Стойкость изложниц в условиях их эксплуатации на комбинате "Криворожсталь"

Особенности технологии производства изложниц. Классификация эксплуатационных дефектов, требования к материалу. Экспериментальные исследования способов повышения стойкости изложниц в условиях их эксплуатации на металлургическом комбинате "Криворожсталь".

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 08.04.2009
Размер файла 91,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Из таблицы 2.2 видно, что стойкость изложниц типа С - 9 и МС - 12, для спокойных марок стали в 2 раза меньше чем изложниц типа КС - 8п и МКС - 12,5, для кипящих и полуспокойных марок стали.

В 2002 году было достигнуто увеличение стойкости изложниц типа КС - 8п и МКС - 12,5 на комбинате «Криворожсталь» по сравнению с 2001 годом. Эти результаты были достигнуты благодаря вводу в 2002 году нового регламентированного графика №2 (рис. 2.10) доставки слитков с повышенным теплосодержанием из сталеплавильных в обжимные цехи комбината [24]. Сущность этого регламентированного графика заключается в том, что для полуспокойных марок стали уменьшили время отстоя плавки в разливочном отделении сталеплавильных цехов комбината с 30 минут до 10 минут, следовательно, уменьшилось время нахождения слитков в изложницах до стрипперования. На 20 минут, что как видно из таблицы 2-2 привело к повышению стойкости изложниц КС - 8п на 12% и МКС - 12,5 на 4%.

В работе [31] был пересмотрен и сокращен график пребывания горячих слитков в изложницах. По старому графику время пребывания горячего слитка в изложнице составляло 3,5 - 4 часа. Путем теоретических расчетов и длительного наблюдения за передвижением горячих составов было установлено, что для слитков массой в 3,5 тонны время выдержки горячих слитков в изложницах без ущерба для качества слитка можно сократить на 1 час, т.е. до 2 ч 30 мин - 2 ч 40 мин.

В результате температура горячего посада повысилась с 715 до 810оС. При работе по новому графику в течение года отмечено улучшение показателей: снижение угара металла в колодцах блуминга на 0,3%, повышение производительности колодцев на 0,6%, сокращение расхода топлива на 4%, повышение стойкости изложниц на 2 - 4 налива, ускорение оборачиваемости составов на 8%, увеличение пропускной способности разливочного пролета на 12%.

2.4. Влияние коэффициента оборачиваемости изложниц

на их стойкость

Одной из основных эксплутационных характеристик стойкости изложниц является коэффициент оборачиваемости изложниц, который характеризует температурный режим эксплуатации изложниц.

Фактический коэффициент оборачиваемости изложниц зависит от целого ряда факторов, основными из которых являются:

1. Массы и конструкции изложницы;

2. Способа охлаждения изложниц;

3. Теплофизических свойств чугуна изложницы;

4. Температуры разливаемой стали;

5. Продолжительности от разливки стали;

6. Расстояние между рядом стоящими изложницами;

7. Температуры окружающего воздуха;

8. Количества типов применяемых изложниц, планирование производства по сортаменту продукции и, в соответствии с этим по типам изложниц;

9. Обеспеченности сменным оборудованием, в том числе: сталеразливочными тележками, изложницами;

10. Пропускной способности участков, в том числе железнодорожных путей для охлаждения составов с изложницами [25].

Технологическая инструкция цеха подготовки составов (ТИ 228 ПС - 06 - 2000 п.3.5.1) регламентирует для создания оптимальных условий эксплуатации изложниц следующий коэффициент по типам изложниц:

- для уширенных книзу 1,3 - 1,4;

- для уширенных кверху 1,0 - 1,1.

Из анализа графика оборачиваемости изложниц типа КС - 8п и МКС - 12,5т (рис. 2.11) следует, что при увеличении коэффициента оборачиваемости изложниц больше 1,4 или его снижения до 0,9 существенно уменьшается стойкость изложниц типа МКС - 12,5т. Это связано прежде всего с большим размером изложницы и ее весом. Идет неравномерный прогрев стенок изложницы, возникают большие внутренние напряжения [15], что резко снижает стойкость изложницы типа МКС - 12,5т. Исходя из анализа графика видно, что стойкость изложниц типа КС - 8п при увеличении коэффициента оборачиваемости изложниц больше 1,4 или его снижения до 0,9 приводит к уменьшению стойкости изложниц, но в меньшей степени по сравнению с изложницами типа МКС - 12,5т. Это связано прежде всего с ее меньшими размерами и массой. Прогрев изложницы происходит быстрее и равномернее, что и улучшает стойкость изложницы типа КС - 8п. Необходимое количество изложниц для поддержания оптимального коэффициента оборачиваемости в зависимости от производства на комбинате «Криворожсталь» определяется по номограммам (рис. 2.12, 2.13). Так, необходимое количество изложниц типа КС - 8п в отделении подготовки составов №3 для производства стали, разливаемой в эти изложницы в количестве 50 ковшей в сутки при коэффициенте оборачиваемости изложниц 1,3 составит 780 шт.

Существенным недостатком в работе металлургических заводов долгое время являлся факт отсутствия или недостаточного учета стойкости изложниц по причине сложности их учета без компьютерной техники. Наличие такого учета в настоящее время (с наличием компьютерной техники) дает возможность ликвидировать преждевременную отгрузку изложниц в брак, оперативно принимать меры к устранению причин преждевременного выхода изложниц из строя и главное выполнять анализ стойкости изложниц (определять главные факторы оказывающее воздействие на их стойкость). В настоящее время на комбинате «Криворожсталь» учет стойкости изложниц ведется в цехе подготовки составов с применением компьютерной техники. Он организован следующим образом.

