Получение и исследование биоактивных композиций на основе полиэтилена высокой плотности и крахмала
Синтетические композиционные биоразлагаемые пластики. Биоразлагаемые пластические массы на основе крахмала. Органолептические и физико-химические показатели модифицированного крахмала. Методика рентгеноструктурного анализа, биоразложение в почве.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 18.02.2011 |
Размер файла | 6,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Продукт предназначен для использования в качестве стабилизатора буровых растворов с различной степенью минерализации.
Модифицированный крахмал для бурения выпускается двух марок:
· марка МК-1 (без добавления реагентов), предназначается для химической обработки высокоминерализованных глинистых растворов (с содержанием солей не менее 20%);
· марка МК-2 с добавлением реагентов (алюминиево-калиевые квасцы), предназначается для буровых растворов с любой степенью минерализации.
По органолептическим и физико-химическим показателям модифицированный крахмал для бурения должен соответствовать требованиям, указанным в таблице 2.2:
Таблица 2.2:
Наименование показателя |
Характеристика и норма |
Метод анализа |
|
Внешний вид |
однородный порошок |
визуально |
|
Массовая доля влаги, % не более |
12 |
по ГОСТ 7698 |
|
Степень помола (остаток на сите, снабженном проволочной сеткой № 1), % не более |
10 |
по п.3.3 |
|
Стабилизирующая способность по водоотдаче бурового раствора, см не более |
8 |
по п.3.4 |
Изготовитель гарантирует соответствие качества выпускаемого модифицированного крахмала для бурения при соблюдении потребителем условий хранения и транспортирования.
Срок годности модифицированного крахмала для бурения - один год со дня выработки.
Крахмал ТУ-9187-144-00008064-97
Крахмалит - кукурузный модифицированный крахмал, получаемый путем термической обработки крахмало-белковой суспензии на вальцовой сушке.
Предназначен для использования в литейном производстве для стабилизации влаги и повышения пластичности одноразовых формовочных смесей.
По органическим и физико-химическим показателям крахмалит должен соответствовать требованиям, указанным в таблице 2.3:
Таблица 2.3
Наименование показателя |
Характеристика и норма |
Метод анализа |
|
Внешний вид |
Однородный порошок |
визуально |
|
Массовая доля влаги, % не более |
12 |
по ГОСТ 7698 |
|
Набухаемость, см3/г не более |
13 |
по п.3.3 |
|
Степень помола - проход через сито, снабженное проволочной сеткой № 1), % не более |
85 |
по п.3.4 |
Изготовитель гарантирует соответствие качества крахмалита при соблюдении потребителем условий транспортирования и хранения.
Срок годности - один год со дня выработки.
Крахмал кукурузный набухающий пищевой ТУ-9187-016-05747146-95.
Получают из водной суспензии кукурузного крахмала путем высушивания на вальцевой сушилке.
Кукурузный набухающий пищевой крахмал применяется в хлебопекарной, кондитерской, пищеконцентратной отраслях пищевой промышленности, при производстве майонезов, кетчупов.
Таблица 2.4
Наименование показателя |
Характеристика и норма |
Метод анализа |
|
Цвет |
белый, с кремоватым оттенком |
визуально |
|
Запах |
свойственный крахмалу, без постороннего запаха |
ГОСТ Р-50226-92 |
|
Массовая доля влаги, % не более |
12 |
ГОСТ Р-50226-92 |
|
Набухаемость, см3/г не менее |
12 |
П.3.3 ТУ-9187-016-05747146-95 |
|
Степень помола - проход через сито с 0,1 мм, % |
100 |
по п.3.5 |
Набухающий крахмал - новый стабилизатора различных пищевых продуктов, вырабатывается без добавок и является экологически чистым продуктом.
Изготовитель гарантирует соответствие качества крахмала при соблюдении потребителем условий транспортирования и хранения.
Гарантийный срок хранения набухающего крахмала - два года со дня выработки.
Крахмал кукурузный ГОСТ 7697-82
Крахмал кукурузный получается из зерна кукурузы.
Применяется в различных отраслях пищевой промышленности, в производстве соусов, пудингов. Его используют при выпечке булочных и кондитерских изделий в тех случаях, когда нужно придать большую мягкость и нежность продукту (вафельные стаканчики для мороженного, печенье, пекарские смеси и т.д.).
Кукурузный крахмал используют в кондитерской промышленности при отливке мягких конфет и корпусов шоколадных конфет. Этот крахмал широко используют в технических целях в бумажно-целлюлозном производстве, в текстильной и медицинской промышленности. Служит сырьем при производстве патоки и декстрина.
Для производства крахмала должна применяться производственно-кормовая кукуруза по ГОСТ 13634-91.
По органолептическим и физико-химическим показателям кукурузный крахмал должен соответствовать требованиям, указанным в таблице 2.5.:
Гарантийный срок годности крахмала - 2 года со дня выработки при соблюдении условий хранения и транспортирования.
Модифицированные набухающие крахмалы (ОАО "ККЗ", КБР, Майский район, ст. Александровская)
На заводе вырабатывается три вида модифицированных крахмалов:
1. "Крахмал модифицированный для бурения".
2. "Крахмалит".
3. "Крахмал пищевой набухающий".
Получение модифицированных крахмалов проводится на вальцовых голландских сушилках, которые обогреваются паром при определенном давлении. Крахмальная суспензия определенной плотности подается на барабан вальцовой сушилки и, превратившись в клейстер, высушивается в тонком слое. Полученная пленка счищается ножом и поступает в дробильную установку, где через определенные отверстия в сетке выдувается в бункер для расфасовки в мешки.
Модифицированные крахмалы набухающие, прошедшие влаготермическую обработку, приобретают новую структуру, т.е. происходит расщепление полисахаридов крахмальных зерен.
Полученные расщепленные крахмалы обладают способностью набухать в холодной воде и полностью или частично переходить в растворимое состояние.
Технология выпуска этих трех видов модифицированных крахмалов практически одинакова, только зависит от плотности крахмальной суспензии, от химических добавок и от сетки просева.
1. "Крахмал модифицированный для бурения" - это технический крахмал. Для его получения в крахмальную суспензию 40% С.В. добавляют соль-окислитель, алюмокалиевые квасцы (KAl (SO4) 2) · 12H2O, перемешивают в реакторе и подают на вальцовую сушилку. Полученная пленка направляется в дробилку с диаметром сетки 4 мм. Этот крахмал применяется, как стабилизатор глинистых растворов при бурении скважин в газовой и нефтеперерабатывающей промышленности.
2. "Крахмалит" - это также технический крахмал. Вырабатывается по той же технологии, только без добавок, но с повышенной плотностью крахмальной суспензии до 42-44% С.В. и диаметром ячейки сетки 5 мм. "Крахмалит" применяется в литейной промышленности, как формовочный материал при изготовлении паст, т.е. используется как пластификатор и удерживатель избыточной влаги формовочных смесей при работе на автоматических линиях для отливки блоков автомобильных двигателей.
3. "Крахмал пищевой набухающий" - это пищевой крахмал. Вырабатывается также без добавок, но с пониженной плотностью крахмальной суспензии до 36-38% С.В. и просевом через сито с диаметром ячейки 3 мм. Этот крахмал применяется в различной пищевой промышленности, как добавка для сгущения майонезов, кетчупов, томатных паст, повидл, мороженного и т.д., применяется для улучшения качества муки вместо клейковины (на 1 тн муки 5 кг). Этот крахмал используется для производства пудингов быстрого приготовления, для выработки безбелковых продуктов питания - хлеба, макарон и т.д. Также широко применяется для брикетирования корма; агломерации различных продуктов - порошка, руд, угля и т.д.
