Нанотехнологии в машиностроении России
Понятие нанотехнологий. Нанотехнология как научно-техническое направление. История развития нанотехнологий. Современный уровень развития нанотехнологий. Применение нанотехнологий в различных отраслях. Наноэлектроника и нанофотоника. Наноэнергетика.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 30.06.2008 |
Размер файла | 569,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Например:
Реализация нанотехнологий в авиакосмической отрасли позволит:
1. Повысить прочность летательных аппаратов. Сейчас ставится задача довести возможность их совершать до 70-90 тысяч полетов, что требует повышения прочностных характеристик, которые обеспечивают новые наноматериалы.
2. Добиться «живучести» и снижения веса (которое обеспечивают в настоящее время композиты). К ним должны присоединиться наноматериалы.
3. Переходя на нанотехнологии, можно достигнуть снижения трения.
4. Решить задачи борьбы с обледенением и прилипанием к внешней стороне конструкции летательных аппаратов различной «биологической живности» с помощью отслаивающихся чешуек.
5. Снизить заметность летательных аппаратов.
Космические аппараты будущего будут уже не просто машинами для перевозки живых существ, но живыми организмами. Они смогут обучаться, диагностировать и ремонтировать себя. Применение нанотехнологии в аэрокосмической технике способно также обеспечить: снижение энергопотребления в 104 раз, снижение вибрации и шума - в 102, повышение быстродействия - в 106, повышение КПД солнечных батарей - в 101, повышение чувствительности датчиков - в 106, повышение времени автономной работы - в 104 раз, повышение надежности - в 102, повышение стойкости к радиации - в 101, повышение стойкости к перегрузкам - в 102 раз.
Внедрение нанотехнологий в автомобильную промышленность позволит сделать автомобили:
1. Доступными (нанотехнологические методы производства позволяют создавать товары и услуги с низкой себестоимостью; в автомобилях будущего основной составляющей цены будет являться «брэнд»);
2. комфортными (более совершенная работа механических частей, улучшенная шумо- и вибро- изоляция на основе наноструктурированных материалов, эргономичный салон);
3. эффективными (повышения средней скорости движения автомобилей, повышение КПД использования энергии, необходимой для перевозки людей и грузов);
4. интеллектуальными (широкое внедрение информационных систем во все узлы и компоненты автомобилей, принятие автомобилем все больших функций водителя на себя);
5. безопасными для человека и окружающей среды (новые, экологически чистые силовые установки, в том числе на топливных элементах, качественно новый уровень пассивной и активной безопасности для обитателей салона и пешеходов, широкое использование в конструкции авто биодеградируемых материалов, а с созданием дисассемблеров - возможность 100% утилизации устаревших автомобилей).
Кроме того, запатентованы новые способы и ресурсосберегающие нанотехнологии, в том числе повышения долговечности на этапе эксплуатации, упрочнения твердых сплавов, нержавеющих, конструкционных и инструментальных марок стали, кузнечной сварки многослойных композиций и производства цельнокованого нержавеющего дамаска, квазиаморфного модифицирования карбидами и оксидами кремния. При этом ресурс изделий различного назначения, изготовленных по новой методологии для отраслей машиностроения повышается от 200 до 500%.
В целом же, разработка и применение нанотехнологий в области машиностроения позволят достичь следующих основных целей[12]:
1. Изменение структуры валового внутреннего продукта в сторону увеличения доли наукоемкой продукции.
2. Повышение эффективности производства.
3. Переориентация российского экспорта с, в основном, сырьевых ресурсов на конечную высокотехнологичную продукцию и услуги путем внедрения наноматериалов и нанотехнологий в технологические процессы российских предприятий.
4. Создание новых рабочих мест для высококвалифицированного персонала инновационных предприятии, создающих продукцию с использованием нанотехнологий.
5. Развитие фундаментальных представлений о новых явлениях, структуре и свойствах наноматериалов.
6. Формирование научного сообщества, подготовка и переподготовка кадров, нацеленных на решение научных, технологических и производственных проблем нанотехнологий, создание наноматериалов и наносистемной техники, с достижением на этой основе мирового уровня в фундаментальной и прикладной науках.
Эффективное достижение намеченных целей потребует системного подхода к решению целого ряда взаимоувязанных задач, основными из которых являются:
1. Координация работ в области создания и применения нанотехнологий, наноматериалов и наносистемной техники;
2. Создание научно-технической и организационно-финансовой базы, позволяющей сохранить и развивать имеющийся в России приоритетный задел в исследованиях и применении нанотехнологий; развитие бюджетных и внебюджетных фондов, поощряющих и развивающих исследования в области наноматериалов и нанотехнологий и стимулирующих вклады инвесторов;
3. Формирование инфраструктуры для организации эффективных фундаментальных исследований, поиска возможных применений их результатов, развития новых нанотехнологий и их быстрой коммерциализации;
4. Поддержка межотраслевого сотрудничества в области создания наноматериалов и развития нанотехнологий;
5. Обеспечение заинтересованности в решении научных, технологических и производственных проблем развития нанотехнологий и наноматериалов путем либерализации налоговой политики, оптимизации финансовой политики; создание системы защиты интеллектуальной собственности;
6. Разработка и внедрение новых подходов к обучению специалистов в области нанотехнологий.
