Повышение качества полиэтиленовых газопроводных труб

Описание производственного процесса изготовления полиэтиленовых газопроводных труб. Технологическая характеристика основного технологического оборудования. Характеристика исходного сырья и вспомогательных материалов, используемых при производстве труб.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 20.08.2009
Размер файла 381,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

4. Труба по любому из пп. 1-3, отличающаяся тем, что слои состоят, по меньшей мере, из одного пластика, который выбран из полиэтиленового пластика и полипропиленового пластика.

5. Труба по п. 4, отличающаяся тем, что слои состоят, по меньшей мере, из двух слоев полиэтиленового пластика, значения Ткрит. которых отличаются по меньшей мере на 10°С.

6. Труба по п. 4 или 5, отличающаяся тем, что слои состоят, по меньшей мере, из двух слоев полипропиленового пластика, значения Ткрит. которых отличаются, по меньшей мере, на 10°С.

7. Труба по любому из пунктов, отличающаяся тем, что пластиковый материал, имеющий самую низкую критическую температуру, Ткрит., расположен, по меньшей мере, на внешней стороне трубы.

8. Труба по п. 7, отличающаяся тем, что она содержит, по меньшей мере, три слоя, а материал, имеющий самую низкую критическую температур.

6. Заявка 2002105658 Российской Федерации, МПК 7 F16L9/12

Способ упрочнения полиэтиленовых труб/ Магарил Я. Ф., Багиров Р. Р., Бирюков С. Д., Завьялов М. П., Шпанер Я. С., заявитель Магарил Я. Ф., Багиров Р. Р., Бирюков С. Д., Завьялов М. П., Шпанер Я. С. /- 2002105658/06; заявлено 04.03.2002; опубл. 10.09.2003 // www.fips.ru.

Способ упрочнения полиэтиленовых труб, включающий нанесение армирующего, герметизирующего и защитного слоев, отличающийся тем, что армирующий слой наносят плотным плетением по системе “два через два”, по концам трубы устанавливают втулки с зубчатыми кольцевыми канавками в зоне полиэтиленовой трубы и сплошными кольцевыми канавками в зоне армирующего слоя, сверху надевают муфту с зубчатыми кольцевыми канавками по внутреннему диаметру и встречными выступами по наружному диаметру, через внутренний диаметр втулки протягивают дорн диаметром, большим внутреннего диаметра втулки, по муфте протягивают матричную втулку с формирующим диаметром, меньшим наружного диаметра муфты, а край муфты совместно с армирующим слоем приваривают к втулке.

7. Заявка 2002121101 Российской Федерации, МПК 7 B29D23/00

Способ изготовления полиэтиленовой трубы / Маганов Р. У., Некрасов В. И., Вятчинин М. Г., Лесничий В. Ф., Инюшин Н. В., Ларионов А. Ф., заявитель Маганов Р. У., Некрасов В. И., Вятчинин М. Г., Лесничий В. Ф., Инюшин Н. В., Ларионов А. Ф. / - 2002121101/12; заявлено02.08.2002; опубл. 27.03.2004 // www.fips.ru.

Способ изготовления трубы, включающий формование полиэтиленовой трубчатой заготовки, ее калибрование с охлаждением и армирование намоткой и полимеризацией волокнистого материала со связующим, отличающийся тем, что калибрование с охлаждением трубчатой заготовки ведут в коническом калибраторе.

8. Заявка 2002122976 Российской Федерации, МПК 7 B29D23/00

Способ изготовления трубы/ Грейлих В. И., Маевский И. И., Кобяков Н. И., Зырянова Л. Н., заявитель закрытое акционерное общество "НПП Композит-нефть" /- 2002122976/12; заявлено 26.08.2002; опубл.10.03.2004. // www.fips.ru.

1.Способ изготовления трубы, включающий поочередное нанесение на полиэтиленовой слой праймерного слоя и композиционно-волокнистого материала, и последующую термообработку с замоноличиванием элементов, отличающийся тем, что после нанесения на полиэтиленовый слой праймерного слоя выполняют их термообработку с прогревом только поверхностного слоя полиэтиленовой оболочки, а термообработку композиционно-волокнистого материала выполняют при температуре меньшей предыдущей.

2. Способ по п.1, отличающийся тем, что нанесение на полиэтиленовый слой праймерного слоя выполняют методом соэкструзии.

3. Способ по п.1, отличающийся тем, что нанесение на полиэтиленовый слой праймерного слоя выполняют методом намотки пленки из сэвиленовой композиции с ее обмоткой тонким слоем композиционно-волокнистого материала.

4. Способ по п.1, отличающийся тем, что нанесение на полиэтиленовый слой праймерного слоя выполняют методом намотки пленки из двухслойной сэвиленовой композиции.

5. Способ по пп.1-4, отличающийся тем, что в качестве материала внутренней оболочки используется, например, полипропилен, поливинилхлорид, полиэтилен высокой или низкой плотности, полиамид и т.п., а в качестве термоотверждающегося материала, например, полиэфирная, эпоксидная, эпоксифенольная и т.п. композиция

9. Заявка 2001112853 Российской Федерации, МПК 7 F16L9/12

Способ изготовления полиэтиленовой трубы / Маганов Р. У., Некрасов В. И., Вятчинин М. Г., Лесничий В. Ф.,.Инюшин Н. В, Ларионов А. Ф., заявитель Маганов Р. У., Некрасов В. И., Вятчинин М. Г., Лесничий В. Ф.,.Инюшин Н. В, Ларионов А. Ф. / - 2001112853/06; заявлено 08.05.2003; опубл.27.02.2003 // www.fips.ru.

Способ изготовления трубы, включающий нанесение на полиэтиленовый слой праймерного слоя, намотку композиционно-волокнистого материала и последующую термообработку с замоноличиванием элементов, отличающийся тем, что намотку композиционно-волокнистого материала выполняют в виде двух спиральных взаимно перекрестных слоев и в процессе термообработки сначала замоноличивают наружный из взаимно перекрестных слоев, а затем - остальные элементы трубы.

ВЫВОД: Анализ патентной документации и научно-технической документации показывает наличие большого количества данных, посвященных проблеме производства полиэтиленовых труб. Отмечено, что упрочнение полиэтиленовых труб достигается при нанесении армирующего слоя плотным плетением, по концам трубы устанавливают втулки, сверху надевают муфту, через внутренний диаметр втулки протягивают дорн диаметром, большим внутреннего диаметра втулки, по муфте протягивают матричную втулку с формирующим диаметром, меньшим наружного диаметра муфты, а край муфты совместно с армирующим слоем приваривают к втулке.