В цехе производства изложниц на каждую отлитую и принятую изложницу работниками ОТК изложниц выписывается паспорт (рис. 2.14). Паспорт включает в себя следующие данные:

1. Тип изложницы

2. Номер изложницы

3. Вес изложницы

4. Дата заливки

5. Дата приемки

6. Химический состав чугуна

7. Геометрические размеры

А так же имеется таблица по учету стойкости изложницы, которая включает в себя:

1. Дата ввода изложницы в эксплуатацию

2. Количество наливов

3. Дата выхода из эксплуатации

4. Причина выхода из эксплуатации

Паспорта на изложницы вместе с изложницами передаются из цеха изложниц на склад слитков ЦПС, где они хранятся до момента отгрузки изложниц в отделение подготовки составов [18].

При отгрузке изложниц во дворы подготовки составов паспорта на них передаются в отделение подготовки составов.

В паспорте отмечается дата ввода изложницы в эксплуатацию, т.е. дата подачи изложницы под первый налив.

Учет ввода и вывода изложниц из эксплуатации в цехе подготовки составов производят в той смене, которая готовит состав с изложницами к разливке плавок [18]. Новые изложницы при вводе в работу маркируются известью на 2-х гранях с предварительной записью в журнал учета ввода в эксплуатацию нового сменного оборудования с пометкой их ввода, номер изложницы, номер тележки, на которую установлена изложница. При отбраковке и изъятии из эксплуатации производится отметка в журнале учета изложниц. Отбраковка изложниц производится в цехе комиссионно, с передачей информации в вычислительный центр ежедневно.

Оператор ЭВМ на основании данных по наборке составов вводит номера изложниц в базу данных компьютера.

Ежедневно ведется распечатка работающего парка изложниц (табл. 2.4) которая включает в себя:

1. Количество изложниц

2. Тип изложниц

3. Номера изложниц

4. Дату ввода

5. Дату последней оборачиваемости

6. количество наливов

7. Коэффициент оборачиваемости на каждую изложницу

После вывода изложницы из эксплуатации, на нее составляется акт, в котором делается отметка причины отбраковки, эти данные заносятся в ЭВМ. Анализ причин вывода изложниц из строя делается лабораторией технического управления комбината.

Распечатка по отбракованным изложницам включает в себя:

1. Анализ отбракованных изложниц по оборачиваемости (табл. 2.5)

2. Анализ отбракованных изложниц по видам дефектов и количеству наливов (табл. 2.6)

3. Обобщенный анализ отбракованных изложниц по группам дефектов (табл. 2.7) [18].

2.5. Влияние технологии разливки стали на стойкость

изложниц и поддонов

Известно, что разливочные пролеты сталеплавильных цехов являются узким местом в сталеплавильном производстве в плане его увеличения. Чтобы своевременно разлить всю выплавляемую сталь, многие заводы вынуждены применять двухстопорную разливку и разливку через стакан увеличенного диаметра. Эти факторы оказывают отрицательное влияние на стойкость изложниц и поддонов: скоростная разливка увеличивает тепловой удар, воспринимаемый изложницей и поддоном; двухстопорная разливка вызывает необходимость плотного расположения изложниц на поддоне, что затрудняет центрирование струи, в результате чего происходит «размыв» стенки изложницы и поддона и преждевременный вывод их из эксплуатации и кроме того, ухудшаются условия кристаллизации слитков, что снижает их качество [26]. Исследованиями в работе [26] было установлено, что ужесточение в плане соблюдения температурного режима при выпуске и разливке стали дает возможность не только варьировать скорость разливки в нужных пределах без ущерба для качества слитка, но повысить при этом стойкость изложниц. Так, ускоренная разливка позволяет снизить примерно на 10% температуру выпускаемого металла что, при соблюдении инструкции при разливке (медленное открытие стопора, центрирование струи и др.), приводит к увеличению стойкости изложниц [27].

Металл нельзя перегревать, а также разливать с чрезмерно высокой скоростью, так как изложница и поддон воспринимают большую тепловую нагрузку. В результате этого возрастает опасность образования трещин в изложнице, особенно при первых наливах [32].

Кроме того, перегретый металл при нарушении центровки и организации струи приводит к оплавлению внутренних граней изложницы, что в свою очередь обуславливает застревание слитка, и в дальнейшем механическое повреждение при извлечении слитка, что отрицательно сказывается на его качество.

Разливка холодного металла и аварийных плавок (с некроющим стопором) так же оказывает отрицательное воздействие на стойкость изложниц. Например, при сифонной разливке такой металл вынуждены разливать сверху, что приводит к размыванию дна изложниц и выводит ее из строя.

Чтобы устранить размывание низа и граней изложницы, необходимо при разливке сверху струю строго центрировать по оси изложниц, а при разливке сифоном обеспечить правильную (по центру) установку стаканчика, чтобы не было перекоса [32].

При применении двухстопорной разливки стали (мартеновский цех, емкость ковша 300т), одновременно наполняются сталью две изложницы через два стакана в ковше. При разливке стали в изложницы, уширенные кверху, отверстия в донной части закрывают вкладышами, которые предохраняют изложницу от размывания струей стали в донной части и от приваривания слитков [1]. Вкладыши для этой цели изготавливают литыми или кованными в виде подкладок, прикрывающие дно изложниц. В процессе разливки через 2 стопора, очень сложно обеспечить центрирование струи металла одновременно в двух изложницах, хотя известно, что правильное центрирование струи при разливке уменьшает приваривание слитков, способствует улучшению их качества и повышает срок службы изложниц [1].