Качество этих трех видов модифицированных крахмалов оценивается по их способности к набуханию, влагоудержанию и стабилизирующей способности вязкости и растворимости и регламентируется техническими условиями на каждый вид продукции.
Таблица 2.5
Наименование показателей |
Норма для крахмала |
||
высший сорт |
первый сорт |
||
Внешний вид |
Однородный порошок |
||
Цвет |
белый, с желтоватым оттенком |
||
Запах |
Свойственный крахмалу, без постороннего запаха |
||
Массовая доля влаги, % не более |
13 |
13 |
|
Массовая доля общей золы в пересчете на сухое вещество, % не более, в том числе: золы (песка), нерастворимой в 10% соляной кислоте (в крахмале, предназначенном для пищевых целей), % не более |
0, 20 0,04 |
0,30 0,06 |
|
Кислотность расхода 0,1 н. раствора NaOH на нейтрализацию 100 г сухого вещества см 3, не более |
20 |
25 |
|
Массовая доля протеина в пересчете на сухое вещество, % не более |
0,8 |
0,008 |
|
Массовая доля сернистого ангидрида (SO2), % не более |
300 |
500 |
|
Примеси других видов крахмала |
не допускаются |
||
Остаток после ситования 1 дм3 суспензии, содержащей 100 г крахмала, через шелковое сито № 67 или капроновое № 73 в пересчете на сухое вещество, крахмала, % не более |
|||
Цветная реакция с йодом |
- |
- |
2.2 Приготовление образцов
Переработку полиэтилена и композиций осуществляли экструдированием на лабораторном одношнековом экструдере фирмы "Betol" (Великобритания) при температуре 190C.
Пленки ПЭ и композиций на основе полиэтилена и крахмала готовили методом прессования под давлением согласно ГОСТ 16338-85 при температуре 190C и давлении 250 кгс см2. Образцы для измерения деформационно-прочностных свойств с размерами 100 10 1 мм (ГОСТ 25.601-80) получали также методом прессования при температуре 190C и давлении 250 кгс/см2. Фиксация формы изделия происходит в результате охлаждения в прессформе под давлением до комнатной температуры.
2.3 Измерения показателя текучести расплава
Показатель текучести расплава (ПТР), характеризующий реологические свойства расплавов ПЭ-273 (нестаб.) и его композиций с крахмалом определялся на автоматическом капиллярном вискозиметре типа ИИРТ-М при температуре 463 0К и нагрузках 2,16 и 21,6 (ГОСТ 11645-73), с использованием автоматических весов ВЛР-200.
2.4 Испытание на разрыв. Изучение деформационно-прочностных свойств
Изучение деформационно-прочностных свойств ПЭ-273 (нестаб.) и его композиций проводят на образцах в виде полосок (ГОСТ 25.601-80) с размером 100 10 0,1 мм. Полоски закрепляют в плоских зажимах разрывной машины модели ZMGi - 250 и растягивают при постоянной скорости взаимного перемещения захватов 10 мм мин при комнатной температуре и нагрузке 50 кг (ГОСТ 17.316 - 71).
Показатель прочности полимера выражается через напряжение при растяжении и вычисляется по формуле:
, (2.1.)
где F - сила, Н;
S-исходная площадь сечения на которое действует сила, м2
По показателю прочности при растяжении и деформации при разрыве можно рассчитать значение модуля упругости Е:
, (2.2.)
где р - разрывное напряжение, Мпа;
е - деформация, %.
2.5 Диэлектрические свойства
Установлено, что даже незначительные изменения в химической и физической структурах полимера, особенно аморфно-кристаллических, заметно отражаются на электрических свойствах. Наиболее чувствительной характеристикой является tg . Эта характеристика достаточно тонко реагирует на изменения химической структуры, связанные с образованием различных кислородсодержащих групп, наличие которых указывает на разрыв макромолекул. 116,120.
Диэлектрические характеристики полимеров и их композиций исследованы методом диэлектрических потерь. Исследования проводили с помощью переменного моста переменного тока с цифровым отсчетом марки Р-5058 при частотах 103 и 104 Гц при температуре 293 0К. Погрешность в измерениях тангенса угла диэлектрических потерь не больше 5%.
2.6 Исследование ИКС
ИК - спектры исследуемых полимеров были получены на ИК-спектрофотометре "Spekord 75 JR" (Германия) при комнатной температуре. В качестве образцов использованы пленки толщиной 0,05-0,07 мм, полученные методом прессования согласно условиям ГОСТ 16338-85.
2.7 Исследования сканирующей зондовой микроскопии
Исследования сканирующим зондовым микроскопом Solver Pro проводились сканированием образцов. Образец устанавливается непосредственно на сканер и перемещается вместе с ним относительно зонда. Размер образца до 40 * 10 мм, минимальный шаг сканирования - 0,0004 нм. Позицирование образца - 5 * 5 мм; диапазон перемещения - 5 мкм. Метод измерения - полуконтактный.
2.8 Методика рентгеноструктурного анализа
Принцип действия дифрактометра ДРОН-6 основан на дифракции рентгеновских лучей от атомных плоскостей кристаллической решетки исследуемого вещества.
Полученные рентгенограммы идентифицируются, используя картотеку эталонных образцов (PDWIN). Выявление фаз осуществлялось сравнением полученного ряда межплоскостных расстояний с табличными значениями [127,128]. Сопоставление (в пределах ошибки эксперимента) опытных и табличных значений межплоскостных расстояний и относительной интенсивности линий позволили однозначно идентифицировать полученную фазу.
Рентгенофазовый анализ образцов синтезированных соединений проводили на рентгеновском дифрактометре ДРОН-6.0 на медном K - излучении с длиной волны 1,54051А. Съемка велась в интервале углов 2 - 1075 с заданным шагом 2 в минуту при точности измерения углов дифракции 0,005 градуса. Для уточнения параметров решетки отдельные отражения были пересняты при скорости 0,5/мин. Время экспозиции 1 сек.
2.9 Исследование воздействия ультрафиолетового излучения на полученные композиции
Ускоренные испытания малой длительности проводились в устройстве для облучения (везерометре) согласно ГОСТ 11279.2-83. В везерометре образцы в виде пластинок устанавливают на наружной стороне вертикального цилиндрического барабана, вращающегося вокруг ультрафиолетовой лампы. Облучение образцов происходит при температуре 40 0С и длине волны 300нм. Известно [117], что облучение в течение 100ч в везерометре эквивалентно приблизительно одному году экранирования в природных условиях. В везерометр устанавливались образцы в виде полосок размером 100101мм. Изменение физико-химических характеристик исходного полиэтилена и композиций на его основе наблюдали в течение 12 суток (288 часов).
2.10 Исследование поведения композиций при биоразложении в почве
Биоразложение в почве определялось при выдерживании полученных прессованных образцов в почве на глубине 25 см, в течении 42 суток. Тип почвы: серые лесные и светло-серые лесные (наиболее распространенные на территории г. Нальчика). Предварительно были измерены почвенные характеристики: рН (водная вытяжка) = 6,5; рН (солевая вытяжка) = 6; гумус = 3,5%; емкость поглощения 25-30 мг-экв/100 г почвы.
Затем проводилось изучение реологических и деформационно-прочностных характеристик полученных композиций.