Показано, что меняя параметры процесса и применяя новое оборудование можно изготовить полиэтиленовые трубы различного назначения в связи с чем ассортимент значительно расширится.

В данном дипломном проекте предлагается совершенствование технологии производства полиэтиленовых газопроводных труб путем использования в качестве сырья полиэтилена марки ПЭ-100 и головки экструдера с вращающимся дорном.

1.3 Характеристика исходного сырья, вспомогательных материалов и готовой продукции

Исходя из условий эксплуатации труб, для их изготовления необходимо использовать такой материал, который бы удовлетворял следующим специальным требованиям:

не допускать вредного воздействия на воду, не допускать появления механических и других примесей от вымывания составляющих материалов;

обеспечить изготовление труб окрашенных в массе в черный цвет;

показатели материала не должны изменяться более чем на 5% в процессе хранения в течение двух лет в закрытом помещении;

поверхность труб должна быть гладкой и ровной, допускаются незначительные следы от формующего инструмента на наружной поверхности трубы, а также углубления от маркирующего устройства глубиной не более 0,5мм.

Материалом удовлетворяющим этим требованиям является полиэтилен среднего давления ПЭ 100 (производитель ОАО «Ставролен»).

Гранулированный ПЭ поступает на производство в полиэтиленовых мешках с сертификатом качества предприятия - изготовителя. Использование вторичного полиэтилена для производства газопроводных труб недопустимо.

ПЭ выпускается в виде гранул черного цвета размером 2 - 5 мм. Показатели качества должны соответвтвовать требованиям, указанным в табл. 3

Вода необходимая для охлаждения труб общая жесткость которой должна составлять не более 7,0 мг-экв/л.

Вспомогательные материалы приведены в табл. 4

Таблица 3

Качественные показатели ПЭ марки ПЭСП (ПЭ 100) производитель ОАО «Ставролен»

№ п/п

Наименование показателя

Значение показателей

1

Плотность при 23 ?С, г/см3

0,945-0,951

2

Показатель текучести расплава, г /10 мин при 5 кгс

0,7-1,1

3

Разброс показателя текучести расплава в пределах партии, % не более

10

4

Относительное удлинение при разрыве, % н/м

600

5

Нижний допуск предел длительной прочности, МПа

8,0

6

Содержание сажи, % не более

2,0-2,50

7

Распределение сажи

1-2

8

Термостабильность при 210 ?С, час, не менее

20

9

Стойкость к медленному распространению трещин при 80 ?С и начальное напряжение в стенке трубы МПа, не менее

165

10

Стойкость при постоянном внутреннем давлении при 20 ?С и напряжение трубы не менее 10,7МПа

75

11

Предел текучести при растяжении (кгс/см2), МПа

17,0 (170)

12

Стойкость к газовым составляющим при 80 ?С и начальном напряжении в стенке трубы 2 МПа, час, не менее

20

Таблица 4

Характеристика вспомогательных материалов.

Наименование материала

Назначение материала

Обозначение документа

1

2

3

1 .Сетка металлическая

№45

2.Ветошь обтирочная

3.Порошок стиральный

4.Смазка пластичная ГОИ-50П

5.Картон толщиной 3мм

6.Перчатки из хлопчатобумажного полотна

7.Рукавицы типа АТ-6

8.Пластина резиновая толщиной 4 мм

9. Заглушки полиэтиленовые

10.Брус деревянный

Фильтрация расплавленного полиэтилена

Чистка оборудования

Мытье ванн охлаждения

Чистка головки экструдера и дорна

Изготовление ярлыков

Предохранение рук

Предохранение рук

Вырубка уплотнительных колец в ванны охлаждения

Для закрытия концов труб

Для складирования труб

ГОСТ 3826-82

ГОСТ 3826-82

По соответствующей нормативной документации

ГОСТ 3276-89

ГОСТ 3251-91 ГОСТ 7933-89 ГОСТ 5007-87

ГОСТ 12.4.010-75

ТУ 38.105823-88

ГОСТ 8486-86

Готовой продукцией являются трубы для газопроводов из полиэтилена (ПЭ 100) с техническими характеристиками:

ѕ Наружный диаметр, мм 110 1,0

ѕ Толщина стенки, мм 6,3 1,0

ѕ Овальность, мм не более 6,6 + 0,8

(в отрезках) 2,2

ѕ Внешний вид гладкая наружная и внутренняя поверхность

ѕ Цвет черный с желтыми продольными маркировочными полосами по окружности трубы

ѕ Относительное удлинение при разрыве, % не менее 350

ѕ Изменение длины труб после прогрева, % не более 3,0

ѕ Стойкость при постоянном внутреннем 100

давлении при 20 ?С, час, не менее (при унач в стенке трубы 10 МПа)

ѕ Стойкость при постоянном внутреннем давлении 165

при 80 ?С, в час, не менее (при унач -4,6 МПа)

ѕ Стойкость к газовым составляющим при 80 ?С и начальном напряжении в стенке руб 2 МПа, час, не менее 20

ѕ Термостабильность труб при 200 ?С, мин, не менее 20

ѕ Стойкость к быстрому распространению трещин для труб с номинальной толщиной стенки 15 мм или при максимальном рабочем давлении трубопровода 0,4 МПа для всех диаметров Мор/2,4

1.4 Описание технологического процесса

Процесс изготовления труб основан на непрерывном выдавливании расплава через кольцевую щель формующей головки с последующим калиброванием, охлаждением и отводом трубы в соответствующие приемные устройства. Методом экструзии можно изготавливать трубы диаметром от десятых долей миллиметра (капиллярные трубки) до 500мм и более.

Процесс изготовления труб состоит из следующих технологических

операций: [19,20]

1) подготовка сырья;

2) плавление и гомогенизация расплава;

3) формование профиля трубы из расплава;

4) калибрование трубы;

5) охлаждение трубы;

6) намотка или резка;

7) маркировка.