Одним из недостатков разливки стали из ковшей большой емкости считается большая скорость истечения струи стали из ковша, которая приводит к разбрызгиванию стали при наполнении изложниц, что ведет к запороченности низа слитков пленой. Скорость истечения струи стали в наибольшей степени зависит от уровня металла в ковше, что видно из зависимости:

(2.2)

где:

Н1 - высота уровня стали в ковше над сталеразливочным стаканом;

Н2 - высота сталеразливочного стакана над уровнем стали в изложнице;

R - коэффициент сопротивления движению струи стали.

Вследствие большой скорости истечения струи стали происходит сильное разбрызгивание ее в начале наполнения изложниц, приваривание слитков к изложницам и поддонам, увеличивается износ поддонов [1].

Разбрызгивание стали при наполнении изложниц образуются вследствие неправильной организации струи, вытекающей из ковша (из-за плохой промывки стакана кислородом), или вследствие недостаточного плавного регулирования скорости наполнения изложниц стопорным механизмом. Разбрызгивание стали и всплески ее при наполнении изложниц вызывают образование пороков на поверхности слитков, плен и других дефектов [26].

3 ОРГАНИЗАЦИОННАЯ И ЭКОНОМИЧЕСКАЯ ЧАСТЬ

В работе был исследован регламентированный график доставки горячего металл на нагревательные колодцы блюминга.

Суть состоит в том, чтобы повысить температуру посада горячих слитков. Исходя из этого металл выдерживается 25-30 минут, а не 45 минут как ранее. Сокращение времени на 15-20 минут способствует снижению разгара рабочей поверхности изложницы и увеличивает срок их эксплуатации. Это в свою очередь снижает расходный коэффициент изложниц, а следовательно затраты по переделу, т.е. снижается себестоимость производства стали.

Таблица 3.1 Показатели изложниц типа КС - 8п и МКС 12,5т

Наименование показателя

2002 г.

Изложницы типа КС-8п

Изложницы типа МКС-12,5т

1. Производство стали, т

2 766 268

3 358 134

2. Вес изложницы, кг

9,25

12,636

3. Вес слитка, кг

9,03

12,2

4. Стоимость 1т. изложницы, грн

650

650

Расходный коэффициент изложницы типа КС-8П на 1 т выплавляемой стали составил в 2001 г.

кг/т стали (3.1)

где:

Qизл - вес изложницы типа КС - 8п;

Qсл - вес слитка, т;

n - средняя стойкость в наливах.

Таблица 3.2 - Абсолютные и относительные изменения стойкости изложниц типа КС - 8п и МКС 12,5 т

Наимено-вание показателя

Значение показателя

Изменения

Источник инфор-мации
2001

до внедрения регламентиро-ванного графика

2002

после внедрения регламентиро-ванного графика

абсолют

ные

относи

тельные

1. Стойкость изложницы типа КС-8п

86,7 наливов

97,3 наливов

10,6

+12,23

Нормы цеха

2.Стойкость изложницы МКС-12,5т

78,2 наливов

81,4наливов

3,2

+4,09

Расходный коэффициент изложницы типа МКС-12,5т на 1 т выплавляемой стали составил в 2001 г.

кг/т стали

Расходный коэффициент изложницы типа КС-8П на 1 тн выплавляемой стали составил в 2002 г

кг/т стали

Расходный коэффициент изложницы типа МКС-12,5т на 1 тн выплавляемой стали составил в 2002 г.

кг/т стали

До внедрения новой технологии ускоренной доставки слитков в колодцы блюминга, затраты на производство стали в изложницы типа КС-8П составили:

(3.2)

где:

Qгод - количество разлитой стали в изложницы типа КС - 8п, т;

К - расходный коэффициент изложниц типа КС - 8п, т;

С - себестоимость 1т изложницы, грн.

После внедрения нового регламентированного графика ускоренной доставки слитков в колодцы блюминга, отражающего суть новой технологии, затраты на производство стали в изложницы типа КС-8П составили:

Экономический эффект после внедрения нового регламентированного графика ускоренной доставки слитков в колодцы блюминга в изложницы типа КС-8П составил:

До внедрения новой технологии ускоренной доставки слитков в колодцы блюминга, затраты на производство стали в изложницы типа МКС-12,5т составили:

(3.3)

где: Qгод - количество разлитой стали в изложницы типа МКС - 12,5;

К' - расходный коэффициент изложниц типа МКС - 12,5;

С - себестоимость 1т изложницы, грн.

После внедрения нового регламентированного графика ускоренной доставки слитков в колодцы блюминга, отражающего суть новой технологии, затраты на производство стали в изложницы типа МКС-12,5т составили:

Экономический эффект после внедрения нового регламентированного графика ускоренной доставки слитков в колодцы блюминга в изложницы типа МКС-12,5т составил:

Общий экономический эффект составляет:

Таблица 3.3 - Влияние повышения стойкости изложниц типа КС - 8п и МКС - 12,5т на общий объем затрат разлитой стали в эти изложницы

Наименование показателя

Влияние на затраты (+,-), грн

1. Снижение затрат на разлитую сталь в изложницы типа КС - 8п

1798074

2. Снижение затрат на разлитую сталь в изложницы типа МКС - 12,5

1091393

Всего

2889467

Из приведенной выше таблицы 3-3 следует, что внедренный регламентируемый график доставки слитков с повышенным теплосодержанием на нагревательные колодцы блумингов уменьшает расходный коэффициент изложниц типа КС - 8п на 1,3 кг/т выплавляемой стали и расходный коэффициент изложниц типа МКС - 12,5т на 0,5 кг/т выплавляемой стали, тем самым снижая затраты на отлитую сталь в эти изложницы в сумме 2889467 грн.