Глава III. Обсуждение результатов
Анализ литературных данных позволяет заключить, что при выборе конкретных полимерных структур, которые могли бы быть использованы для получения биоразлагаемых пленок, необходимо исходить из следующих принципов:
Ш Полимер должен быть гидрофилен и деструктировать под действием внешних факторов, например подвергаться гидролизу;
Ш Продукты гидролиза должны бить подобны природным соединениям; так 6-аминокарбоновая кислота, которая образуется при при гидролизе полиамидного волокна, может использоваться микроорганизмами в качестве источника углерода и азота;
Ш Элементный состав полимера должен быть сбалансирован, т.е. соотношение элементов в полимере должно соответствовать их содержанию в клетках микроорганизмов, в частности, соотношение углерода и азота должно быть 1: 10;
Ш Полимер не должен содержать элементов групп или фрагментов, которые при освобождении их в окружающую среду оказывали токсическое воздействие на живые организмы, в том числе микроорганизмы; нежелательно если полимер содержит циклические, а тем более полициклические или гетероциклические фрагменты;
Ш Нежелательно, чтобы образующиеся при деструкции продукты вступали в химические реакции с органическим веществом почвы, в первую очередь с гумусом [110].
Поэтому целью данной работы является получение и исследование смесей на основе полиэтилена (ПЭВП) и кукурузного крахмала, которые можно экструдировать и перерабатывать в профилированные изделия.
Выбор кукурузного крахмала определен наличием его производства в республике (ОАО "ККЗ", КБР, Майский район, ст. Александровская). Характеристика выпускаемых видов крахмала и способ производства представлена в экспериментальной части работы. Предварительные испытания с различными видами крахмала позволили остановиться на техническом модифицированном крахмале - крахмалите (ТУ-9187-144-00008064-97) [125]. Следует отметить, что, несмотря на предварительную подготовку крахмала в процессе исследования, приготовить удалось смеси, содержащие от 1,5 до 30 масс. % крахмала, пластифицированные глицерином (на 100 грамм смеси - 10 мл глицерина). Композиции готовились из двух партий и были захоронены в двух различных типах почв, наиболее характерных для территории г. Нальчика (серые лесные и светло-серые лесные). Так как, по своим основным параметрам эти два типа почв имеют практически одинаковые характеристики, а при исследовании реологические и физико-механические показатели двух используемых нами партий полиэтилена и крахмала совпадают, то на обсуждение выносятся результаты, полученные при захоронении композиций и исходного полиэтилена в серые лесные почвы. Полученные композиции после определения показателя текучести расплава представляют собой твердый белый (иногда серый или желтоватый) продукт с тонкой пенообразной структурой. Из полученных экструдированных образцов при прессовании образуются прочные эластичные пленки.
3.1 Исследование реологических и физико-механических свойств исходного ПЭ-273 и композиций на основе ПЭ-273+крахмал
Исследование реологических и физико-механических свойств полученных композиций представлены в табл.3.1.
Таблица 3.1. Физико-механические свойства прессованных образцов композиций на основе полиэтилена и крахмала.
№ |
Состав композиций, % |
при разрыве |
|||||
поли-этилен |
крахмал |
||||||
1 |
100 |
0 |
6,36 |
0,11 |
36,3 |
>500 |
|
2 |
98,5 |
1,5 |
17,57 |
0,30 |
17,7 |
35 |
|
3 |
97 |
3 |
34,87 |
0,58 |
17,7 |
53 |
|
4 |
95 |
5 |
45,93 |
0,77 |
17,7 |
27 |
|
5 |
93 |
7 |
37,94 |
0,63 |
15,1 |
15 |
|
6 |
90 |
10 |
31,5 |
0,53 |
10,8 |
9 |
|
7 |
85 |
15 |
17,06 |
0,28 |
16,7 |
12 |
|
8 |
80 |
20 |
36,36 |
0,61 |
12,3 |
19 |
|
9 |
70 |
30 |
43,02 |
0,71 |
Настолько хрупкая, что разрушается без внешнего воздействия |
Полученные результаты свидетельствуют о том, что с увеличением процентного содержания крахмала в композициях происходит возрастание показателя текучести расплава (ПТР), а прочность и удлинение при разрыве снижаются, т.е. композиции становятся более хрупкими. При содержании в композициях 30 масс. % крахмала теряются все эксплуатационные характеристики, а ПТР соответственно выше по сравнению с ПТР остальных составов. Наиболее легко разрушаемыми из полученных композиций являются композиции с содержанием 10 и 20%. Так как, введение уже небольших количеств крахмала до 1,5 масс. % приводит к резкому падению прочности почти в 2 раза, а ПТР при этом возрастает в 3 и более раз, можно предположить, что происходит распределение крахмала между надмолекулярными образованиями, ослабление связи между ними и повышение их подвижности. Одновременно с увеличением содержания крахмала повышается жесткость образцов, они становятся более хрупкими [137].
3.2 Исследование ИК-спектров образцов композиций на основе полиэтилена и крахмала
Исследования ИК-спектров (рис.3.1,3.2.) пленок исходного полиэтилена и полученных смесей (в частности, ПЭ-273 + 5% крахмала) показывают, что в процессе термической обработки происходят некоторые изменения в области 1300-900 см-1. Это, по-видимому, свидетельствует об образовании полиэтилена с крахмалом, соединений включения и H-комплексов. Кроме того, исследования, выполненные с использованием рентгеноструктурного анализа, электронной и сканирующей зондовой микроскопии также показали влияние крахмальной компоненты на формирование морфологических особенностей композиций "полиэтилен+крахмал" (рис.3.3 - 3.10). Рентгеноструктурный анализ показал (рис.3.5 - 3.6.), что степень кристалличности композиций при введении крахмала меняется незначительно и позволяет заключить, что крахмал не входит в кристаллические области полиэтилена. Данные, полученные методом электронной и сканирующей зондовой микроскопии позволяют говорить о неоднородности распределения крахмальной фазы в поверхностных слоях композиций.
Рис.3.1 ИК - спектр ПЭ-273
Рис.3.2 ИК - спектр ПЭ-273+ 5% крахмала
Скан поверхности композиции ПЭ-273 (исх.) +15% крахмала.
Трехмерная визуализация рельефа поверхности композиции
ПЭ-273 (исх.) +15% крахмала (область А размером 1.5х0.9 мкм).
Рис.3.3 Сканирующая зондовая микроскопия поверхности пленки ПЭ-273 + 15 % крахмала.
Рис.3.4 Рентгенограмма пленки исходного полиэтилена.
Рис.3.5 Рентгенограмма пленки композиции
ПЭ-273 + 15 масс. % крахмала.
Рис.3.6 Рентгенограмма кукурузного модифицированного технического крахмала.
3.3 Исследование диэлектрических свойств исходного ПЭ-273 и композиций ПЭ-273 + крахмал
Введение крахмала повышает полярность и значения тангенса угла для электрических потерь (рис. 3.7-3.9.). На графике видно, что значения tg неизменны до 1200С, значения tg с учетом этой частоты 104Гц (10-3-10-2) соответствуют приводимым в литературе [89, 125]. Это соответствие важно с той точки зрения, что затем наблюдение и выводы, относящиеся к композиции ПЭ+К можно распространить (обобщить) в большой степени на другие полиолефины (рис.3.7.).