Исходный материал из бункера для хранения направляется в сушилку гранул 1 для удаления поверхностной влаги из полимера. Гранулы полимера загружаются в бункер экструдера 2, где они расплавляются и выдавливаются через формующую трубную головку 3. Трубчатый профиль поступает внутрь калибровочной насадки 4, где частично охлаждается и приобретает необходимые размеры. Для прижатия расплава к стенкам калибрующей насадки внутрь трубы подводится сжатый воздух или создается вакуум между трубой и насадкой. Затем труба 7 охлаждается в ванне с двумя температурными зонами 5 и 6, проходит маркировку в устройстве 8, протягивается тянущим устройством 9 , разрезается пилой 10 и подается на приемный стол (штабелирующее устройство) 11. Бракованные изделия измельчаются в дробилке 12. (лист1)

Плавление полимера и гомогенизация расплава

Подготовка расплава к формованию проводится на шнековых экструдерах. При плавлении полимера и гомогенизации расплава требуется обеспечить хорошую однородность расплава по температуре, а также полное плавление гранул, чтобы исключить попадание в изделие нерасплавленных частиц полимера. В противном случае качество изделий понижается. Кроме того, чтобы происходило качественное формование расплава и последующее сохранение заданной формы, полимер должен быть нагрет до определенной температуры. Экструзионный агрегат должен работать при частоте вращения шнека, обеспечивающей заданную скорость выхода расплава и определенное избыточное давление на входе в формующую головку.

Скорость экструзии обычно выбирается из условия исключения эластической турбулентности (дробления расплава и появления шероховатости) или в зависимости от скорости охлаждения трубы с учетом длины охлаждающей ванны.

Формование профиля трубы.

Формование осуществляется за счет течения расплава полимера через кольцевую щель головки. При переработке ПЭВП, имеющего линейное строение макромолекулы ориентируются по направлению течения полимера, а максимальная прочность обеспечивается в поперечном направлении или под некоторым углом к направлению действия напряжений сдвига.

Необходимо учитывать также, что при увеличении скорости может появиться шероховатость поверхности, так как при напряжениях сдвига, превышающих силы адгезии расплава, происходит периодический срыв расплава с поверхности формующего канала.

При формовании профиля трубы расплав из головки выходит не свободно, а отводится с помощью тянущего устройства. Если расплав отводится со скоростью большей, чем скорость выхода расплава, происходит уменьшение толщины стенки трубы и повышается осевая ориентация макромолекул. В зависимости от степени вытяжки расплава увеличивается усадка в продольном направлении. При этом в тангенциальном направлении при нагревании труб, изготовленных с вытяжкой, наблюдается не уменьшение, а увеличение размеров. Формование профиля трубы происходит в канале, образованном дорном и формующим кольцом, закрепленным фланцем и болтами. Осевое течение расплава осуществляется под действием перепада давления в головке.. С увеличением частоты вращения дорна значительно уменьшается также относительное удлинение при растяжении вдоль направления экструзии и возрастает в тангенциальном. Таким образом, проявляется одинаковая зависимость разрушающего напряжения и относительного удлинения от частоты вращения дорна. Прочность на гидравлический разрыв при этом увеличивается на 20 -- 25%. При исследовании физико-механических свойств образцов установлено, что относительное удлинение изделий, получаемых при осевом течении расплава в направлении экструзии, на 12% ниже, чем в перпендикулярном. В целом изменение разрушающего напряжения и относительного удлинения соответствуют друг другу. Выявлено, что повышение производительности экструдера приводит к увеличению анизотропии прочности труб, т.е. происходит уменьшение прочности вдоль направления экструзии, тогда как по периметру трубы прочность повышается. Влияние температуры на изменение анизотропии незначительное, т.е. с повышением температуры экструдата наблюдается не большое увеличение прочности. При выборе режима экструзии нужно оперировать не скоростью вращения дорна, а напряжением сдвига, возникающего при течении расплава в формующем канале.

При гидравлических испытаниях образцов труб, изготовленных с вращающимися формующими элементами они выдерживают большее давление, чем обычные трубы. При гидравлических испытаниях труб на стенде установлено, что трубы, изготавливаемые с вращением дорна, разрушаются с образованием разрыва не вдоль трубы, как обычно, а поперек. Кроме того, значительно увеличивается долговечность труб: испытания до разрушения они выдерживают во времени примерно в два раза дольше, чем трубы, изготовленные при неподвижном дорне.

Калибрование труб

Для придания профилю экструдата заданных размеров и исключения его деформации в охлаждающем устройстве трубы калибруют, т.е. предварительно охлаждают с обеспечением расплаву определенной конфигурации и размеров.

Трубчатая заготовка расплава выдавливается из головки и поступает внутрь металлической гильзы калибратора. При подаче сжатого воздуха внутрь трубы происходит частичное раздувание по диаметру, вследствие чего труба на выходе из головки плотно прилегает к охлаждаемым стенкам калибрующей гильзы. Чтобы не произошло разрушения (раздувания) экструдата, насадка в данном случае крепится вплотную к головке, а в рубашку калибрующей насадки подается охлаждающая жидкость. Для исключения прилипания расплава, гильза насадки охлаждается до температуры, которая всегда должна быть ниже температуры стеклования или плавления. При этом на поверхности трубы образуется слой твердого полимера, который после выхода из насадки должен выдерживать внутреннее давление воздуха, а также силы трения, возникающие в насадке.

С повышением температуры калибрования прочность труб в продольном направлении повышается, а в тангенциальном практически не меняется. Изменение прочности вдоль направления экструзии от температуры калибрующей гильзы обусловлено повышением степени кристалличности полимера.

От температуры охлаждающей воды в насадке зависит также шероховатость поверхности. С повышением температуры шероховатость труб понижается, так как в поверхностном слое степень кристалличности повышается. Давление калибрования выбирается в зависимости от диаметра трубы, толщины ее стенки, а также от свойств полимеров и температуры расплава. При этом следует учитывать, что при низком давлении ухудшается внешний вид труб (образуется поверхностная рябь), а при чрезмерно большом снижается прочность из-за возрастания коэффициента трения и появления микротрещин.

При охлаждении экструдата происходит усадка трубы, величина которой определяется природой полимера, исходной температурой и скоростью охлаждения. На величину усадки труб из ПЭВД по длине и диаметру существенное влияние оказывает скорость экструзии (отвода трубы). Чем выше производительность экструдера, тем выше напряжения сдвига в формующих каналах головки и соответственно ориентация макромолекул вдоль направления экструзии. При охлаждении объем полимера уменьшается больше в направлении ориентации, поэтому усадка труб происходит преимущественно в продольном направлении, а по диаметру с ростом скорости экструзии уменьшается. Величина усадки трубы по длине в основном зависит от степени вытяжки расплава на выходе из тубы, напряжений сдвига и температуры расплава полимера.