В результате внедрения регламентированного графика доставки слитков с повышенным теплосодержанием на нагревательные колодцы блумингов, изменились и технико-экономические показатели цеха подготовки составов (см. табл. 3.4).

Таблица 3.4

Технико-экономические показатели цеха подготовки составов

Наимено-вание показателя

Значение показателя

Изменения

До внедрения регламентиро-ванного графика

После внедрения регламентиро-ванного графика

Абсолютные

Относитель-ные, %

1. Годовой объем производства стали, т

изложницы типа КС-8п

изложницы типа МКС - 12,5т

2766268

3358134

2766268

3358134

---

---

---

---

2. Фактическое время работы оборудования (изложниц), час

8760

8760

---

---

3. Численность ППП цеха подготовки составов, чел

537

537

---

---

4. Инвестиции

---

---

---

---

5. Затраты на производство продукции, грн

50389679

47500212

2889467

5,73

6. Снижение норм расхода, кг/т стали

изложницы типа КС-8п

изложницы типа МКС - 12,5т

11,8

13,2

10,5

12,7

-1,3

-0,5

11,02

3,79

4 ОХРАНА ТРУДА

Охрана труда - это система правовых, социально-экономических, организационно-технических, санитарно-гигиенических и лечебно-профилактических мероприятий и способов, направленных на сохранение здоровья и трудоспособности человека в процессе труда.

4.1 Выбор и характеристика строительной площадки цеха

подготовки составов

Площадка предприятия в предлагаемой работе предусматривается хорошо освещенной, ровной с некоторым уклоном, обеспечивающим поток сливных и сточных вод, а также хорошо проветриваемой. По отношению к жилому району предлагается расположение с подвесной стороны. Между предприятиями и жилым районом предусматривается санитарно-защитная зона, ширина которой регламентируется санитарными нормами от характеристики производства.

Расположение зданий и сооружений предусматривает рациональные потоки грузов и людей. Санитарно-бытовые помещения предлагается располагать в близи от основных потоков трудящихся. Расстояние от рабочих мест к зданию бытовых помещений предусматривается не более 300 м и предлагается соединить с основным зданием цеха, тоннелем или открытой галерей. Расстояние от рабочих мест к пункту приёма пищи в проекте применяется не более 300 м при обеденном перерыве не 30 мин и 600 м при перерыве на обед на 1 час.

Санитарно-защитную зону предлагается озеленять лиственными породами деревьев, листва которых служит барьером, защищающим от пыли, дыма, газов, шума, ветров и экранирует тепловое излучение при пожаре. Между санитарно-защитной зоной и жилым растоном предусмотрена полоса древесно-кустарных насаждений 20 - 50 м.

Объём производительного помещения предусматривает не менее 15 м?, высота не менее 3,2 м при наличии вредных выделений с учётом удаления их из рабочей зоны. Высота галереи и эстакад не менее 1,5 м, уклон лестниц не более 40%. Все площадки расположенные на высоте более 0,6 м от поверхности пола, за исключением разливочных площадок, ограждены перилами.

Полы рабочих площадок предусматриваются ровными, без порогов и выступов, не скользкие выложенные из прочных износоустойчивых материалов, удобные для уборки. На участках с большими тепловыми выделениями пол покрыт чугунными и стальными плитами.

При расположении входов в здание цеха, предусматривается безопасный переход к рабочим местам. Проемы в здании для подачи железнодорожных составов оборудованы воротами. Площадь проемов принимается от 20 до 30% площади поперечных стен.

Надежность здания обеспечивается систематическим наблюдением за его состоянием и своевременным ремонтом.

Согласно СниП-11-92-76 в ЦПС предусмотрены бытовые и вспомогательные помещения:

- гардеробные из расчёта 0,2 на работающего, всего на 688 работающих 137,6;

- душевые из расчета 1 душевая сетка на 3-их рабочих;

- предприятие общественного питания;

- комната приёма пищи из расчёта 1 м? на каждого посетителя;

- красный уголок площадью 134 м?;

- кладовая площадью 80 м?.

4.2. Основные вредности и опасности цеха подготовки составов

Воздействие электрического тока на организм человека, вследствие соприкосновения с открытыми токопроводящими частями или с оборудованием, случайно оказавшимся под напряжением, может вызвать различные электрические травмы и электрический удар. На исход воздействия током влияют так же индивидуальные особенности организма, физическое и психическое состояние. При некоторых заболеваниях опасность поражения увеличивается. В условия горячего цеха тяжесть поражения увеличивается, так как при перегреве организма снижается его сопротивление.

Загрязнение воздуха оказывает вредное воздействие на организм человека. Все загрязняющие воздух вещества в производстве встречаются в виде сырья, промежуточных и рабочих продуктов, готовой продукции, случайных примесей, вспомогательных веществ и отходов. Токсичными являются газы, образующиеся при металлургических процессах и попадающие в организм через кожу, причём не повреждённую. Таким газом является окись углерода. Это газ без дыма, запаха и вкуса. Действие на организм состоит в вытеснении кислорода из крови с образованием карбооксигемоглобина, результатом этого является удушие. Первые признаки отравления: головная боль, головокружение, тошнота, рвота, общая слабость, в тяжелых случаях потеря сознания. Загазованность на рабочих местах определяется по содержанию СО в воздухе.

Воздействие пыли на организм человека зависит от ёё состава, происхождения и дисперсности. Даже не токсичная пыль может оказать вредное воздействие на организм, разрушит кожу, глаза, уши. Проникая в лёгкие пыль может вызвать специфические профзаболевания.