При температуре выше 1200С наблюдается подъем зависимости tg от Т с возможным пиком при 1900С. Указанная температурная зависимость существенно изменяется при введении крахмала (рис. 3.8, 3.9.). Например, при его содержании в 1,5 масс. % фоновые значения несколько повышаются. Сама фоновая область расширяется. Намечавшийся пик при температуре 1900С исчезает, зато обнаруживается чёткий максимум при 85-900С. Так как этот пик для исходного ПЭ не имел места, его можно отнести или к крахмалу, или к свойствам собственно композиции ПЭ+К (рис.3.8). Это предположение подтверждается при рассмотрении графика tg от Т композиции ПЭ + 3 масс. % крахмала, здесь имеется уже 2 низкотемпературных пика: примерно при 450С и 1000С (3.8). Эти наблюдения позволяют предположить усиление влияния добавки на свойства композиции уже при этих концентрациях [89, 137].
Отдельно стоит рассмотреть в сравнении композиции с высоким содержанием крахмала. На рис.3.9 приведена зависимость tg от Т для композиций с содержанием 7, 10, 15 масс. %. Довольно неожиданно, было обнаружено, что состав с 7 масс. % крахмала даже на фоне значений tg от 0,05 до 0,15 (10-15 масс. % К) имеет очень высокие диэлектрические потери во всём температурном интервале, начиная от 350С и выше. По этой причине композиции такого состава, по всей видимости, не пригодны к эксплуатации. Дальнейшее повышение содержания крахмалов до 10 масс. % повышает показатель текучести расплава и понижает прочность на разрыв. При 15% потери составляют не более 0,15%, т.е. отношение той доли тепла которое рассеялось в три раза меньше, оставшегося в полимере. По всей видимости, это наиболее разрушаемая в перспективе композиция. Аналогично поведение композиции с 20% крахмала.
Итак, если судить в целом по исходным реологическим, диэлектрическим и прочностным характеристикам, то наиболее подходящими нам как по эксплуатационным характеристикам, так и разрушительным свойствам являются составы с 1,5, 3, 5, 10% крахмала (табл.3.1,рис.3.7-3.9).
Рис.3.7 Зависимость тангенса угла диэлектрических потерь tg от температуры Т для образцов исходного нестабилизированного ПЭ-273
Режимы предварительной термообработки:
Т = 100С, вакуум, 5 часов (1) и Т = 100С, без вакуума, 1 час. (2). Частота 10 кГц.
Рис.3.8 Зависимость тангенса угла диэлектрических потерь tg от температуры Т для композиций ПЭ-273 + крахмал. Частота 10 кГц.
Рис.3.9 Зависимость тангенса угла диэлектрических потерь tg от температуры Т для композиций ПЭ + крахмал. Частота 10 кГц.
3.4 Исследование воздействия ультрафиолетового излучения на полученные композиции
Ускоренные испытания малой длительности проводились в устройстве для облучения (везерометре) согласно ГОСТ 11279.2-83. В везерометре образцы в виде пластинок устанавливают на наружной стороне вертикального цилиндрического барабана, вращающегося вокруг ультрафиолетовой лампы. Облучение образцов происходит при температуре 40 0С и длине волны 300нм. Известно [98], что облучение в течение 100ч в везерометре эквивалентно приблизительно одному году экранирования в природных условиях. В везерометр устанавливались образцы в виде полосок размером 100101мм. Изменение физико-механических характеристик исходного полиэтилена и композиций на его основе наблюдали в течение 12 суток (288 часов). Результаты представлены в табл.3.2-3.5 и на рис.3.10-3.13.
Таблица 3.2. Физико-механические и реологические показатели исходного ПЭ-273 и композиций на основе ПЭ-273 + крахмал (2 партия материалов).
№ |
Состав, % |
ПТР21,6 г/10 мин |
ПТР2,16 г/10 мин |
уpi, Мпа |
еотн.,% |
||
ПЭ |
крахмал |
||||||
1 |
100 |
0 |
5,98 |
0,10 |
36,3 |
>600% |
|
2 |
98,5 |
1,5 |
11,24 |
0, 19 |
14,2 |
23 |
|
3 |
97 |
3 |
20,01 |
0,33 |
10,3 |
29 |
|
4 |
95 |
5 |
32,33 |
0,54 |
14,3 |
34 |
|
5 |
93 |
7 |
36,63 |
0,61 |
7,8 |
20 |
|
6 |
90 |
10 |
33,80 |
0,56 |
13,0 |
35 |
|
7 |
85 |
15 |
23,96 |
0,40 |
12,7 |
31 |
|
8 |
80 |
20 |
36,40 |
0,60 |
10,4 |
28 |
|
9 |
70 |
30 |
43,02 |
0,72 |
разруш. |
~ |
Зависимости показателя текучести расплава и разрывного напряжения образцов для исходного полиэтилена и композиций на его основе показаны на рис.3.10, 3.11.
Рис.3.10. зависимость показателя текучести расплава образцов исходного ПЭ (2 партия материалов) от содержания крахмала.
Рис.3.11. зависимость разрывного напряжения образцов исходного ПЭ (2 партия материалов) от содержания крахмала
Образцы исходного полиэтилена подвергаются разрушению уже после 48 часов облучения, при облучении в течение 96 часов удлинение возрастает, а нагрузка при разрыве снижается (рис.3.12, табл.3.5).
Вначале облучения до 48 часов при содержании в композициях 10 масс. % крахмала снижается относительное удлинение и разрывное напряжении почти в 2 раза, а к окончанию экспозиции (после 288 часов облучения) разрывное напряжение снижается в 6 раз, а относительное удлинение понижается в 3 раза (табл.3.5,рис.3.12). Тогда как для исходного полиэтилена при облучении в течение 288 часов разрывное напряжение уменьшается только в 2,5 раза. Показатель текучести расплава при содержании 10 масс. % крахмала стабильно снижается. Следует отметить, что для композиций с содержанием крахмала 1,5, 3, 5 масс. % не наблюдается такого резкого снижения ни относительного удлинения, ни прочности. При содержании 15 масс. % крахмала наблюдается относительное снижение разрывного напряжения при действии фотооблучения, но к моменту завершения экспозиции практически достигает первоначальных значений, тогда как ПТР снижается в 2 раза, а удлинения уменьшается в 1,5 раза. Можно сказать, что аналогично ведет себя композиция с 20 масс. % крахмала, но в этом случае, выявляются более резкие снижения ПТР и относительного удлинения. Показатель текучести расплава для всех композиций "полиэтилен + крахмал" резко уменьшается к моменту 96 часов облучения, а дальнейшее фотооблучение (до 288 часов) не приводит к значительным изменениям вязкости расплава (рис.3.13).
Таблица 3.3. Изменение разрывного напряжения исходного ПЭ-273 и композиций на основе ПЭ-273 + крахмал при фотооблучении (2 партия материалов).
№ |
Состав,% |
уpi, Мпа исх. |
уpi, Мпа 48 ч. |
уpi, Мпа 96 ч. |
уpi, Мпа 192 ч. |
уpi, Мпа 288 ч. |
||
ПЭ |
крахмал |
|||||||
1 |
100 |
0 |
36,30 |
13,57 |
16,11 |
14,91 |
14,02 |
|
2 |
98,5 |
1,5 |
14, 20 |
12,60 |
12,10 |
13,00 |
12,44 |
|
3 |
97 |
3 |
10, 20 |
13,36 |
13,78 |
13,62 |
11,29 |
|
4 |
95 |
5 |
14,13 |
12,11 |
12,01 |
10,68 |
11,03 |
|
5 |
93 |
7 |
7,73 |
10,58 |
6,21 |
3,40 |
7,33 |
|
6 |
90 |
10 |
13,00 |
6,28 |
8,55 |
3,94 |
2,26 |
|
7 |
85 |
15 |
12,67 |
9,58 |
9,71 |
8,92 |
12,43 |
|
8 |
80 |
20 |
10,36 |
6,75 |
8,22 |
8,56 |
6,29 |
Из полученных составов можно выделить состав содержащий 5 масс. % крахмала, как состав практически не теряющий своих деформационно-прочностных характеристик в процессе фотооблучения.