Охлаждение труб.

Охлаждение труб проводится орошением их водой или пропусканием через водяную ванну. Основное требование к этой операции -- равномерное и быстрое охлаждение расплава. Поскольку труба движется в горизонтальном направлении, то создаются неравномерные температурные поля по верху и по низу трубы. Чтобы исключить это, в ваннах обеспечивается интенсивное перемешивание жидкости, для чего устанавливают барботажные трубки, разбрызгивающие форсунки или создают спиральный поток воды вокруг трубы. Интенсивное перемешивание необходимо также для удаления пузырьков воздуха, оседающих на поверхности трубы и нарушающих теплообмен. В противном случае поверхность становится дефектной (с оспинами).

Температура охлаждающей воды обычно выбирается в зависимости от полимера, а также с учетом требований, предъявляемых к трубам. При очень низкой температуре поверхностные слои имеют аморфную или мелкокристаллическую структуру, а во внутренних слоях возникают кристаллические образования больших размеров. Для выравнивания структуры применяют охлаждение по зонам, с различной температурой или двухстороннее охлаждение.

Трубы хорошего качества получаются, если температура расплава на внутренней поверхности после выхода из ванны понижается до температуры плавления или текучести. Поэтому необходимо обеспечивать определенную скорость отвода трубы тянущим устройством. Если отвод трубы чрезмерно ускорить, расплав на внутренней поверхности срезается плавающей пробкой и гладкость трубы нарушается. Высокая температура на внутренней поверхности после охлаждения приводит к увеличению размеров кристаллических структур и ухудшению качества труб, возможна также деформация труб при сжатии их треками тянущего устройства.

Маркировка и упаковка труб.

После охлаждающей ванны труба поступает в тянущее устройство, с помощью которого обеспечивается постоянная скорость отвода трубы. При этом труба должна иметь хорошее сцепление с треками или роликами тянущего устройства, исключающее ее проскальзывание и появление вследствие этого кольцевых утолщений стенки.

По ходу движения трубы обычно устанавливают устройство для измерения ее длины и маркировки. Надпись на трубы наносится накаткой краски или методом горячего тиснения. На обогреваемом ролике надпись выполняется в виде выступающих знаков, которые при нажатии на трубу оставляют углубления.

Трубы с помощью режущего устройства разрезаются на отрезки определенной длины и упаковываются в виде связанного пучка. При изготовлении труб, а также перед их упаковкой периодически проводится визуальный осмотр, измерение основных размеров (диаметра, толщины стенки) и испытание на соответствие ГОСТам. На современных агрегатах диаметр трубы и толщина стенки измеряются автоматически приборами.

1.5 Основные параметры технологического процесса

В качестве основных технологических параметров приняты следующие: распределение температур по зонам нагрева экструдера, давление пластикации, температура калибрования, скорость отвода труб, температура воды в охлаждающих ваннах.

Переработка полиэтилена высокой плотности требует корректировки режимов пластикации: увеличение температуры пластикации на 10 С и увеличение линейной скорости вращения шнека.

Температура по зонам материального цилиндра:

1 зона - 125 10С

2 зона - 160 10С

3 зона - 190 10С

4 зона - 190 10С

5 зона - 195 10С.

Температура по зонам головки:

1 зона - 195 10С

2 зона - 190 10С

3 зона - 180 10С

4 зона - 170 10С.

Линейная скорость вращения шнека - 12-117 об/мин.

Вакуум - 0,03 - 0,012 кгс/см2.

Скорость отвода трубы - 5 м/мин.

Температура воды в охлаждающих ваннах - не выше 30С.

1.6 Технологическая характеристика основного технологического оборудования

I. Линия для производства труб ЛТ 125-75/160. [21]

ѕ Максимальная производительность, кг/час 250

ѕ Размеры выпускаемых труб:

наружный диаметр, мм 75-160

толщина стенки, мм 6-9

длина отрезков, мм 6000-12000

ѕ Скорость протягивания труб, м/мин 5

ѕ Общая установленная мощность

электрооборудования линии, кВт в т.ч. 186

электродвигателей 151

электронагревателей 35

ѕ Электроснабжение - сеть трехфазного тока:

напряжение, В 380/220

частота, Гц 50

ѕ Объемный расход воды, м3/час, не более

(Т=20 ?С, давление =0,3 - 0,6 МПа) 7,0

ѕ Объемный расход сжатого воздуха, м3/час, не более

(давление = 0,3 - 0,5 МПа) 0,5

ѕ Габаритные размеры: длина, мм 39000

ширина, мм 3700

высота, мм 2900

ѕ Масса, кг 11600

Состав линии:

1. Сушилка СГ-300 - предназначена для автоматической загрузки, нагрева и подсушки гранулированного полиэтилена.

ѕ Температура нагрева воздуха, ?С 50-160

ѕ Производительность, кг/час 300

ѕ Емкость бункера загрузчика, м3, не менее 0,15

ѕ Емкость бункера устройства нагрева гранул, м3, не менее 0,15

ѕ Высота подачи материала, м 6

ѕ Длина транспортного трубопровода, м, не более 10

ѕ Установленная мощность, кВт 14

ѕ Мощность нагревателей, кВт 12

ѕ Габаритные размеры бункера загрузчика, мм не более:

длина 950

ширина 600

высота 905

ѕ Габаритные размеры устройства нагрева гранул

с циклоном загрузчика, мм не более: длина 1050

ширина 720

высота 1670

ѕ Масса, кг 300

2. Пресс червячный (экструдер) ЧП 125 х 25:

ѕ Диаметр червяка, мм 125

ѕ Отношение рабочей длины червяка к его диаметру 25

ѕ Производительность пресса, кг/час не более 500

ѕ Число обогреваемых зон корпуса 4

ѕ Частота вращения червяка, об/мин 12-117

ѕ Общая мощность электронагревателей, кВт 35

ѕ Габаритные размеры, мм длина 4660

ширина 3700

высота 1800

ѕ Масса, кг 4400

3. Головка трубная:

ѕ Количество зон обогрева 3

ѕ Максимальная температура нагрева корпуса головки, ?С 250

ѕ Габаритные размеры, мм 1090 х 910 х 1280

ѕ Масса, кг 620

4. Ванна охлаждения водяная (2 шт):