Ещё одним производственным фактором, оказывающим подчас решающее влияние на организм человека, являются тепловыделения. Тепловое воздействие на организм может являться причиной быстрого утомления, снижения работоспособности, ослабления сопротивляемости организма к вредным воздействиям, различным заболеваниям, теплового истощения, теплового удара.

4.3. Мероприятия по устранению вредных и опасных факторов

в цехе подготовки составов

Рабочие в ЦПС подвергаются воздействиям теплового излучения. Задача снижения избыточного тепла в производственных помещениях решается комплексно, посредством ряда технических и санитарно-гигиенических мер: вентиляцией помещений, применение защитных экранов теплоизоляционной защиты. В качестве средств индивидуальной защиты от теплового излучения применять спецодежду из грубошерстной ткани и теплоизолирующего материала и кожи.

Защита от прикосновения к токоведущим частям электроустановок изоляция, ограждения, недоступное расположение токоведущих частей, использование дистанционных управлений, блокировки и предупредительной сигнализации. Для защиты от прикосновения к деталям оборудования, случайно оказавшимися под напряжением, предусматривается заземление этого оборудования.

Усовершенствование технических процессов и конструкции оборудования, при которых исключились или резко уменьшились вредные выделения в окружающую среду приводят к снижению загрязнения воздуха.

Для защиты от шума применяются противошумные подушки. Органы дыхания защищаются различными родами респираторами. Для защиты ног - спец. обувь.

Для снижения травматизма в цехе выполняются следующие мероприятия:

- реконструировано освещение складов слитков № 2, 3;

- производится установка механизированной площадки для осмотра изложниц в отделении подготовки составов № 2;

- оборудована площадка для осмотра изложниц в отделении смазки изложниц № 2;

- на въездах в воротах произведена установка площадок для обслуживания светофора;

По приведению в соответствие с требованиями нормами техники безопасности и охраны труда на оборудовании, машинах и механизмов;

- произведена установка ограждения на металлорежущих станках;

- заменены троллеи кранов № 12, 14, 27, 29, 30 на гибкий кабель.

Для сокращения тяжелого физического труда отделением подготовки составов № 2 оборудовано электроталями. В отделении № 3 установлена рамка для выгрузки огнеупоров.

В цехе площадью 90 х 20 м со средним выделением пыли, копоти и дыма минимальное освещение, по норме составляет 50 ЛК.

Освещение осуществляется светильниками прямого света, напряжение в осветительной сети 220Вт. Мощность применяемых электрических ламп составляет 750 Вт. Определить мощность осветительной установки и число ламп, необходимых для создания общего равномерного освещения. Расчет производится методом Ватт.

Мощность осветительной установки цеха по методу Ватт производится по формуле:

(4.1)

где:

Е - нормируемая освещенность ЛК

S - площадь освещаемого помещения, м?

R - коэффициент запаса, учитывающий снижение освещенности в результате загрязнения ламп и осветительной арматуры, а также из-за поглощения части светового потока налетом распыленного вольфрама, оседающего на колбе лампы

Еср - средняя горизонтальная освещенность, МС при равномерном освещении.

Осветительный прибор общего освещения при расходе 1 Вт/м?.

При среднем выделении пыли, копоти и дыма коэффициент запаса ламп накаливания R = 1,5.

Величина Еср при мощности ламп 750 Вт, напряжением 220В в светильнике прямого света 4,45 ЛК.

Подставляем цифровые значения в приведённую выше формулу, получаем:

Необходимое количество ламп выбранной мощности, определяем по формуле:

(4.2)

где:

W1 - мощность осветительной установки;

Wл - мощность одной лампы, Вт.

Необходимое количество ламп равно:

4.4 Средства индивидуальной защиты

Использование СИЗ работающих во многих случаях является необходимым и обязательным, что свидетельствует о неудовлетворительности условий труда и об отсутствии или недостаточности эффективности мер по их улучшению. Спецодежда служит для защиты работающих от неблагоприятных воздействий производственной сферы и опасностей производства.

Спецодежда предусматривает нормативное функционирование организма, беспрепятственное выполнение трудовых операций и опрятный внешний вид. Для рабочих горячего цеха спецодежда предназначена предохранять от воздействия теплового излучения и ожогов. Качество и соответствие спецодежды определенному значению, зависит от ткани и покроя. Материал предлагается не воспламеняющийся, прочный и мягкий, стойкий к воздействию теплового излучения, воздухопроницаемый, как в сухом так и во влажном состоянии. Спецодежду рабочих горячих цехов предлагается изготовлять из сукна, брезента, либо льняных тканей, и из синтетического волокна, химически обработанных и других.

Для защиты предусматривается обувь на рефренной подошве из материала, который предусматривается стойким к высокой температуре, излучению, искрам, малотеплопроводным и воздухонепроницаемым. Для защиты рук предлагаются брезентовые рукавицы. Для защиты глаз от воздействия энергии, излучения предусматриваются очки со светофильтрами. Для защиты органов дыхания предлагаются фильтрующие приборы.

4.5 Пожарная безопасность

Пожары на производстве представляют опасность для работающих, причиняют значительные повреждения и материальный ущерб. Причинами возникновения пожара являются недостатки в строительных конструкциях, сооружениях, планировке помещений, устройстве коммуникаций, дефекты оборудования, нарушение режимов технологических процессов, неправильное ведение работ, неосторожность персонала.