2.2. Технологические особенности применения нанотехнологий в машиностроении (на примере автомобильной промышленности)
Нанотехнологии обещают целый ряд выгод от широкомасштабного внедрения в массовое производство автомобилей. Так буквально каждый узел или компонент в конструкции автомобиля может быть в значительной степени усовершенствован при помощи нанотехнологий.
Одним из наиболее перспективных и многообещающих направлений применения (в том числе коммерческого) достижений современной нанотехнологии является область наноматериалов и электронных устройств[14, 15, 16].
Уже существуют легко очищающиеся и водоотталкивающие покрытия для материалов, основанные на использовании диоксида кремния.
В форме наночастиц это вещество приобретает новые свойства, в частности, высокую поверхностную энергию, что и позволяет частицам SiO2 при высыхании коллоидного раствора прочно присоединяться к различным поверхностям, в первую очередь к родственному им по составу стеклу, образуя, тем самым, сплошной слой наноразмерных выступов.
Покрытие из наночастиц кремнезема делает обработанную поверхность гидрофобный - на поверхности с плёнкой из SiO2 капля воды касается субстрата лишь немногими точками, что во много раз уменьшает Ван-дер-ваальсовые силы и позволяет силам поверхностного натяжения жидкости сжать каплю в шарик, который легко скатывается по наклоненному стеклу, унося с собой накопившуюся грязь.
В силу наноразмерной толщины, такие покрытия совершенно невидимы, а благодаря биоинертности кремнезема - безвредны для человека и окружающей среды. Они устойчивы к ультрафиолету и выдерживают температуры до 400 °C, а действие водоотталкивающего эффекта длится в течение 4 месяцев.
Несколько зарубежных фирм уже выпускают подобные покрытия в промышленных масштабах. На российском рынке их продукцию представляет эксклюзивный дистрибутор - компания Nanotechnology News Network.
Что касается в прямом понимании самоочищающихся поверхностей, то такая технология основана на использовании диоксида титана. Принцип действия материала с таким покрытием заключается в следующем.
При попадании ультрафиолетового излучения на нанопокрытие из TiO2 происходит фотокаталитическая реакция. В ходе этой реакции испускаются отрицательно заряженные частицы - электроны, а на их месте остаются положительно заряженные дырки. Благодаря появлению комбинации плюсов и минусов на поверхности, покрытой катализатором, содержащиеся в воздухе молекулы воды превращаются в сильные окислители - радикалы гидроокиси (HO), которые в свою очередь окисляют и расщепляют грязь, а также нейтрализуют различные запахи и убивают микроорганизмы.
Кроме покрытий для стекол также разработаны и выпускаются составы с аналогичным действием для тканей, металла, пластика, керамики - и все они имеют потенциал для применения в автомобильной промышленности.
Из серийных моделей автомобилей гидрофобное покрытие наносится на боковые стекла Nissan Terrano II. Оно не создает полноценный водоотталкивающий эффект, но уменьшает пятно контакта поверхности с каплями воды, благодаря чему во время дождя стекло остается вполне прозрачным (см. рис. 5).
Рисунок 5. Водоотталкивающий эффект гидрофобного покрытия[16]
По некоторым сообщениям, концерн BMW работает над созданием самоочищающихся покрытий на основе нанопорошков.
Компания Mercedes-Benz с конца 2003 года выпускает модели А, С, E, S, CL, SL, SLK покрытых новым поколением прозрачных лаков, изготовленных с использованием нанотехнологии. В состав верхнего слоя такого лакокрасочного покрытия вводят наноскопические керамические частицы. По утверждению создателей, новое лакокрасочное покрытие защищает кузов от царапин в три раза эффективнее, чем обычный лак.
По результатам испытаний оказалось, что покрытые лаком нового типа машины сохраняют блеск на 40% сильнее, чем покрашенные обычной краской.
Новое лаковое покрытие не только защищает кузов от механических повреждений, но еще и полностью отвечает требованиям Mercedes относительно устойчивости к воздействию химических элементов, находящихся в воздухе.
В настоящее время с использованием нанотехнологических подходов уже производятся высокоэффективные антифрикционные и противоизносные покрытия для автотранспорта. Так российский концерн «Наноиндустрия» наладил серийное производство ремонтно-восстановительного состава «Нанотехнология». Состав предназначен для обработки механических деталей, испытывающих трение - двигали, трансмиссия.