ѕ Габаритные размеры, мм 6320 х 820 х 1250

ѕ Масса, кг 770

5. Машина тянущая:

ѕ Скорость протягивания, м/мин не более 13

ѕ Тип тянущего устройства роликовое с резиновыми траками

ѕ Усилие сжатия траков, кгс 1000

ѕ Габаритные размеры, мм 3065 х 1844 х 2200

ѕ Масса, кг 2400

6. Машина для резки труб:

ѕ Тип отрезного устройства маятниковый

ѕ Режущий инструмент пила дисковая (O 500 мм)

ѕ Номинальная частота вращения пилы, об/мин 1500

ѕ Привод каретки пневматический

ѕ Габаритные размеры, мм 2675 х 920 х 1600

ѕ Масса, кг 540

7. Измельчитель пластмасс роторный УИ. предназначен для измельчения отходов термопластов до размеров, пригодных для дальнейшей переработки.

ѕ Максимальные размеры пустотелых отходов, мм 200150100

ѕ Производительность, кг/час 50 - 150

ѕ Получаемая измельченная фракция, мм не более 6

ѕ Частота вращения ротора, об/мин 1450

ѕ Мощность привода, кВт 3

ѕ Габаритные размеры, мм 1050х750х1300

ѕ Масса, кг 230

1.7 Технологические расчеты

1.7.1 Расчеты удельных норм расхода сырья и вспомогательных материалов

Норма расхода - это максимально допустимое плановое количество сырья и материалов на производство единицы продукции установленного качества в соответствии с уровнем развития техники, технологии и организации производства.

Типовая структура нормы расхода пластических масс в основном производстве продукции из них имеет следующий вид;

Hp = mo + mто + mтп ,

где mo - чистая масса готовой продукции из пластмасса (без арматуры);

mто - масса технологических отходов;

mтп - масса технологических потерь.

Технологические отходы представляют собой остатки исходного сырья (смолы, пластмассы), некондиционные изделия, литники, грот и т.д., образовавшиеся в процессе производства продукции и частичного или полностью утратившие свое качество.

В зависимости от способа переработки и от вида готовой продукции норма расхода сырья может быть выражена в граммах на одну штуку, килограммах на тысячу штук изделий (литье под давлением, горячее прессование, выдувное формование); в килограммах на один noгонный метр или на тысячу погонных метров, в килограммах на одну тонну (экструзия листов, труб); в килограммах на один квадратный метр или на тысячу квадратных метров (экструзия пленок) и т.д.

Норма расхода сырья на производство единицы продукции из пластмасс рассчитывается по следующей формуле:

Hpр mo ,

где Кр - нормативно составляющие расходного коэффициента по стадиям технологического процесса;

Нр - количество стадий технологического процесса.

Нормативные коэффициенты и их структурные составляющие определяются в безразмерных величинах [22].

Определение расходных норм при производстве труб.

Определить нормы расхода полиэтилена на производство труб размером 110 x 6,3 на 1п.м.(в кг), получаемых экструзионным способом. Определяем массу трубы, исходя из плотности полиэтилена, равной 952 кг/м3 (0,952 г/см3). Фактическая масса 1п.м.трубы , кг равна 2,09 кг.

Определяем нормативные расходные коэффициенты:

К1= 0,0035 (невозвратные потери, кг)

К2= 0,0045 (неиспользуемые отходы, кг)

К3 = 0,035 (используемые отходы, кг)

К4 = 0,022 (содержание КОС, кг)

К5 = 0,002 (потери при подготовке, кг).

Суммарный расходный коэффициент равен:

К = К1 + К2 + К3 + К4 + К5 = 1,067

Норма расхода полиэтилена составляет: Нр = К mo

Размер труб: 110 x 6,0

Норма расхода ПЭ (кг)

Нр = 1,067 * 2,09 = 2,23

Расходные нормы сырья при производстве труб приведена в табл.5

Таблица 5

Расходные нормы сырья при производстве труб

Обозна-чение

труб

по

ГОСТ

Р5О838

-95

Факти-

ческая

масса

1 и. м.

трубы,

кг

Технологические отходы и потери

Суммарный

расходный

коэфф.

K=K1+K2++K3+K4+K5

Норма

расхода

ПЭна

1пм

трубы,

кг

Невозвра

тные

потери,

кг

K1=0,0035

Неисполь

зуемые

отходы,

кг

К2=0,0045

Используемые отходы,

кг

К3=0,035

Использо

вание

КОС,

Кг

К4=0,022

Потери

при

подготов

ке, кг

К3=0,002

110x6,3

2,09

0,0073

0,0094

0,0732

0,0459

0,0042

1,067

2,23

Производительность одношнекового экструдера.

Рассчитывается по формуле:

Q=6 10-2 k н m u n , кг/час

где k - коэффициент заполнения шнека (0,7),

н - насыпная масса гранул (0,6 г/см3),

m - число заходов шнека (1),

u - объем спирального канала, образованного поверхностями цилиндра

и шнека, м3,

n - частота вращения шнека, об/мин.

u = h ( D - h ) ( t - l ), см3,

где h - глубина нарезки шнека (0,5 см),

D - диаметр червяка (12,5 см),

t - шаг нарезки (12,5 см),

l - ширина гребня витка (0,6 см).

u = 3,14 0,5 (12,5-0,5) (12,5-0,6) = 224 см3,

Q = 6 10-2 0,7 0,6 1 224 50 = 282,24 кг/час.

1.7.2 Расчет основного технологического оборудования

Расчет экструдера включает в себя следующее:

- определение основных геометрических параметров шнека;

- определение производительности экструдера;

- определение производительности экструдера;

- нахождение объема загружаемого бункера;

- определение максимального давления раствора в конце шнека;

- определение эффективной вязкости расплава;

- определение мощности, потребляемой экструдером.

Шнек характеризуется следующими основными геометрическими параметрами: диаметр, длина, шаг винтовой нарезки, глубина нарезки, ширина гребня витка, величина зазора между гребнем шнека и внутренней стенкой цилиндра, угол подъема винтовой линии нарезки шнека.

Цилиндр и шнек являются основными технологическими органами экструдера, выполняют последовательно ряд рабочих операций, действия которых можно выделить в три зоны: загрузка, сжатие и дозирование.