Таким образом, при облучении полиэтилена и композиций "полиэтилен + крахмал" происходят сложные структурные изменения. В целом действие УФ-излучения на исследуемые композиции вызывает модификации, частично обусловленные механизмом с участием свободных радикалов. Разложение в результате поглощения УФ-излучения связано с наличием флюоресцентных хромофор в крахмале и нефлюоресцентных хромофор в глюкозидных группах. (рис.3.12, 3.13).
Таблица 3.4. Изменение показателя текучести исходного ПЭ-273 и композиций на основе ПЭ-273 + крахмал при фотооблучении (2 партия материалов).
№ |
Состав,% |
ПТР, г/10 мин., исх. |
ПТР, г/10 мин., 48 ч. |
ПТР, г/10 мин., 96 ч. |
ПТР, г/10 мин., 192 ч. |
ПТР, г/10 мин., 288 ч. |
||
ПЭ |
крахмал |
|||||||
1 |
100 |
0 |
5,6 |
2,2 |
2,0 |
2,0 |
2,0 |
|
2 |
98,5 |
1,5 |
11,3 |
9,3 |
5,2 |
3,9 |
3,4 |
|
3 |
97 |
3 |
20,0 |
5,9 |
6,5 |
5,1 |
4,3 |
|
4 |
95 |
5 |
32,3 |
20,7 |
8,9 |
6,9 |
5,5 |
|
5 |
93 |
7 |
36,6 |
11,2 |
10,2 |
8,7 |
7,4 |
|
6 |
90 |
10 |
33,8 |
12,3 |
11,0 |
10,0 |
9,0 |
|
7 |
85 |
15 |
23,9 |
20,1 |
12,1 |
11,2 |
10,3 |
|
8 |
80 |
20 |
36,4 |
14,2 |
12,6 |
12,1 |
12,0 |
Таблица 3.5. Изменение относительного удлинения образцов исходного ПЭ-273 и композиций на основе ПЭ-273 + крахмал при фотооблучении (2 партия материалов).
№ |
Состав,% |
еотн.,% исх |
еотн.,% 48 ч. |
еотн.,% 96 ч. |
еотн.,% 192 ч. |
еотн.,% 288 ч |
||
ПЭ |
крахмал |
|||||||
1 |
100 |
0 |
>600% |
30% |
46 |
38 |
35 |
|
2 |
98,5 |
1,5 |
23 |
23 |
25 |
21 |
18 |
|
3 |
97 |
3 |
29 |
28 |
28 |
23 |
18 |
|
4 |
95 |
5 |
34 |
23 |
23 |
23 |
20 |
|
5 |
93 |
7 |
20 |
21 |
18 |
16 |
17 |
|
6 |
90 |
10 |
35 |
16 |
18 |
18 |
11 |
|
7 |
85 |
15 |
31 |
24 |
20 |
18 |
18 |
|
8 |
80 |
20 |
28 |
23 |
17 |
15 |
14 |
Рис.3.12. зависимость разрывного напряжения образцов исходного (1) и модифицированного крахмалом ПЭ от времени фотооблучения. Содержание крахмала: 1,5 (2); 3 (3); 5 (4); 7 (5); 10 (6); 15 (7) и 20 (8) масс. %
Рис.3.13. зависимость показателя текучести расплава образцов исходного (1) и модифицированного крахмалом ПЭ от времени фотооблучения. Содержание крахмала: 1,5 (2); 3 (3); 5 (4); 7 (5); 10 (6); 15 (7) и 20 (8) масс. %
3.5 Биоразложение в почве композиций ПЭ + К
Биодеструкция полимера является сложным процессом, на скорость и завершенность которого влияют не только строение и свойства полимера и полимерного материала, но и окружающие условия. Из окружающих условий первостепенное влияние оказывают влажность, температура, рН, свет, а также такой комплексный фактор как контакт с почвой и тип почвы. В свою очередь тип почвы - это комплекс соответствующих факторов и соответствующее сообщество микроорганизмов [117,118].
Биоразложение в почве определялось при выдерживании полученных прессованных образцов в почве на протяжении 42 суток. Тип почвы: серые лесные и светло-серые лесные (наиболее распространенные на территории КБР, в частности г. Нальчика). Предварительно были измерены почвенные характеристики: рН (водная вытяжка) = 6,5; рН (солевая вытяжка) = 6; гумус = 3,5%; емкость поглощения 25-30 мг-экв/100 г почвы. Затем проводилось изучение их реологических и деформационно-прочностных характеристик. Результаты представлены на рис.3.14. - 3.16.
Следует отметить, что для композиций с 5, 7, 10, 15,20 масс. % крахмала при нахождении в почве до 14 суток биодеструкции ПТР снижается, соответственно увеличивается вязкость расплава данных композиций. Последующее пребывание композиций в почве не приводит к резким изменениям ПТР, хотя значения остаются выше ПТР исходного полиэтилена (рис.3.15). По эксплуатационным свойствам и по способности к биоразложению следует выделить составы с содержанием 5 и 10 масс. % крахмала. Так как, мы видим, что разрывное напряжение при биодеструкции в почве, составов такого содержания сильно снижается, почти в 2 раза, повышается вязкость расплавов этих композиций, тогда как относительное удлинение при разрыве снижается в 3 и более раз (рис.3.14,3.15)
Рис.3.14. зависимость разрывного напряжения образцов исходного (1) и модифицированного крахмалом ПЭ-273 от времени биодеструкции. Содержание крахмала: 1,5 (2); 3 (3); 5 (4); 7 (5); 10 (6); 15 (7) и 20 (8) масс. %
Рис.3.15. зависимость показателя текучести расплава образцов исходного (1) и модифицированного крахмалом ПЭ от времени биодеструкции. Содержание крахмала: 1,5 (2); 3 (3); 5 (4); 7 (5); 10 (6); 15 (7) и 20 (8) масс. %
Рис.3.16. зависимость относительного удлинения при разрушении образцов ПЭ, модифицированного крахмалом, от времени биодеструкции. Содержание крахмала, масс. %: 1,5 (1); 3 (2); 5 (3); 7 (4); 10 (5); 15 (6); 20 (7)
Анализ полученных результатов показал, что при биодеструкции в почве разрывное напряжение меняется незначительно, тогда, как относительное удлинение при разрыве образцов уменьшается. Это говорит о том, что композиции при закапывании в почву становятся более хрупкими, так как происходят структурные изменения в матрице полимера, в результате чего композиции подвергаются большему разрушению, чем исходный полиэтилен.
Таким образом, введение крахмала в качестве добавки к синтетическому полимеру позволяет ускорить процесс деструкции полимера под действием микроорганизмов и не оказывает при этом значительного влияния на исходные физико-механические свойства.
Таким образом, исследованные смеси на основе полиэтилена и местного кукурузного крахмала имеют улучшенные реологические характеристики, хорошие физико-механические свойства и способны подвергаться био- и фоторазрушению.