Пожароопасность зданий ЦПС относится к категории “Д” - горючие и негорючие вещества в холодном состоянии. Для уменьшения опасности возникновения пожара важное значение имеет рациональное устройство цеха. С целью ограничения распространения пожаров, проектом предусматривается использование несгораемых конструкций, противопожарных преград, легко сбрасываемых покрытий, регулируемых проемов, противопожарных стен и перекрытий. Для удаления из здания при пожаре дыма, предусматриваются дымовые люки в крыше или стенах, особенно при отсутствии окон. Кабели и трубопроводы предлагается защищать от прямых ударов молнии, предусматриваются молниеотводы - устройства воспринимающие молнию и отводящие ее ток в землю.

Для тушения пожаров предлагаются твердые, жидкие и газообразные вещества, обладающие высоким эффектом тушения, не причиняющие вреда организму человека, а так же не оказывающие вредного воздействия на предметы и материалы при тушении пожаров.

Быстрая ликвидация пожаров может быть обеспечена только при правильном выборе средств и способов тушения. Так для тушения металлов и их сплавов предлагаются сухие порошковые материалы, для тушения электрооборудования необходимо прежде всего обесточить его и в качестве огнегасительных средств предлагается использовать углекислоту. Тушение горючих газов распыляют струей воды и инертными газами, но прежде всего необходимо снизить давление газа в магистрали. Для тушения нефтепродуктов применяется распыленная струя воды, пена, флюсы. Предусматриваются автоматические системы сигнализации, которые осуществляют защиту:

- предотвращением образования горючей среды;

- эвакуацией горючих веществ в аварийные емкости;

- перекрытие коммуникаций;

- включение подачи гасящих средств;

- закрытие проемов (для предотвращения распространения огня).

4.6. Охрана природы

Необходимость повышения эффективности мер по охране труда, шире внедрять малоотходные и безотходные технологии, развивать комбинированные производства, обеспечивающие полное использование природных ресурсов, сырья и материалов, исключающие или существенно снижающие вредное воздействие на окружающую среду, усилить охрану атмосферного воздуха.

Ежегодно в атмосферу выбрасывается более 10,3 млн.т. вредных веществ и в водоемы более 1 млрд.м3 загрязненных сточных вод.

Площадь зеленых угодий, нарушенных горными работами и занятая отвалами зона шлаконакопителями, составляет около 130 тыс. гектаров.

Концентрация вредных веществ в атмосфере и водной среде крупных металлургических центров, значительно превышает санитарные нормы. Неудовлетворительная экологическая, напряженная в связи с этим обстановка сложилась в городах Днепродзержинске, Запорожье, Кривом Роге, Мариуполе.

В отраслевой схеме развития и размещения 4 м до 2005 года определены пути решения экологических проблем. В сталеплавильном производстве мартеновские печи в основном будут заменены конверторами и электросталеплавильными агрегатами, что обеспечат снижение выбросов азота на 30%. Переход на непрерывную разливку стали наряду с техническими преимуществами позволит снизить выброс в атмосферу пыли и окислов азота почти в 2 раза, окислов углерода в 7 раз.

Схемой предусмотрено снижение потребления свежей воды и прекращения сброса загрязнения вод, рекультивация отработанных площадей и др.

В настоящее время по данным годовых обзоров главной геофизической обсерваторией им. Войкова и по данным замера гар.С76 воздушный бассейн г. Кривого Рога систематически загрязняется пылью и др.

Это объясняется следующими причинами:

- наличие значительного количества предприятий, являющихся источниками загрязнения воздушного бассейна;

- отсутствие в настоящее время установок по хим. очистке от SO, NO, CO и др.

- отсутствие установок очистки неорганизованных выбросов сталеплавильного и доменного производства, которые существенно загрязняют воздушный бассейн;

- наличие значительного количества невысоких дымовых труб и вытяжных устройств, ухудшающих рассеивание вредных веществ в атмосфере;

- недостаточной эффективностью работы существующих газоочистных сооружений и недостаточно высоким уровнем их эксплуатации.

В частности на “Криворожстали” 860 источников загрязнения атмосферы, из них 663 оснащены 243 газо-пылеулавливающими установками, которые очищают 16540 тыс. м3, загрязненных газов в час.

Общее количество образующихся от работы технологического оборудования вредных веществ в атмосферу в 2002 г составило 1431,9 тыс.т., из них уловлено и обезврежено 1121,8 тыс.т. за счет выполненных в 2002 г мероприятий выброса вредных веществ в атмосферу снижены на 4775 т. в год.

На комбинате эксплуатируется 51 водоочистное сооружение. Объем оборотной воды в системе водоснабжения предприятия составляет 2217 тыс.м3 в год. Водоснабжение комбината организовано по 22 основным оборотным циклам. Объем оборота сточных вод “Криворожстали” составляет 51 млн. 543 м3 в год, водопотребление 148,5 млн.м3 в год.

Технический прогресс в черной металлургии осуществляется неразрывно с решением вопросов защиты окружающей среды от загрязнения вредными отраслями.

Основным направлением в этой отрасли является совершенствование существующих процессов обеспечивающих изменение или ликвидацию вредных веществ, очистку технологических газов. Все известные технологические процессы протекают с выделением пыли, тепла, газов. В комплексных мероприятиях по охране труда предусмотрено принятие мер по изменению тех или иных методов производства, связанных с выделением в атмосферу вредных примесей или загрязнения земли. В связи со сложившейся обстановкой обострения экологического кризиса, необходимо применение организационных мер по устранению выделений вредных веществ или частичного торможения этого процесса. Спад производства в металлургии позволяет сократить выбросы вредных веществ в окружающую атмосферу, но не следует забывать о тех выбросах, которые так или иначе выделяются в процессе существующего производства.