При применении состав позволяет создавать модифицированный высокоуглеродистый железосиликатный защитный слой (МВЗС) толщиной 0,1-1,5 мм в областях интенсивного трения металлических поверхностей, что дает возможность избирательной компенсации износа мест трения и контакта деталей за счет образования в этих местах нового модифицированного поверхностного слоя. Использование РВС позволяет увеличивать ресурс работы узлов и деталей в 2-3 раза за счет замены плановых ремонтов предупредительной обработкой, снижает вибрации и шум, на 70-80% снижает токсичность выхлопа автомобиля без применения каких-либо других мер.
В аэрокосмической промышленности уже широко применяется семейство наноструктурированных аэрогелей. Так кремниевый аэрогель - лучший в мире твердый теплоизолятор, когда-либо обнаруженный или полученный. Для промышленности он представляет интерес, так как обладает высокой термической изоляцией - до 800° С (2,5-сантиметровый лист из силиконового аэрогеля надежно защищает руку человека от огня паяльной лампы) и акустической изоляцией - скорость звука при прохождении через аэрогель составляет лишь 100 м/сек. Развитие нанотехнологии позволит снизить себестоимость производства аэрогелей и сделает этот вид материалов доступным для применения в различных отраслях промышленности, в том числе автомобильной.
Большие перспективы имеются в улучшении электронных компонентов автомобиля с помощью нанотехнологий. Так МикроЭлектроМеханические системы (MEMS) уже расширяют стандартную технологию микроэлектроники, позволяет объединять в одной микросхеме элементы, обеспечивающие как механическое перемещение физических частей, так и электронов в электрической схеме.
Это позволяет вместо раздельного производства микроактуаторов и сенсоров, делать их в виде интегрированного в микросхему единого изделия. При этом для их производства используется уже апробированная традиционная технология производства интегральных микросхем и полупроводников.
Идею подвижного кремния (еще так называют MEMS) прекрасно иллюстрируют MEMS-акселерометры, которые уже широко используются в качестве сенсоров автомобильных подушек безопасности.
Вращающиеся акселерометры также используются для расширения возможностей антиблокировочных систем автомобиля (ABS). Кроме того, в автомобилях MEMS находят применение в датчиках продольных и поперечных ускорений, датчиках крена и т.д. Определяя положение кузова, они служат источником информации для работы различных электронных систем стабилизации и контроля курсовой устойчивости. Также MEMS представляют интерес для создания датчиков давления, температуры. В дорогих автомобилях количество датчиков и сенсоров на основе MEMS-технологии может составлять до нескольких десятков штук. Кроме измерения ускорений и детектирования перемещений, MEMS используется в системах GPS-навигации.
История развития MEMS насчитывает более сорока лет, но широкое практическое распространение эти системы получили только с середины 90-ых годов прошлого века. В настоящее время уже идет речь о развитии NEMS - NanoElectroMechanical Systems. В результате эволюции MEMS происходит уменьшение до нано размеров механических компонентов систем, снижается их масса, при этом увеличивается их резонансная частота и уменьшается константы взаимодействия, что сказывается на значительном повышении функциональности данного рода устройств. Точность измерения перемещения у лучших образцов таких устройств составляет 10 нанометров.
Развитие нанотехнологий обещает массовое распространение новых конструкционных материалов с порою уникальными свойствами и характеристиками. Наибольший интерес для инженеров и исследователей представляют углеродные материалы, из которых в настоящее время наиболее изученными, а также наиболее перспективными для целей практического применения являются углеродные нанотрубки (УНТ). Они обладают самым широким набором уникальных свойств, делающих их чрезвычайно перспективными для использования, в том числе в автомобилестроении.
Баллистический характер электропроводности УНТ (электроны движутся, как бы скользя по поверхности, не встречая препятствий) позволит создавать высокоэффективные электропроводящие узлы различных машин и механизмов, в том числе автомобилей.
Углеродные нанотрубки уже находят применение в конструкции современных автомобилей. Например, инженеры компании Toyota добавляет композиционный материал на основе УНТ в пластиковые бамперы и дверные панели своих автомобилей. Помимо повышения прочности и снижения массы, пластик со смолой из УНТ становится электропроводным, и его можно покрывать теми же красками с электрическим нанесением, что и металлические детали.
Электронные системы все более тесно интегрируются в конструкцию автомобиля. Существует тенденция дальнейшего расширения использования электроники в автомобилях с одновременным усовершенствованием самой полупроводниковой техники и появлении наноэлектроники и молекулярной электроники.
Нанотранзисторы, в том числе с нанотрубками в конструкции будут обладать рядом улучшенных характеристик и бесспорных преимуществ по сравнению с традиционными кремниевыми:
· Повышенное быстродействие;
· термо - и радиационная стойкость;
· миниатюрность;
· низкое энергопотребление и как следствие - незначительное тепловыделение при работе.