Выводы
Выполненные исследования по получению и изучению свойств композиций на основе полиэтилена высокой плотности и крахмала дают основания сделать следующие выводы:
1. Получены термопластичные композиции на основе полиэтилена и кукурузного крахмала (1,5-30%), обладающие необходимым комплексом эксплуатационных свойств, а также склонностью к биоразложению и фоторазрушению. Изучены их физико-механические свойства и способность к биодеградации и фоторазложению.
2. Исследования деформационно-прочностных характеристик показали, что крахмал не способствует упрочнению композиционного материала. При содержании крахмала от 1,5 до 20% деформационно-прочностные показатели соответствуют требованиям, предъявляемым к упаковочным материалам.
3. Исследование электрических свойств показало сложную зависимость тангенса угла диэлектрических потерь от содержания крахмала в композиции и температуры, которая позволяет в перспективе определить легко разрушаемый состав.
4. Использование комплекса методов позволило более объективно оценить степень биологической деструкции и фоторазрушения исследуемых полимерных композиций. Показана зависимость глубины биологической деструкции и фоторазрушения от состава композиций, типа почвы и продолжительности захоронения.
Литература
1. Ларионов В.Г. Саморазлагающиеся полимерные материалы. // Пласт. массы. - 1993. № 4. - с.36-39.
2. Суворова А.И., Тюкова И.С., Труфанова Е.И. Биоразлагаемые полимерные материалы на основе крахмала. // Успехи химии. - 2000. № 5. - с.494-504.
3. Калугина Н.А., Краус С.В. Создание биоразрушаемых полимерных материалов // Девятая международная конференция молодых ученых "Синтез, исследование свойств, модификация и переработка высокомолекулярных соединений". Казань. - 1988. - с.266.
4. Yu long, Christie Gregor Bruce Yeo Biodegradable polymer. Пат.753328 Австралия, МПК 7 С 08 L 003/06, C 08 K 000/09 Заявл.13.12.1999; Опубл.17.10.2002.
5. Biodegradable resin composition and its molded product Заявка 1097967 ЕВП, МПК 7 С 08 L 67/0. Заявл.31.10.2000; Опубл.09.05.2001.
6. Zhang Peina, Huang Farong, Wang Bingfang Сharacterization of biodegradable aliphatie/aromatic copolysters and their starch blends // Polym. Plast. Technol. and Eng. - 2002. №2. p. - 273-283.
7. Казьмина Н.А. Разработка композиционных материалов на основе крахмалсодержащего сырья: Автореф дисс. на соискание уч. cтепени канд. технич. наук. Московской государственной академии, тонк. хим. технологии. - Москва 2002. - 23 с.
8. Т. Блюм, И. Десланде, Р. Марунесо, П. Сундаррайню В кн. Все о полимерах. (Под ред.С. Роуленд). - Москва.: Мир, - 1984. - с.266.
9. Favis Basil D., Rodriguez Francisco, Ramsay Bruce A. Polymer composition containing thermoplastic starch. Пат.6605657 США, МПК С 08 L 1/00. Polyvalor Soc. En Comandite. № 09/ 472242; Заявл.27.12.1999; Опубл.12.08.2003.
10. Nakashima Teruo, Jto Hiraku, Matsuo Masaru Biodegradation of bigh-strength and high-modulus PE-starch composite films buried in several kinds of soifs // J. Macromol. Sci. B. - 2002. №1. - p.85-98.
11. Wang Xiu Li, Yang Ke-Ke, Wang Yu - Zhong. Properties of starch blends with biodegradable polymers // I. Macromol. Sci. C. - 2003. №3б. - p.385-409.
12. Walcher Beschichtete bioabbaubare Materialien Заявка 19841382 Германия МПК 7 С08 J 7/04. Biotop GmbH. № 19841382.3 Заявл.12.03.1998; Опубл.12.08.2000.
13. Bastioli Catia, Belloti Vittorio, Cella Gian Domenico Biodegradable polimeric compositions comprising starch and a thermoplastic polymer. Заявка 0947559 ЕПВ, МПК 6 C 08 L 67/04, №99113033.7.1999.
14. Ando Sadamasa, Karasawa Taizo, Haruta Toshitaka, Ozasa Akio Method of manufacturing starch-based biodegradable molded objects. Пат.59550800 США, МПК 6 B 29 C44/006 №09/117689.1999.
15. S. Li. J. Tang, P. Chinachotu. Termodynamies of starch - water systems: An analysis from solution - gel model on water sorption isotherms. // J. Polym. Sel., Part B. Polym. Phys. - 1996. №15. - p.2579 - 2589.
16. Bastioli Catia, Belloti Vittorio Biodegradable foamed plastic materials. Заявка 1038908 ЕПВ, МПК 7 С08 J9/228.2000.
17. Behrend By D., Schmitz K. - P., Haubold A. Bioresorable polymer materials for implant technology // Adv. Mater. - 2000.2 №3. - p.123-125.
18. Thakore I. M., Iyer Srividya, Desai Anjana Morphology, thermomechanical properies, and biodegradability of low density polyethylene/starch blends // J. Appl. Polym Sci. - 1999. №12. - p.2791-2802.
19. Cross Richard A. Kalra Bhanu Biodegradable polymers for the environment Science. - 2002.297, №5582б. - p.803-807.
20. Кудрявцева З.А., Панов Ю.Т., Алешин А.А. Биоразрушаемые полимерные материалы // Производственные технологии и качество продукции: Материалы научно-технической конференции, Владимир, 14-17 окт., 2003. М.: Новые технологии 2003. - с.142-146.
21. Ernst Bauman, Michael Longman Okologische Auswirkungen des Einsatzes biologisch abbaubarer Materialien in der Landwirtschaft. // Osterr. Chem. Z. - 2003.104. №4. - p.13-14.
22. Gross Richard A. Biodegradable polymers for the environment Science. - 2000.297, №5582. - p.705-707.
23. Bertolini Andrea C., Mesters Christian, Raffi Jacgues Photodegradation of cassava and corn starches // J. Agr. and Food Chem. - 2001. №2. - p.675-682.
24. Wang Xiu-Li, Yang Ke-Ke, Wang Yu-Zhong Properties of starch blends with biodegradable polymers // J. Macromol. Sci. c. - 2003.43, №3. - p.385-409.
25. Zhang Ya-Li, Guo Shao-hui, Lu Rong-hu Gasfenzi cailiao kexue yu gongcheng. // Polym Mater. Sci. Technol. - 2003. №5. - p.14-18.
26. Grandall L. Bioplastics: A burgeoning industry INFORM: Int. News Fats, Oils and Relat. Mater. - 2002. №8. - p.626-627, 629-630.
27. Berger Werner, Jeromin Lutz, Opitz Guntram Verfahren zur Herstellung einer thermoplastischen Polymermischung auf starkebasis durch reaktive Extusion. Заявка 19938672 Германия. Заявл.12.10.1999; Опубл.10.03.2001.
28. Fu Xiu-juan, Li Qing-xin, Huang Jin Suliao keji // Plast. Sci. and Technol. - 2003, №3. - p.1-3.
29. Soil and marine Biodegradation of Protein-Starch Plastics Dev. Symp. 208th Nat. Meet. Amer. Chem. Soc., Washington, D. C., Aug.21-26, - 1996. - p.149-158.