Зона загрузки шнека составляет обычно около трети длины рабочей части шнека и составляет:

,

где D - диаметр шнека, равный 125 мм;

Тогда Lзагр = 10 D = 1250 мм

Длина шнека L = 3750 мм

Длина зоны сжатия зависит от свойств перерабатываемого материала и составляет:

Принимаем Lсж = 14 D = 1750 мм.

Зона сжатия необходима для уплотнения материала, создания монолитной массы, обладающей значительно большей теплопроводностью, чем рыхлый, неуплотненный полимерный материал. Уплотненный материал образует в зоне гомогенную свободную от пустот пластифицированную массу, которая поступает в следующую зону - дозирования.

Зона дозирования предназначена для равномерного выдавливания (дозирования) пластифицированного и гомогенизированного материала в формующую головку. Поэтому в этой зон должен быть постоянный шаг и глубина нарезки.

Когда шаг нарезки t = D = 125 мм, угол подъема винтовой линии =17,5.

Длина зоны дозирования:

Принимаем мм. Основное влияние на производительность экструдер оказывает именно доза дозирования. Рассчитаем производительность экструдера, используя формулу:

,

где D - диаметр шнека, равный 125 мм = 12,5см;

hср - глубина нарезки в начале зоны сжатия, hср = h2.

Определим hср по формуле:

,

где h1 - глубина спирального канала в начале зоны загрузки (под загрузочной воронкой), см;

h3 - глубина спирального канала в зоне дозирования, см.

- угол подъема винтовой линии ( = 17,5);

n - частота вращения шнека (n = 50 об/мин);

Р - давление в конце шнека (Р = 15 МПа);

н - эффективная вязкость в зазоре между гребнем шнека и внутренней стенкой цилиндра (н = 3,510-4 МПас).

см.

h3 рассчитывается по формуле:

,

где i - степень уплотнения материала, принимаемая равной 2,3.

Тогда

см

Значит см

Подставляя найденные значения в формулу для нахождения производительности одночервячного экструдера получим:

см3/мин

или кг/ч,

где = 950 кг/см3 - плотность материала;

Определим объем загрузочного бункера по формуле:

,

где d1 - диаметр сердечника (вала) шнека у загрузочной воронки, см.

t - шаг нерезки (t = D = 12,5 см);

е - ширина гребня витка шнека, см.

см

Тогда см3

Определение максимального давления расплава в конце шнека:

,

где Lд - длина зоны дозирования шнека (Lд = 750 мм = 75 см);

n - частота вращения шнека (n = 50 об/мин).

= 18102 Пас.

От величины скорости сдвига (в с-1) расплава в канале шнека зависит величина эффективной вязкости расплава.

.

Зная скорость сдвига расплава и температуру переработки, определяем эффективную вязкость:Пас. Необходимая для привода шнека мощность рассчитывается по уравнению энергетического баланса экструдера

,

где Qв - производительность экструдера, кг/ч (320 кг/ч);

с - удельная теплоемкость материала (3 кДж/(кгК при Т = 493 К);

Тр - температура расплава материала, К (293 К);

Т0 - температура загружаемого материала, К (453 К).

Тогда кВт

1.7.3 Теплоэнергетические расчеты

Тепловой баланс экструдера:

,

где Ен - теплота, поступающая от внешних обогревателей;

Еш - теплота, выделяющаяся при работе шнека;

Ем - теплота, которая уходит с нагретым материалом;

Е0 - теплота, уносимая системой охлаждения (водой, воздухом);

Еп - потри теплоты в окружающую среду через кожух экструдера.

Количество теплоты подводимой внешними электронагревателями (Ен) рассчитывается по формуле:

,

где U - падение напряжения, В; R - сопротивление проводника, Ом.

Так как конечная температура, до которой необходимо довести расплав полимера, известна, то Ен можно определить из уравнения теплового баланса:

,

где gм - количество полимерного материала, перерабатываемого экструдером в единицу времени, кг/с;

см - средняя удельная теплоемкость полимера в интервале температур переработки, Дж/(кгК);

tк, tн - конечная и начальные температуры полимера, К;

gв - количество воды, поступающей на охлаждение шнека, кг/с;

св - удельная теплоемкость воды, Дж/(кгК);

tв2, tв1 - конечная и начальные температуры воды, К.

,

где - плотность воды, кг/м3;

0,1-0,8 - скорость течения воды, м/с;

F - площадь поперечного сечения, м2.

Перепад температур tв2 - tв1, принимаем равным 5-10С (или 5-10 К).

Подставляя все известные значения в соответствующие формулы получим:

кВт

м2

кг/ч

кВт

Тепловые потери Еп корпуса экструдера рассчитываются по формуле:

,

где F - площадь наружной поверхности корпуса или головки, м2;

- коэффициент теплопередачи при свободной конвекции, кВт/(м2К), для приближенных расчетов: .

tн - температура наружной поверхности изолирующего корпуса (tн =50-80С), С;

tс - температура окружающей среды, С.

м2

где d - диаметр трубки в теле шнека, м;

dк - диаметр корпуса с изоляцией, м;

tк = 25D - длина корпуса, м.

кВт/(м2К)

Вт

Количество внутренней теплоты трения (диссипативный нагрев), Ет, определяют по формуле:

,

где Lн - длина напорной зоны шнека, см;

hн - глубина нарезки спирального канала в напорной части шнека, см;

- величина зазора между гребнем шнека и цилиндром, см;

е - ширина гребня шнека, см.

кВт

с-1

Пас

Q = 35 см3/с; Р = 15МПа

с-1

2 = 1,8102 Пас; е = 0,7 см

Ет = 4,48 кВт; Еп = 15,1+2,6+0,43-4,48 = 13,7 кВт

Получаем ,

4,48+13,7 = 15,1+2,6+0,43

18,18 = 18,18

Тепловой баланс экструдера сошелся.

2. Раздел «Безопасность проекта»

Развитие промышленности, успехи химии в области органического синтеза привели к тому, что перед человечеством с особой остротой встала жизненно важная проблема, связанная с сохранением окружающей среды и ее защитой от последствий собственной деятельности.

На современном этапе человечество поставлено перед фактом возникновения в природе необратимых процессов. По мере ускорения научно-технического прогресса влияние людей на природу становиться все более мощным. И в настоящее время оно уже соизмеримо с действием природных факторов, что приводит к качественному изменению соотношения сил между обществом и природой. В природу внедряется все больше и больше новых веществ, чуждых ей, порой сильно токсичных для организмов. Часть из них не включается в естественный круговорот и накапливается в биосфере, что приводит к нежелательным экологическим последствиям.