Большой интерес представляют нанотехнологии для создания перспективных автомобилей на топливных элементах.
С помощью нанотрубок предполагается решить проблему надежного и безопасного хранения водорода на борту транспортного средства, так как наряду с металлами и жидкостями углеродные нанотрубки могут заполняться газообразными веществами и связывать большое его количество.
Китайские и американские ученые совместно разработали нанолампочку, в которой нитью накаливания служит не вольфрамовая проволочка, а углеродные нанотрубки. Лампочка с УНТ более экономичная - при равном напряжении она испускает больше света.
Сейчас конструкторы «гибридных» автомобилей уже сталкиваются с потребностью в компактных, легких и высокоемких аккумуляторных батареях. Стоит напомнить, что ставшие традиционными кислотные аккумуляторы не годятся, в силу большой массы, громоздкости, экологической «небезупречности». С ростом парка гибридов, а также с массовым появлением водородных автомобилей на ТЭ потребность в автономных источниках хранения электрической энергии возрастет еще больше. Нанотехнологии предлагают ряд решений данной проблемы.
В силу того, что большинство автомобилей будущего будет работать на электрической тяге, гораздо больший интерес станет представлять использование фотоэлементов в конструкции автомобиля. В этом отношении нанотехнология позволяет создавать долговечные, ультратонкие и гибкие преобразователи солнечного света. Кроме того, использование нанотехнологических принципов позволит получать солнечные панели с КПД до 80-90%.
Кроме конструкции автомобиля, измениться структура самой автомобильной промышленности.
Так с появлением автоматизированной молекулярной нанотехнологии получит новое развитие уже наметившаяся тенденция - разделение функций разработки/проектирования автомобилей и их производства с окончательным закреплением приоритета за первой из перечисленных двух функций. Собственно в будущем автомобильные концерны будут только разрабатывать конструкции тех или иных моделей автомобилей для последующей продажи права на их производство методами поатомной сборки сторонним организациям.
Тем самым не автомобиль будет товаром, а информация об особенности его конструкции, что будет полностью соответствовать модели новой экономической формации, где единственным предметом обмена станет информация.
2.3. Проблемы и перспективы развития нанотехнологий в машиностроении
2.3.1. Перспективы развития нанотехнологий в машиностроении
Стратегическими национальными приоритетами Российской Федерации, изложенными в утвержденных 30 марта 2002 г. Президентом Российской Федерации «Основах политики Российской Федерации в области развития науки и технологий на период до 2010 года и дальнейшую перспективу», являются: повышение качества жизни населения, достижение экономического роста, развитие фундаментальной науки, образования и культуры, обеспечение обороны и безопасности страны[12].
Одним из реальных направлений достижения этих целей может стать ускоренное развитие нанотехнологий на основе накопленного научно-технического задела в этой области и внедрение их в технологический комплекс России.
Развитие направлений науки, техники и технологий, связанных с созданием, исследованиями и использованием объектов с наноразмерными элементами, уже в ближайшие годы приведет к кардинальным изменениям во многих сферах человеческой деятельности - в том числе и в машиностроении.
Новейшие нанотехнологий наряду с компьютерно-информационными технологиями и биотехнологиями являются фундаментом научно-технической революции в XXI веке, сравнимым и даже превосходящим по своим масштабам с преобразованиями в технике и обществе, вызванными крупнейшими научными открытиями XX века.
В развитых странах осознание ключевой роли, которую уже в недалеком будущем будут играть результаты работ по нанотехнологиям, привело к разработке широкомасштабных программ по их развитию на основе государственной поддержки.
Так, в 2000 г. в США принята приоритетная долгосрочная комплексная программа, названная Национальной нанотехнологической инициативой и рассматриваемая как эффективный инструмент, способный обеспечить лидерство США в первой половине текущего столетия. К настоящему времени бюджетное финансирование этой программы увеличилось по сравнению с 2000 г. в 2,5 раза и достигло в 2003 г. 710,9 млн долл., а на четыре года, начиная с 2005 г., планируется выделить еще 3,7 млрд долл. Аналогичные программы приняты Европейским союзом, Японией, Китаем, Бразилией и рядом других стран.
В России работы по разработке нанотехнологий начаты еще 50 лет назад, но слабо финансируются и ведутся только в рамках отраслевых программ. К настоящему времени назрела необходимость формирования программы общефедерального масштаба с учетом признания важной роли нанотехнологий на самом высоком государственном уровне.
Нанотехнологии могут стать мощным инструментом интеграции технологического комплекса России в международный рынок высоких технологий, надежного обеспечения конкурентоспособности отечественной продукции.