Цех подготовки составов к разливке жидкой стали в отличие от аглодоменных и сталеразливочных процессов в меньшей мере влияют на загрязнение окружающей среды.

Технологический процесс чистки изложниц происходит с выделением в атмосферу пыли. Отделение чистки изложниц снабжено куполообразным навесом для улавливания пыли. Под действием горячего воздуха поток частиц поднимается вверх, и по наклонным частям кессона опадают в емкости, попадание пыли в атмосферу сведено до минимума. Емкости периодически очищаются от пыли.

В ЦПС разогрев сменного оборудования производится на газовых горелках (газ природный). При работе горелок выделяется большое количество CO2 в атмосферу, разогрев прибыльных надставок сокращенным факелом.

В ЦПС покраска рабочей поверхности изложниц происходит с выделением в атмосферу вредных примесей - летучих углеродистых соединений и токсины. Покрашенные изложницы углеродосодержащим материалом или токсичными красками при контакте с жидкой сталью выделяют в атмосферу летучие вещества. В связи с принятыми организационными и технологическими мероприятиями стало возможным производить покраску изложниц материалами, не содержащими веществ при контакте которых с жидкой сталью образуются летучие вещества. В настоящее время в ЦПС покраску изложниц производят антипригарной глиной. Данный состав не образует вредных веществ при контакте с жидким металлом.

ВЫВОДЫ

В ходе проведения исследовательской работы рассмотрены вопросы повышения стойкости изложниц, усовершенствование технологии их эксплуатации:

1. Время пребывания горячего слитка в изложницах.

2. Коэффициент оборачиваемости изложниц.

3. Учет изложниц.

4. Подготовка изложниц к разливке.

1. Пребывание горячего слитка в изложнице сверх регламентированного графика сказывается на стойкости изложницы, т.е. уменьшения времени отстоя плавок полуспокойных марок стали в разливочном отделении сталеплавильных цехов комбината «Криворожсталь» на 20 минут приводит к повышению стойкости изложниц типа КС-8П на 11,02 % и МКС-12,5т на 3,79 %, и уменьшает себестоимость годовой выплавки стали в эти изложницы на 2889467 грн.

2. Одним из основных параметров влияющих на стойкость изложниц является коэффициент оборачиваемости. В ходе проведения исследовательской работы был предложен оптимальный коэффициент оборачиваемости изложниц типа КС-8П и МКС-12,5 т, который должен быть в пределах 1,2 - 1,3 налива в сутки. При таком коэффициенте оборачиваемости достигается максимальная стойкость изложниц: КС-8П - 97,3 налива, МКС-12,5 т - 81,4 налива.

3. В дипломной работе предложен учет изложниц с полной информацией о причинах преждевременного выхода их со строя, который является важным способом дающим возможность анализировать режим работы изложниц.

4. В работе исследовано влияние качества подготовки изложниц к разливке на их стойкость и предложен оптимальный вариант чистки и смазки изложниц, который дает качественную очистку и равномерную покраску рабочей поверхности изложниц типа КС-8П и МКС-12,5 т повышая их стойкость и улучшая качество поверхности слитка.

ПЕРЕЧЕНЬ ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

1. К.К. Прохоренко: «Разливка стали и качество стальных слитков». Киев 1995, 118с.

2. В.К. Могилев, О.И. Лев: «Повышение стойкости изложниц и прокатных валков». Москва «Металлургия» 1986, 117с.

3. Л.М. Черкасов: «Основы образования литейных сплавов». Москва, «Наука», 1970, 163с.

4. Ф.Н. Тавадзе, Ф.Н. Алимов, С.Э. Баркан: «Литейное производство», Москва, 1970, №1 с. 22-23.

5. Н.Е. Скороходов: «Повышение стойкости изложниц на машиностроительных заводах», «Сталь» №1, 1952, 180с.

6. А.С. Филиппов, Г.А. Писаренко, Г.И. Янкелевич, В.С. Радя: «Повышение стойкости чугунных изложниц», Москва, «Металлургия», 1965, 304с.

7. Н.А. Воронов, Н.И. Павловцева, П.И. Стовченко: «Металлургическая и горнорудная промышленность», Москва, «Металлургия», 1970, №5 с.52.

8. А.С. Филиппов, В.С. Радя, Г.Г. Михайлова и др.: «Влияние режимов эксплуатации на оптимальные геометрические параметры изложниц», Сталь, 1971, №1, с.52.

9. Г.Ж. Киря, И.Ф. Иванченко, Л.М. Черкасов: «Литейное производство», Москва, «Металлургия», 1970, №11 с.42.

10. А.С. Филиппов, Г.А. Писаренко, Г.И. Янкевич, В.С. Радя: «Сменные литые детали сталеразливочного оборудования», Москва, «Металлургия», 1965, 304с.

11. Л.М. Черкасов, В.К. Могилев, Н.Н. Спичка: «Металлургическая и горнорудная промышленность», 1971, №6 с. 50-51.

12. В.А. Курчапов, П.Д. Стец, Л.А. Краузе и др.: «Повышение стойкости изложниц», Москва, «Металлургия», 1971, №1 с. 3-14.

13. А.С. Филиппов, В.С. Радя: «Опыт производства и эксплуатации изложниц (по материалам межзаводской школы) Москва, «Черметинформация», 1971, 117с.

14. Л.М. Черкасов: «Металлургическая и горнорудная промышленность», Москва, «Металлургия», 1971, №6, с. 50.

15. Л.М. Черкасов, Г.Ш. Киря, В.К. Могилев и др.: «Повышение стойкости изложниц», Москва, «Металлургия», 1974, с. 111-115.