Накопление промышленных отходов, обуславливая высокий уровень загрязнения атмосферы, гидросферы и литосферы, способствует повышению заболеваемости людей и животных.

Производство изделий из полиэтилена связано с воздействием на работающих ряда вредных и опасных производственных факторов, таких как: электрический ток, производственный шум, вредные и токсичные вещества (при нарушении режима переработки), которые в ряде случаев взрывопожароопасны. Поэтому при разработке проекта необходимо создать безвредные и безопасные условия труда для рабочих, а также обеспечить защиту окружающей среды от вредных выбросов.

Опасные производственные факторы и мероприятия по технической безопасности

Опасный производственный фактор - это фактор, воздействие которого на работающего в определённых условиях приводят к травме или другому внезапному ухудшению здоровья. По основному технологическому оборудованию рассматриваемого технологического процесса можно выделить следующие опасные производственные факторы:

поражение электрическим током;

травмирование движущимися частями машин и механизмов;

термические ожоги.

Источниками поражения электрическим током являются нетоковедущие части оборудования, которые могут оказаться под напряжением вследствие пробоя изоляции (корпуса сушилки, экструдера, тянущие вальцы, резальный станок), а также токоведущие части, находящиеся под напряжением, отключенные токоведущие части, на которых остался заряд или появилось напряжение в результате случайного включения. Кроме того, возможно электропоражение напряжением шага при нахождении человека в зоне растекания тока на землю, электрической дугой в установках с напряжением более 1000 В, при приближении к частям оборудования, находящимся под напряжением, на недопустимо малое расстояние, зависящее от значения высокого напряжения [49].

По степени опасности поражения электрическим током помещения делят на 3 класса:

помещения без повышенной опасности;

помещения с повышенной опасностью;

особо опасные помещения.

В соответствии с ПУЭ, по степени опасности поражения электрическим током, помещение, в котором протекает рассматриваемый технологический процесс, относится к классу особой опасности, т. к. характеризуется наличием токопроводящих полов и возможностью одновременного прикосновения человека к имеющим соединения с землей технологическим аппаратам и механизмам с одной стороны и к металлическим корпусам электрооборудования с другой. Поэтому для обеспечения электробезопасности рекомендуется применять защитное заземление, зануление и защитное отключение, своевременно контролируют изоляцию, обеспечивают недоступность токоведущих частей [50].

Для предупреждения травмирования движущимися частями экструдера и режущим станком используют предохранительные тормозные, оградительные устройства для изоляции движущих частей; средства автоматического контроля и сигнализации, знаки безопасности, системы дистанционного управления, аварийные системы (кнопки) как для экстренной остановки механизмов и оборудования, так и для устранения возможности пуска в ход в период ремонта. При работе аппаратов не должно быть рывков и ударов, что достигается тщательной регулировкой и отладкой гидропривода, правильной выставкой литников, воздействующих на конечные выключатели экструдера.

Для предохранения от ожогов о нагретые поверхности (сушилка, экструдер, калибровочная насадка) необходимо предусмотреть тепловую изоляцию [49]. По действующим санитарным нормам температура нагретых поверхностей и ограждений на рабочих местах не должна превышать 45оС.

Вредные производственные факторы и мероприятия по гигиене труда и производственной санитарии

К вредным относятся факторы физиологического, гигиенического, химического и психологического характера, длительное действие которых, постепенно накапливаясь, разрушает организм и может вызвать профессиональное заболевание. Вредные факторы - это:

– неблагоприятные метеорологические условия (температура, влажность, подвижность воздуха);

– наличие в воздухе газов или пыли;

– шум и вибрация;

– наличие тепловых и других невидимых излучений.

Перечисленные факторы формально относятся к вредным, если их уровни превышают действующие санитарные нормы [51].

Вредным называется вещество, которое при контакте с организмом человека может вызывать травмы, заболевания или отклонения в состоянии здоровья, обнаруживаемые современными методами как в процессе контакта с ним, так и в отдаленные сроки жизни настоящих и последующих поколений.

Вредные вещества проникают в организм человека через органы дыхания, пищеварительный тракт или кожный покров.

При любой форме отравления характер действия вредных веществ определяется степенью его физиологической активности - токсичностью.

Согласно ГОСТ 12.1.007 - 76 «ССБТ. Вредные вещества. Классификация и общие требования безопасности» по степени воздействия на организм вредные вещества подразделяются на 4 класса опасности: 1 - чрезвычайно опасные; 2 - высоко опасные; 3 - умеренно опасные; 4 - малоопасные.

Отнесение вещества к классу опасности производится по показателю (ПДК), значение которого соответствует наиболее высокому классу опасности.

Полиэтилен и композиции на его основе при комнатной температуре не выделяют в окружающую среду токсичных веществ и при непосредственном контакте не оказывают влияние на организм человека, поэтому работа с полиэтиленом не требует особых мер предосторожности.

При нарушении требований регламента, воздушная среда загрязняется вредными парами и газами летучих продуктов термоокислительной деструкции.

Для ограничения неблагоприятного воздействия вредных веществ применяют гигиеническое нормирование их содержания в различных средах. В связи с тем, что требование полного отсутствия промышленных ядов в зоне дыхания работающих часто невыполнимо, особую значимость приобретает гигиеническая регламентация содержания вредных веществ в воздухе рабочей зоны (ГОСТ 12.1.005 - 88).

При переработке полиэтилена в готовое изделие особую опасность представляют выделяющиеся токсичные вещества, такие как формальдегид, ацетальдегид и оксид углерода, которые вызывают тяжелые отравления, нарушения в нервной системе, печени, крови. Кроме того, вредным производственным фактором является органическая пыль, образующаяся в процессе загрузки гранул ПЭ в экструдер и при резке труб. От охлаждающих ванн выделяются пары воды. Кроме того, большое количество тепла выделяется от нагретых поверхностей цилиндра экструзионной машины, от электродвигателя и от электронагревателей. Характеристики веществ, образующихся при нарушении технологических параметров переработки термопласта на основе полиэтилена-100, приведены в табл. 2.1.

Таблица 2.1.