Разработка и успешное освоение новых технологических возможностей потребует координации деятельности на государственном уровне всех участников нанотехнологических проектов, их всестороннего обеспечения (правового, ресурсного, финансово-экономического, кадрового), активной государственной поддержки отечественной продукции на внутреннем и внешнем рынках.
Формирование и реализация активной государственной политики в области нанотехнологий позволит с высокой эффективностью использовать интеллектуальный и научно-технический потенциал страны в интересах развития науки, производства, здравоохранения, экологии, образования и обеспечения национальной безопасности России.
Использование возможностей нанотехнологий может уже в недалекой перспективе принести значительный экономический эффект в машиностроении:
1. Увеличение ресурса режущих и обрабатывающих инструментов с помощью специальных покрытий и эмульсий.
2. Широкое внедрение нанотехнологических разработок в модернизацию парка высокоточных и прецизионных станков.
3. Созданные с использованием нанотехнологий методы измерений и позиционирования обеспечат адаптивное управление режущим инструментом на основе оптических измерений обрабатываемой поверхности детали и обрабатывающей поверхности инструмента непосредственно в ходе технологического процесса. Например, эти решения позволят снизить погрешность обработки с 40 мкм до сотен нанометров при стоимости та кого отечественного станка около 12 тыс. долл. И затратах на модернизацию не более 3 тыс. долл. Равные по точности серийные зарубежные станки стоят не менее 300-500 тыс. долл. При этом в модернизации нуждаются не менее 1 млн активно используемых металлорежущих станков из примерно 2,5 млн станков, находящихся на балансе российских предприятий.
4. В двигателестроении и автомобильной промышленности _ за счет применения наноматериалов, более точной обработки и восстановления поверхностей можно добиться значительного (до 1,5-4 раз) увеличения ресурса работы автотранспорта, а также снижения втрое эксплуатационных затрат (в том числе расхода топлива), улучшения совокупности технических показателей (снижение шума, вредных выбросов), что позволяет успешнее конкурировать как на внутреннем, так и на внешнем рынках.
5. В электронном и электротехническом машиностроении _ расширение возможностей радиолокационных систем за счет применения фазированных антенных решеток с малошумящими СВЧ-транзисторами на основе наноструктур и волоконно-оптических линий связи с повышенной пропускной способностью с использованием фотоприемников и инжекционных лазеров на структурах с квантовыми точками; совершенствование тепловизионных обзорно-прицельных систем на основе использования матричных фотоприемных устройств, изготовленных на базе нанотехнологий и отличающихся высоким температурным разрешением; создание мощных экономичных инжекционных лазеров на основе наноструктур для накачки твердотельных лазеров, используемых в фемтосекундных системах.
6. В энергетическом машиностроении _ наноматериалы используются для совершенствования технологии создания топливных и конструкционных элементов, повышения эффективности существующего оборудования и развития альтернативной энергетики (адсорбция и хранение водорода на основе углеродных наноструктур, увеличение в несколько раз эффективности солнечных батарей на основе процессов накопления и энергопереноса в неорганических и органических материалах с нанослоевой и кластерно-фрактальной структурой, разработка электродов с развитой поверхностью для водородной энергетики на основе трековых мембран). Кроме того, наноматериалы применяются в тепловыделяющих и нейтронопоглощающих элементах ядерных реакторов; с помощью нанодатчиков обеспечивается охрана окружающей среды при хранении и переработке отработавшего ядерного топлива и мониторинга всех технологических процедур для управления качеством сборки и эксплуатации ядерных систем; нанофильтры используются для разделения сред в производстве и переработке ядерного топлива.
2.3.2. Ключевые проблемы развития нанотехнологий в России
Анализ мирового опыта формирования национальных и региональных программ по новым научно-техническим направлениям свидетельствует о необходимости выявления некоторых ключевых проблем в области разработки наноматериалов и нанотехнологий.
Первая проблема _ формирование круга наиболее перспективных их потребителей, которые могут обеспечить максимальную эффективность применения современных достижений. Необходимо выявить, а затем и сформировать потребности общества в развитии нанотехнологий и наноматериалов, способных существенно повлиять на экономику, технику, производство, здравоохранение, экологию, образование, оборону и безопасность государства.
Вторая проблема _ повышение эффективности применения наноматериалов и нанотехнологий. На начальном этапе стоимость наноматериалов будет выше, чем обычных материалов, но более высокая эффективность их применения будет давать прибыль. Поэтому необходимо среднесрочное и долгосрочное финансирование НИОКР по наноматериалам и нанотехнологиям с выбором способов реализации программы, включая масштабы и источники финансирования. Государство заинтересовано в быстрейшем развитии перспективного направления, поэтому оно должно взять на себя основные расходы на проведение фундаментальных и прикладных исследований, формирование инноваций.
Третья проблема _ собственно разработка новых промышленных технологий получения наноматериалов, которые позволят России сохранить некоторые приоритеты в науке и производстве.