30. Lipinsky Edwards, Biowring James P. Eng. Use application of biodegradable polymers: Пат.5444113 США, 8Т331П РЖХим 1996.
31. Nove biodegradation plasty z USA na nemeckem trhu // Plasty a kauc. - 1996.33, №7-p.221.
32. Ritter Wolfgang, Beck Michael, Schafer Martin Thermoplastisch verarbeitbare Verbundmate-rialien auf Starbebasis: Заявка 433385 ФРГ. РЖХим 1995, 9Т43П.
33. Zhang Peina, Huang Farong, Wang Bingfang Characterization of biodegradable aliphatic/aromatic copolyesters and their starch blends Polym. // Plast. Technol. And Eng. - 2002. №2. - p.273-283.
34. Kalachandra S., Taylor P. F. Polimeric materials for composite matrices in biological environments // Polymer. - 1993. №4. - p.778-782.
35. Quality in a world of plastics waste // Mood. Plast. Int. - 1996.26, №10. - c.227-228.
36. Folienaus biologisch abbaubaren Werkstoffen Coating. - 2002.35. №4. - p.120-121.
37. Suvorova A.I., Tijkova I. S., Truvanova E.I. Biodegradable starch/syntetic polymer blends // 16 Mendeleev Congress on General and Applied Chemistry, Moscow, - 1998. - p.458.
38. Shao Zi-qiang, Tan Hui-min, Zhao Chun-hong Hubei gongxueyuan xuebao. // J. N. China Inst. Technol. - 2000.21, №2. - p.138-141.
39. Stevens Eugene S., Poliks Mark D. Tensile strength measurements on biopolymer films // J. Chem.educ. - 2003. №7. - p.810-812.
40. Милицкова Е.А. Потапов И.И. Биоразлагаемые пластики // Обз. инф. научн. и техн. Аспекты охраны окружающей среды. - 2000, №4. - с.66-106.
41. Would you like wheat with that burger? // Sci. News. - 2001.159, №15. - p.237.
42. Bednarski W., Walkovski A., Opakowania biodegradowalne, asperty technologiezne I ecologiczne. // Przem. Spoz. - 1997.51, №2, p.33-35.
43. Blends of thermoplastic starch and polyesteramide: Proccesing and properties // J. Appl. Polym. Sci. - 2000. - 76. - №7. c.1117-1128.
44. Souza Roberta C. R., Andrade Cristina T. Proccesing and properties of thermoplastic starch and its blends with sodium alginate. // J. Appl. Polym. Sci. - 2001.81. - №2. p.412-420.
45. Bastioli Catia, Belloti Vittorio, Gella Gian Domenico Biodegradable polimeric composition comprising starch and a thermoplastic polymer. - Заявка 0947559 ЕПВ, МПК6 С 08 L 67/02, C 08 L 67/04. Novamont S. p. A. №99113033.7; Завял.05.11.1997; Опубл.06.10.1999.
46. Европейская заявка 0669369, опубл. 1995, РЖХим. 1997.5Т92П.
47. Завяка ФРГ 4418678, опубл. 1995, РЖХим. 1997.5Т90П.
48. Method of producing biodegradable starch-based product from unprocessed raw materials. Пат.5.322.866. США., Заявл.29.01.1993., Опубл.21.06.1994
49. Заявка РФ 97121172, опубл. 1999. РЖХим 2000.7Т78П.
50. Европейский патент 877773, опубл. 1998. РЖХим. 2000.10Т63П.
51. Международная заявка 9820073, опубл. 1998. РЖХим 1999, 12Т71П.
52. Заявка ФРГ 19520093, опубл. 1996. РЖХим 1998. - 8Т13П.
53. Bioresorbable po; ymer meterials for implant technology. Behrend By D., Schmitz K. - P., Haubold A. // Adv. Eng. Mater. 2000.2. - №3, p.123-125.
54. Патент США 5437924, опубл. 1995. РЖХим. 1997, 8Т187П.
55. Патент США 5736586, опубл. 1998. РЖХим 1999, 10Т132С
56. Патент США 5679421, опубл. 1997. РЖХим 1998.11Т105П
57. Патент США 5401778, опубл. 1995. РЖХим 1996.5Т121С
58. Заявка РФ 97115455, опубл. 1999. РЖХим 2000. - 12Т16П
59. Патент США 5462983, опубл. 1995. РЖХим 1996.14Т75П
60. Патент США 5665786, опубл. 1997. РЖХим 1998.9Т234П
61. Патент Японии 2742630, опубл. 1998. РЖХим 1999. Т62П
62. Заявка РФ 92016573, опубл. 1997. РЖХим 1998.6Т45П
63. Патент США 5444107, опубл. 1995, РЖХим 1997.8Т330П.
64. Заявка ФРГ 4424415, опубл. 1996. РЖХим 1997.9Т102П
65. Патент США 5427614, опубл. 1995. РЖХим 1996.5Т92П
66. Biodegradable Resin compositions and laminates based thereon. Патент США 5384187, Заявл.15.05.1992; Опубл.24.01.1995.
67. Material composite totalemeut biodegradable et procede de fabrication de ce material. Заявка 2735483 Франция, МПК6 С 08 L 67/02 D 65/46. potency SARL. №9507172; Заявл.13.06.95; Опубл. 20.12.96.
68. Заявка Германии 19633476, опубл. 1998. РЖХим 1999.10Т152П
69. Заявка Германии 19705376, опубл. 1998. РЖХим 1999.11Т123П
70. Международная заявка 9807782, опубл. 1998. РЖХим 1999.12Т156П
71. Полимеры и окружающая среда. Зедин А.Б. // Сорос. ораз. журнал. - 1996. №2. - с.57-64.
72. Патент РФ 2117016, опубл. 1998. РЖХим 2000.11Т239П
73. Заявка Германии 19706642, опубл. 1998. РЖХим. 2000, 14Т.
74. Jayasekara Ranjith, Harding Ian Biodegradation by composting of surfase modified starch and PVA blended films // J. Polym. And Environ. 2003. №2. - p.49-56.
75. Willett Julious L., Doane William M. Biodegradable polymer compositions, methods for making same and articles thereform Пат.6191196, США, МПК7 С 08 L 1/00, C 08 L 1/02 USA Secretary of Agriculture, Biotechnology Research and Development Corp., N 09/289702; Заявл.12.04.1999; Опубл. 20.02.2001.
76. Whuk Andrew Julian, Melik David Harry Biodegradable polimeric compositions and products thereof. Пат. 199926032 Австралия МПК 6 С 08 L 067/04, C 08 L 075/04 The Procter and Gamble Co., N 199926032; Заявл.30.04.1999; Опубл.22.11.2001.
77. Лукин Н.Д. Краус С.В. Биологически разрушаемая термопластичная композиция на основе крахмала Пат.2180670 Россия, МПК 7 С 08 L 77/02, 77/06. ВНИИ крахмалопродуктов. N 200010005/04; Заявл.06.01.2000; Опубл. 20.03.2002.
78. Denesuk Matthew Biodegradable plastics proccesing a microbe-inhibiting quality. Пат.6566419 США, МПК 7 С 08 K 5/46, C 08 K 5/48. Seefar Technologies, Inc., N 09/513703; Заявл.25.02.2000; Опубл. 20.05.2003.
79. Пинчук Л.С., Макаревич А.В. Биоразлагаемая упаковочная полимерная пленка. Пат.5114 Белоруссия МПК 7 С 08 K 5/00. Гос. науч. учрежд. "Ин-т мех. Маталлполимер. систем НАНБ". N a 19990009; Заявл.05.01.1999; Опубл.30.06.2003.