16. Н.Г. Горшович: «Кристаллизация и свойства чугуна в отливах», Москва, «Машиностроение», 1966, 179с.

17. Л.М. Черкасов: «Формирование качества поверхности отливок», Москва, «Наука», 1969, с. 200.

18. Технологическая инструкция подготовки составов комбината «Криворожсталь»: ТИ 228-ПС-06-2000.

19. В.А. Курчанов: «Повышение стойкости изложниц», Москва, «Металлург», 1989, 142с.

20. К.К. Прохоренко: «Разливка стали и качество стальных слитков», Киев, 1955, 118с.

21. В.А. Ефимов, В.П. Осипов: «Определение оптимальной выдержки слитков в изложницах», Сталь, 1974, 176с.

22. И.С. Ром: «Сокращение времени выдержки слитков в изложнице», Москва, «Металлург», 1989, с.89.

23. Технологическая инструкция разливки стали в конвертерном цехе комбината «Криворожсталь»: ТИ 228-СТ-02-1998.

24. Регламентированный график №2, доставки слитков с повышенным теплосодержанием из сталеплавильных в обжимные цехи комбината «Криворожсталь», 2001.

25. И.И. Маликов: «Оптимизация количества разливочных составов и запаса изложниц в сталеплавильных цехах», Сталь, 1989, №7, 164с.

26. Л.М. Ефимов: «Сборник трудов Центрального научно-исследовательского института черной металлургии», 1966, вып. 41, с. 223-228.

27. В.И. Якушен: «Сборник трудов Центрального научно-исследовательского института черной металлургии», 1966, вып. 41, с. 229-237.

28. В.А. Курчанов: «Перспектива снижения расхода изложниц», Москва, «Металлургия», 1975, №9, с. 5.

29. В.В. Абрамов, Н.А. Воронова, А.А. Будник и др.: «Метод исследования долговечности металлургических изложниц», в сборнике: «Повышение стойкости изложниц», Москва, «Металлургия», 1972, 202с.

30. А.М. Скрыбцев: «Повышение срока службы сталеразливочных изложниц путем внедрения в производство новых летучеизоляционных смазок». Научно-техническая конференция: «Повышение технического уровня и совершенствование технологических процессов производства отливок», Днепропетровск, 1990, 116с.

31. М.И. Мусса-Заде: «Сокращенный график пребывания горячего слитка в изложнице», Сталь, 1975, 216с.

32. В.М. Боревский, В.А. Станкевич: «Подготовка составов с изложницами для разливки стали», Москва, 1964, 85с.


Подобные документы

  • Общая характеристика производства чугуна и стали. Физико-химические свойства получаемых и используемых газов. Некоторые физические явления при использовании промышленных газов и пара на Челябинском металлургическом комбинате. Физика в газовой сфере.

    реферат [19,6 K], добавлен 13.01.2011

  • Общая характеристика Новолипецкого металлургического комбината, его производственные мощности и история развития. Особенности доменного цеха, производства динамной стали, горячего и холодного проката. Место предприятия на металлургическом рынке.

    отчет по практике [1,6 M], добавлен 07.12.2010

  • Увеличение производства цветных металлов на Норильском комбинате. Переход на титановые матрицы. Системы промышленного телевидения, самые современные системы контроля и управления технологическими процессами производства меди на Норильском комбинате.

    презентация [1,5 M], добавлен 16.04.2013

  • Общие сведения об Оскольском металлургическом комбинате, структура производства, сырьевые источники. Химизм процессов. Обзор литейного производства. Анализ работы и оборудование сталеплавильного отделения, формовочного отделения. Экология в металлургии.

    отчет по практике [312,7 K], добавлен 21.05.2013

  • Назначение и классификация магистральных газопроводов, категории и виды трубопроводов. Состав сооружений магистрального газопровода. Виды дефектов трубопровода, проведение дефектоскопии. Характеристика факторов техногенного воздействия при эксплуатации.

    курсовая работа [4,0 M], добавлен 26.05.2009

  • История развития выплавки стали в дуговых электропечах. Технология плавки стали на свежей углеродистой шихте с окислением. Выплавка стали в двухванном сталеплавильном агрегате. Внеагрегатная обработка металла в цехе. Разливка стали на сортовых МНЛЗ.

    отчет по практике [86,2 K], добавлен 10.03.2011

  • Виды деятельности конвертерного цеха: вакуумирование, производство транспортного металла и осевой заготовки. Специфика изготовления колес и бандажей в прокатном цеху. Технология внепечной обработки стали на Нижнетагильском металлургическом комбинате.

    отчет по практике [299,8 K], добавлен 25.05.2014

  • Создание промышленной вибрационной мельницы для приготовления качественных дисперсных порошков. Требования изготовления и эксплуатации в условиях машиностроительного завода. Повышение производительности дисперсного размола, удобство в эксплуатации.

    дипломная работа [2,4 M], добавлен 12.08.2017

  • Принцип действия, конструкции и скоростные режимы шаровых мельниц. Сталь Гадфильда и ее физические свойства. Разработка способа упрочнения футеровки шаровой мельницы в условиях эксплуатации. Расчет времени предлагаемой упрочняющей обработки и работы.

    курсовая работа [802,9 K], добавлен 12.02.2012

  • Условия эксплуатации пуансона. Оценка воздействия технологических факторов на свойства материалов. Требования, предъявляемые к материалу. Технология термической обработки пуансона из чугуна ЧХ16М2 на ЗАО РЗ "СИТО". Проверочный расчёт оборудования.

    дипломная работа [2,5 M], добавлен 11.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.