Четвертая проблема _ обеспечение перехода от микротехнологий к нанотехнологиям и доведение разработок нанотехнологий до промышленного производства, особенно в области электроники и информатики.
Пятая проблема _ широкомасштабное развитие фундаментальных исследований во всех областях науки и техники, связанных с развитием нанотехнологий.
Шестая проблема _ создание исследовательской инфраструктуры, включая:
организацию центров коллективного пользования уникальным технологическим и диагностическим оборудованием;
современное приборное оснащение научных и производственных организаций инструментами и приборами для проведения работ в области нанотехнологий;
обеспечение доступа научно-технического персонала к синхротронным и нейтронным источникам (как российским, так и зарубежным), к сверхпроизводительным вычислительным комплексам;
разработку специальной метрологии и государственных стандартов в области нанотехнологий;
развитие физических и аппаратурно-методических основ адекватной диагностики наноматериалов на базе электронной микроскопии высокого разрешения, сканирующей электронной и туннельной микроскопии, поверхностно-чувствительных рентгеновских методик с использованием синхротронного излучения, электронной микроскопии для химического анализа, электронной спектроскопии, фотоэлектронной спектроскопии.
Седьмая проблема _ создание финансово-экономического механизма формирования оборотных средств у институтов и предприятий-разработчиков наноматериалов и нанотехнологий, а также развитие инфраструктуры, обеспечивающей поддержку инновационной деятельности в этой сфере на всех ее стадиях _ от выполнения научно-технических разработок до реализации высокотехнологической продукции.
Восьмая проблема _ привлечение, подготовка и закрепление квалифицированных научных, инженерных и рабочих кадров для обновленного технологического комплекса Российской Федерации.
Для выработки и практической реализации необходимых и достаточных мер в области создания и развития нанотехнологий должна быть сформирована государственная политика, которая, в свою очередь, должна рассматриваться как часть государственной научно-технической политики, определяющей цели, задачи, направления, механизмы и формы деятельности органов государственной власти Российской Федерации по поддержке научно-технических разработок и использованию их результатов.
К таким мерам прежде всего необходимо отнести:
разработку и реализацию материально-технического обеспечения работ в области нанотехнологий с максимальным учетом возможностей кооперации в использовании уникального сверхдорогостоящего научного и экспериментально-исследовательского оборудования;
подготовку, повышение квалификации, привлечение и закрепление кадров (прежде всего молодых специалистов) в области нанотехнологий для их использования в научной и промышленной сферах;
изучение рынка наукоемкой продукции в части нанотехнологий с использованием методов прогнозирования и технико-экономической оценки;
анализ современного состояния научно-исследовательских работ фундаментального и прикладного профиля в соответствии с общими отечественными и мировыми тенденциями в развитии данного направления, а также результативности законченных исследовании и их дальнейшей перспективности;
определение приоритетных ориентированных направлений в области нанотехнологий, результаты которых могут быть использованы в ближайшее время, среднесрочной и дальней перспективе, а также в фундаментальных и поисковых исследованиях;
разработку и использование системы координации и кооперации проводимых исследований в области нанотехнологий;
создание и использование экспертных систем и баз данных как информационного возобновляемого ресурса в области последних достижений, связанных с разработкой и применением нанотехнологий в стране и за рубежом;
отработку систем взаимодействия государства с предпринимательским сектором экономики в целях формирования рынка нанотехнологий, привлечения внебюджетных средств для проведения исследований и организации соответствующих производств; разработку мер по активизации участия бюджетных и внебюджетных фондов и частных инвесторов на всех стадиях разработки и освоения нанотехнологий;
разработку системы мер по организации эффективного взаимовыгодного международного сотрудничества в области исследований и практического использования нанотехнологий.
Работы в области развития нанотехнологий могут быть организованы по следующей схеме:
на первом этапе (начиная с 2005 г.) включить в состав федеральной целевой научно-технической программы «Исследования и разработки по приоритетным направлениям развития науки и техники» на 2002-2006 годы специальный раздел по развитию работ, связанных с созданием и использованием нанотехнологий, сконцентрировав в нем интеллектуальные, финансовые и материально-технические ресурсы в данной области;
на втором этапе, учитывая масштабность задач по развитию фундаментальных исследований, прикладных технологических работ и созданию инновационной инфрастрактуры, разработать самостоятельную программу федерального уровня (на 2006-2010 гг.), учитывающей программы, реализуемые федеральными органами исполнительной власти, субъектами РФ и отдельными организациями различных форм собственности с условным названием «Нанотехнологий».
Программа должна включать фундаментальные исследования, прикладные исследования и разработки, внедрение и организацию производства, а также вопросы, связанные с подготовкой и привлечением высококвалифицированных кадров. Подготовка и согласование элементов данной программы могла бы быть начата уже в 2004 г. со сроком представления окончательного варианта в 2005 г.