80. Favis Basil D., Rodriguez Francisco, Ramsay Bruce A. Polymer compositions containing thermoplastic starch. Пат.6605657 США, МПК 7 С 08 L 1/00. Polyvalor Soc. En Commandite, N 09/472242; Заявл.27.12.1999; Опубл.12.0.2003.
81. Willett Julius L., Doane William M. Biodegradable polymer compositions, methods for making same, and articles thwereform. - Пат.6632862 США, МПК 7 С 08 L 1/00, C 08 L 1/02 Secretary of Agriculture, Biotechnology Research and Development Corp. N 09/861383; Заявл.18.05.2001; Опубл.14.10.2003.
82. Шериева М.Л., Шустов Г.Б. Биоразрушаемые композиции. // Материалы Всероссийской научно-практ. конф. "Химия в технологии и медицине". Дагестанский Государственный Университет. Махачкала, 2001. - с.165-167.
83. Давришев Р.Р., Шериева М.Л., Шустов Г.Б. Биоразлагаемые композиции. // Тезисы докладов десятой международной конференции студентов и аспирантов "Синтез, исследование свойств, модификация и переработка высокомолекулярных соединений". Вторые Кирпичниковские чтения. Казань.22-24 мая 2001. - с.78.
84. Шериева М.Л., Султанова М.М., Бамбетова М.М. Биоразрушаемые композиции. // Материалы Всероссийской научной конференции студентов, аспирантов и молодых ученных "Перспектива - 2002". - Нальчик. - 2002. - Том V. - с.212-214.
85. Цибульская С.А. Биопластик. // Молочное дело. 2004, №1. - с.12-13.
86. Александров А.А., Стрекалова Г. Р Новые полимерные материалы с биодеградабельными свойствами. // Успехи в химии и химической технологии. вып.13. Тез. докл.13-й Междунар. конф. мол. по химии и хим. технол. МКХТ - 99. - Москва. - 1999. Ч.2. с.35.
87. Шериева М.Л. Биоразрушаемые композиции на основе крахмала и синтетических полимеров. // Материалы Всероссийской научной конференции студентов, аспирантов и молодых ученных "Перспектива - 2003". - Нальчик. - 2003. Том IV. - с.130-133.
88. Шериева М.Л., Шустов Г.Б. Биоразлагаемые композиции на основе крахмала. // Вестник КБГУ. Серия Химические науки. Выпуск 5. - Нальчик. - 2003. - с.30-33.
89. Шериева М.Л., Шустов Г.Б., Шетов Р.А. Биоразлагаемые композиции на основе крахмала // Пластические массы. 2004. № 10. - с.29-31.
90. Шустов Г.Б., Шериева М.Л., Мирзоев Р.С., Канаметова И.К., Бештоев Б.С. Биологически утилизируемые пластики: состояние и перспективы. // Материалы II Всероссийской научно-технической конференции "Новые полимерные композиционные материалы". - Нальчик - 2005. - с.34-38.
91. Шериева М.Л., Шустов Г.Б., Мирзоев Р.С., Бештоев Б.З., Канаметова И.К. Получение и исследование свойств модифицированного крахмала. // Материалы II Всероссийской научно-технической конференции "Новые полимерные композиционные материалы". - Нальчик - 2005. - с.117-120.
92. Germ-killing plastic wrap Raloff Janet. // Sci. News. 2000.158. №14. - p.221.
93. Голубев В.Н., Беглов С.Ю., Поджуев А.В. Функциональные свойства пектина и крахмала // Пищ. ингридиенты: сырье и добавки. 2000. - №1, с.14-18.
94. Hochamylosehaltige Starken Bertram Andreas. Tmahrungsindustrie 2000. N 7. - c.8-10.
95. Применение карбоксилированных крахмалов различных модификаций в качестве реагентов для химической обработки буровых растворов. // Строительство нефт. и газ. скважин на суше и на море. - 2000, №1. - с.22-24.
96. Willet Jilios L., Doane William M., Xu Wayne, Mang Michael N., Wite Jerii E. Biodegradable formed article. № 09/150963; Заявл.10.09.1998; Опубл.25.04.2000.
97. Gass Christian, Hotzeldt Klaus-Peter, Lindner Reinhard Verfahren zur Herstellung von biologisch abbaubaren Formkorpen aus vorwiegend nachwachsenden Rohstoffen mit erthohter Formsteifigkeit und Zeitstandsfestigkeit. Заявка 10120556 Германия, МПК 7 С 08 J 5/04. Заявл.26.04.2001; Опубл.31.10.2002.
Подобные документы
Характеристика технологии производства сырого картофельного крахмала, условия хранения картофеля, доставка и его взвешивание. Особенности измельчения картофеля для получения кашки и выделения из нее сока. Типология крахмалов: расщепленные, замещенные.
курсовая работа [1,5 M], добавлен 19.01.2010Полимолочная кислота - полиэфир на основе молочной кислоты, способный к биоразложению в условиях окружающей среды в течение короткого времени. Конкурентоспособность производства полилактида. Биоразлагаемые полимеры на основе полимолочной кислоты.
курсовая работа [157,6 K], добавлен 18.02.2011Производство легких композитов на фторангидритовом вяжущем. Характеристики и минералогический состав фторангидрита. Исследование физико-технических свойств, структуры полистиролбетона. Технология производства изделий на основе фторангидритовых композиций.
дипломная работа [2,3 M], добавлен 14.02.2013Физико-химические, эксплуатационные свойства нефти. Абсолютная плотность газов при нормальных условиях. Методы определения плотности и молекулярной массы. Важный показатель вязкости. Предельная температура фильтруемости, застывания и плавления нефти.
презентация [1,1 M], добавлен 21.01.2015Получение полиорганосилоксановых смол в результате гидролиза и последующей поликонденсации мономерных соединений кремния. Основные физические и химические свойства полиорганосилаксановых смол, их производство и применение. Цели добавления модификаторов.
реферат [189,2 K], добавлен 07.05.2016Основные способы производства полиэтилена. Получение полиэтилена при высоком давлении. Способ полимеризации в массе. Характеристические свойства полиэтилена. Технологический процесс разложения и отмывки катализатора. Оценка показателя текучести.
реферат [630,7 K], добавлен 02.06.2012Влияние графитовых наполнителей на радиофизические характеристики композиционных материалов на основе полиэтилена. Разработка на базе системы полиэтилен-графит композиционного материала с наилучшими радиопоглощающими и механическими показателями.
диссертация [795,6 K], добавлен 28.05.2019Характеристика особенностей строительных балок. Определение общей массы одного погонного метра балки при плотности лиственницы. Исследование и анализ процесса поперечного раскроя пиломатериалов с вырезкой дефектов. Расчет производительности станков.
курсовая работа [338,2 K], добавлен 27.04.2018Автомобильный бензин как топливо для карбюраторных двигателей. Основные показатели физико-химических свойств бензинов и их маркировка. Последствия применения бензина с высокой температурой конца перегонки. Особенности определения качества и марки бензина.
реферат [20,8 K], добавлен 29.12.2009Анализ прибора, определяющего фракционный состав топлива. Особенности загустителей пластичных смазок, рассмотрение видов. Характеристика свойств сжиженных газообразных топлив. Пластические массы как полимерные высокомолекулярные синтетические материалы.
контрольная работа [884,5 K], добавлен 13.01.2013