатора КУ-150. Краткое описание технологической схемы и газового тракта. Конструкция и характеристики котла при работе в паровом и в водогрейном режиме. Расчета экономического эффекта реконструкции данного котла.
дипломная работа [208,4 K], добавлен 23.05.2015Технология производства серной кислоты и продуктов на ее основе. Разработка конструкции узлов котла-утилизатора. Механизация обслуживания и ремонтных работ участка котла-утилизатора. Разработка технологического процесса изготовления "барабана канатного".
дипломная работа [774,9 K], добавлен 09.11.2016Устройство котла-утилизатора П-83. Порядок определения энтальпий газов и коэффициента использования тепла. Особенности расчета пароперегревателей, испарителей и экономайзеров высокого и низкого давления, а также дополнительного и кипящего экономайзеров.
контрольная работа [154,4 K], добавлен 25.06.2010Определение теплофизических характеристик уходящих газов. Расчет оптимального значения степени повышения давления в компрессоре газотурбинной установки. Расчет котла-утилизатора, построение тепловых диаграмм котла. Процесс расширения пара в турбине.
курсовая работа [792,5 K], добавлен 08.06.2014Описание котельной: тепловые нагрузки, технологическое решение по установке генерирующих мощностей. Основные технические характеристики газовой турбины и котла-утилизатора. Принципиальная тепловая схема. Баланс энергии компрессора. Выбор токопроводов.
дипломная работа [1,8 M], добавлен 14.03.2013Термодинамическая эффективность работы котла-утилизатора. Расчет процесса горения топлива в топке котла, котельного агрегата. Анализ зависимости влияния температуры подогрева воздуха в воздухоподогревателе на калориметрическую температуру горения топлива.
курсовая работа [1,3 M], добавлен 22.10.2012Назначение, технические характеристики и принцип работы парового барабанного водотрубного котла с естественной циркуляцией Е-50. Выбор контролирующих приборов для автоматизации котельной установки. Расчет затрат и экономической эффективности проекта.
дипломная работа [2,4 M], добавлен 25.06.2012Обоснование выбора типоразмера котла для ТЭС и турбины. Компоновка котла, особенности его конструкции и работы. Схема компоновки. Топливо. Его характеристики. Процессы и параметры топливного тракта. Схема топливоподачи. Тракты дымовых газов. Параметры.
курсовая работа [2,6 M], добавлен 02.10.2008Подготовка исходных данных по топливному газу и водяному пару. Расчет процесса горения в печи. Тепловой баланс печи, определение КПД печи и расхода топлива. Гидравлический расчет змеевика печи. Тепловой баланс котла-утилизатора (процесс парообразования).
курсовая работа [200,1 K], добавлен 15.11.2008Общая характеристика и особенности конструирования корпуса вулканизационного котла. Описание основных технических свойств и принципов обработки стали ВСт3. Методика проверки условий прочности от внутреннего давления вулканизационного котла с его стенкой.
контрольная работа [58,2 K], добавлен 16.11.2010