Предлагаемый порядок организации и исполнения работ обусловлен тем, что на сегодняшний день развитие нанотехнологий как научно-технического направления во многом еще находится на стадии поиска и даже осознания возможных путей его реализации как в чисто научном плане, так и в достижении потенциально значимых практических результатов и поэтому требует активного участия государства с использованием всех возможных форм и методов государственного управления и поддержки.
Итогом реализации национальной программы должно стать перевооружение ведущих отраслей промышленности на основе широкого внедрения нанотехнологий.
Для разработки и практической реализации перечисленных и иных мер, обеспечения координации органов государственной власти в решении проблем, связанных с развитием отечественной науки и экономики, необходимо создание Межведомственного Совета по нанотехнологиям. В состав Совета и его секций должны входить ученые и специалисты Российской академии наук, высшей школы и промышленности, федеральных органов исполнительной власти, субъектов Российской Федерации и представителей деловых кругов.
Заключение
Ключевые технологии и материалы всегда играли большую роль в истории цивилизации, выполняя не только узко производственные функции, но и социальные. Достаточно вспомнить, как сильно отличались каменный и бронзовый века, век пара и век электричества, атомной энергии и компьютеров. По мнению многих экспертов, XXI в. будет веком нанонауки и нанотехнологий, которые и определят его лицо. Воздействие нанотехнологий на жизнь обещает иметь всеобщий характер, изменить экономику и затронуть все стороны быта, работы, социальных отношений. С помощью нанотехнологий мы сможем экономить время, получать больше благ за меньшую цену, постоянно повышать уровень и качество жизни.
Главная надежда нанотехнологий связана с тем, что удастся двигаться не «сверху вниз», а «снизу вверх», т.е. выращивать наноструктуры, наноматериалы, нанообъекты. Нанотехнологии требуют больших объемов материалов и собирать их атом за атомом невозможно. Поэтому есть два основных ключа к нанотехнологиям:
1. Нужно организовать процессы так, чтобы наноструктуры собирались сами, образуя то, чего бы нам хотелось. Другими словами, это процессы самоорганизации, самоформирования и самосборки.
2. Решение многих проблем нанотехнологий требует совместной деятельности физиков, химиков, математиков, биологов -- общего языка, понятий и моделей -- междисциплинарного подхода. Кроме того, именно широкий междисциплинарный взгляд дает понимание того, чего в принципе возможно достичь, чего хотелось бы достичь и -- главное -- чего хотелось бы избежать. Здесь первостепенное значение приобретает проектирование будущего, в котором технологические, экономические, политические, военные и социальные проблемы оказываются значительно более взаимосвязаны, чем ныне. Это обусловлено совершенно новыми технологическими возможностями.
В самом деле, чтобы нанотехнологии не остались научной фантастикой, они должны найти свое место в экономике, включиться в существующие экономические циклы или создать новые. Это требует активного мониторинга и сопровождения на всех этапах от лаборатории до рынка. Это качественно новый уровень управления, позволяющий решать организационно-экономические проблемы невиданного уровня сложности.
В развитых странах осознание ключевой роли, которую уже в недалеком будущем будут играть результаты работ по нанотехнологиям, привело к разработке широкомасштабных программ по их развитию и государственной поддержке.
Из числа технологически продвинутых стран Россия - единственная - до настоящего времени не имеет программы развития нанотехнологий федерального масштаба. Исследования в этом направлении проводятся в рамках академических институтов, частично вузов, входят отдельными разделами в отраслевые программы, но, как правило, не завершаются практическим внедрением результатов. Более того, даже осуществить зарубежное патентование отечественных изобретений, как правило, не удается, так как государство в этом не заинтересовано и никакой финансовой поддержки авторам изобретений не оказывает. Растворение проблематики нанотехнологий в отдельных разделах федеральных и отраслевых программ не позволяет даже оценить, сколько средств выделяется государством на их развитие. По существующим оптимистическим оценкам - несколько десятков миллионов долларов США. При этом сотни высококлассных российских специалистов, которые могли бы составить цвет отечественной нанотехнологии, вынуждены работать за рубежом. Отсутствие Федеральной программы, четкой целевой установки на промышленное внедрение разработок, неготовность отраслей к восприятию достижений нанотехнологии, убогость финансирования - все это является следствием отсутствия государственной политики в этом стратегически важном направлении.
Список использованных источников:
Литературные источники
1. Глинк Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение: Пер. с англ. М.: Мир, 2002. С. 58-73.
2. Головин Ю.И. Введение в нанотехнику. М., 2006. С.32-45
3. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. М., 2005.С. 51-55, 78-91.
4. Кобаяси Н. Введение в нанотехнологию. М., 2005. С. 10-17
5. Нанотехнологии. Ч. Пул, Ф. Оуэнс. Пер. с англ. - Москва: Техносфера, 2005. С.7-20.
6. Нанотехнология в ближайшем десятилетии. Прогноз направления развития // Под ред. М.К.Роко, Р.С.Уильямса и П.Аливисатоса: Пер. с англ. М.: Мир, 2002. С. 54-63.
7. Структура и свойства нанокристаллических материалов. Под ред. Г.Г. Талуда и Н.Н. Носковой. Екатеринбург: Изд-воУрО РАН, 1999. - С.123-140 .
8. Суздалев И.П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. М., 2006.
Периодическая печать:
9. Алферов Ж.И., Асеев А.Л., Гапонов С.В., Копьев П.С, Панов В.И., Полторацкий Э.А., Сибельдин Н.Н., Сурис Р.А. Наноматериалы и нанотехнологий // Микросистемная техника. 2003. №8. С. 3-13.
10. Артюхов И.В., Кеменов В.Н., Нестеров С.Б.. Биомедицинские технологии. Обзор состояния и направления работы. Материалы 9-й научно-технической конференции «Вакуумная наука и техника»-М.: МИЭМ, 2002, с. 244-247
11. Нестеров C.Б.. Нанотехнология. Современное состояние и перспективы. «Новые информационные технологии». Тезисы докладов XII Международной студенческой школы-семинара-М.: МГИЭМ, 2004, 421 с., с.21-22.
12. Основы политики Российской Федерации в области науки и технологий на период до 2010 года и дальнейшую перспективу // Поиск. 2002. № 16 (19 апреля).
Материалы с сайтов сети Интернет
13. http:// www.nanonewsnet.ru
14. http:// www.nanotube.ru
15. http:// www.nanorf.ru
16. http:// www.nanoware.ru
17. http:// www.pronano.ru
18. http://www.pas-sion.ru
19. http://www.ifmachines.com
20. http://www.ros-baltvolga.ru
21. http:// www.chemworld.narod.ru
22. http://www.navy.ru
Подобные документы
Нанотехнология - высокотехнологичная отрасль, направленная на изучение и работу с атомами и молекулами. История развития нанотехнологий, особенности и свойства наноструктур. Применение нанотехнологий в автомобильной промышленности: проблемы и перспективы.
контрольная работа [3,8 M], добавлен 03.03.2011Развитие нанотехнологий в XXI веке. Нанотехнологии в современной медицине. Эффект лотоса, примеры использования его уникального свойства. Интересное в нанотехнологиях, виды нанопродукции. Сущность нанотехнологий, достижения в этой отрасли науки.
реферат [21,4 K], добавлен 09.11.2010Понятие нанотехнологий и области их применения: микроэлектроника, энергетика, строительство, химическая промышленность, научные исследования. Особенности использования нанотехнологий в медицине, парфюмерно-косметической и пищевой промышленностях.
презентация [4,5 M], добавлен 27.02.2012Использование нанотехнологий в пищевой промышленности. Создание новых пищевых продуктов и контроль за их безопасностью. Метод крупномасштабного фракционирования пищевого сырья. Продукты с использованием нанотехнологий и классификация наноматериалов.
презентация [4,6 M], добавлен 12.12.2013Материальная основа и функции технического сервиса пути его развития. Современное состояние предприятий ТС, направления их реформирования. Виды и применение наноматериалов и нанотехнологий при изготовлении, восстановлении и упрочнении деталей машин.
реферат [397,6 K], добавлен 23.10.2011Режимы работы сканирующего туннельного микроскопа. Углеродные нанотрубки, супрамолекулярная химия. Разработки химиков Уральского государственного университета в области нанотехнологий. Испытание лабораторного среднетемпературного топливного элемента.
презентация [9,3 M], добавлен 24.10.2013Построение экспериментальных искусственных наномашин с использованием биологических природных материалов, синтез живых и технических систем. Молекулярная электроника, свойства наноструктур, разработка новых способов их получения, изучение и модификация.
контрольная работа [38,1 K], добавлен 14.11.2010История развития нанотехнологий; их значение в медицине, науке, экономике, информационном окружении. Схематическое изображение и направления применения однослойной углеродной нанотрубки. Создание нанотехнологических центров в Российской Федерации.
презентация [894,7 K], добавлен 23.09.2013Лидерство стран в области нанотехнологий. Перспективы использования новых технологий в областях энергетики, вычислительной техники, химической и биомолекулярной технологии, в оптике и электронике, медицине. Примеры научных достижений и разработок.
презентация [1,1 M], добавлен 14.04.2011Размеры наночастиц, особенности их получения из элементов и общие свойства. Физический и химический способы получения наночастиц. Понятие наноструктур как ансамбля атомов или молекул, их разделение на сплошные и пористые. Сферы применения нанотехнологий.
презентация [28,5 M], добавлен 11.12.2012