Характеристика вредных веществ [52, 53]

Наименование

вещества

Характер воздействия на организм

Класс

опасности

ПДК мг/м3

В воздухе

рабочей зоны

В атмосферном воздухе населенных пунктов

Максимально

разовая

Среднесуточная

Формальдегид (СН2О)

Поражение ц.н.с., органов зрения, печени, почек. Оказывает аллергенное, канцерогенное действие.

2

0,5

0,035

0,003

Ацетальдегид (С2Н4О)

Общее токсическое действие.

3

5

0,01

0,01

Окись углерода

Действует на ц.н.с., органы дыхания, вызывает нарушение обмена веществ.

4

20

3

1

Аэрозоль ПЭ

Поражение органов дыхания (бронхов и легких)

3

10

-

-

Для улавливания вредных веществ у мест их выделения и предотвращения их перемещения с воздухом предусмотрена местная вытяжная вентиляция, которая подает чистый воздух в рабочую зону, создавая в ней благоприятную метеорологическую обстановку.

Для смены воздуха во всем объеме помещения используют приточно-вытяжную механическую общеобменную вентиляцию.

Для более полного удаления вредных веществ из рабочей зоны используют отсосы открытого типа. Они применяются, когда по технологическим причинам источник не может быть снабжен полным укрытием, и являются наиболее эффективным средством оздоровления воздушной среды [51].

Средства индивидуальной защиты являются дополнительной мерой защиты работающих в производственных условиях и обеспечиваются целесообразным применением спецодежды и спецобуви. Средства индивидуальной защиты применяют для предохранения дыхательных путей, органов зрения, а также кожных покровов от воздействия летучих токсичных веществ, выделяющихся при нарушениях технологического режима.

К средствам индивидуальной защиты органов дыхания относятся фильтрующие респираторы и противогазы, изолирующие защитные приспособления, которые ингаляционно защищают организм от вредных паров и газов.

Для защиты глаз применяют защитные очки и щитки (ГОСТ 12.4.013 - 75 «Очки защитные»).

Для защиты рук используют перчатки (ГОСТ 12.4.003 - 74), профилактические пасты, мази, специальные моющие и защищающие средства.

Метеорологические условия производственной среды - температура, влажность и скорость движения воздуха, определяют теплообмен организма человека и оказывают существенное влияние на отрицательное состояние различных систем организма, самочувствие, работоспособность и здоровье.

Метеорологические условия производственной среды зависят от физического состояния воздушной среды и характеризуются основными метеорологическими элементами: температурой, влажностью и скоростью движения воздуха, а также тепловым излучением нагретых поверхностей оборудования и обрабатываемых изделий и материалов. Совокупность этих факторов, характерных для данного производственного участка, называется производственным микроклиматом. В данном процессе основное влияние на формирование микроклимата и образование явного избытка тепла оказывают сушилка, экструдер, электронагреватели.

Для создания нормальных условий труда в производственных помещениях обеспечивают нормативные значения параметров микроклимата (согласно ГОСТ 12.1.005 - 88). Оптимальные показатели распространяются на всю рабочую зону, а допустимые устанавливают раздельно для постоянных и непостоянных рабочих мест, в тех случаях, когда по технологическим, техническим или экономическим причинам невозможно обеспечить оптимальные нормы.

При нормировании метеорологических условий в производственных помещениях учитывают время года и физическую тяжесть выполняемых работ. Работы, выполняемые на данной технологической установке, относятся к работам средней тяжести - категории II а.

В таблице 2.2. представлены нормы микроклимата для данной категории работ.

Таблица 2.2.

Оптимальные и допустимые метеорологические условия в рабочей зоне производственных помещений для холодного и теплого периодов года

Категория

Температура воздуха, ?С

Относительная влажность воздуха, %

Скорость движения воздуха, м/с

II а

Оптимальная

Допустимая

Оптимальная

Допустимая

Оптимальная

Допустимая

Холодный период

18 - 20

17 - 23

60 - 40

75

0,2

не > 0,3

Теплый период

21 - 23

18 - 27

40- 60

75

0,3

0,2-0,5

Для обеспечения благоприятных метеорологических условий предусмотрены следующие мероприятия:

1) теплоизоляция оборудования, аппаратов, выделяющих тепло. Теплоизоляция сделана таким образом, чтобы температура наружных стенок теплоизлучающего оборудования не превышала 45оС;

2) вентиляция. Основное требование ГОСТа - работа вентиляционных систем должна создавать на постоянных рабочих местах, в рабочей и обслуживаемой зонах помещений метеорологические условия и чистоту воздушной среды, соответствующие действующим санитарным нормам.

В данном технологическом процессе используется комбинированная система вентиляции, включающая общеобменную приточно-вытяжную вентиляцию, при которой смена воздуха происходит во всем объеме помещения, и местную вентиляцию, предназначенную для отсоса избыточного тепла, газов, паров и пыли в местах их образования и удаления их из помещения.

Правильно спроектированное и рационально выполненное освещение производственных помещений оказывает положительное психофизическое воздействие на работающих, способствует повышению эффективности и безопасности труда, снижает утомление и травматизм, сохраняет высокую работоспособность.

Естественное и искусственное освещение в помещениях регламентируется нормами СНиП 23-05-95 в зависимости от характера зрительной работы, системы и вида освещения, контраста объекта с фоном (табл. 2.3).

Таблица 2.3.

Нормы освещенности

№№

Показатель

Цех механической обработки

Цех литья под давлением

1.

Характеристика зрительной работы

Высокой точности

Малой точности

2.

Наименьший или эквивалентный размер объекта различения, мм

От 0,30 до 0,50

Св. 1 до 5

3.

Разряд зрительной работы

III

IV

4.

Подразряд зрительной работы

а

а

5.

Контраст объекта с фоном

Малый

Малый

6.

Характеристика фона

Темный

Темный

7.

Искусственное освещение

Освещенность, лк

При системе комбинированного освещения

Всего

2000 - 1500

400

В том числе

200

200

При системе общего освещения

500 - 400

300

Сочетание нормируемых величин показателя ослепленности и коэф. пульсации

Р

40 - 20

40

Кп, %

15

20

Создание в производственных помещениях качественного и эффективного освещения невозможно без рациональных светильников, которые предназначены для перераспределения излучаемого источником светового потока в требуемом направлении, предохранения глаз работающего от слепящего действия ярких элементов источника света, защиты источника от механических повреждений, воздействия окружающей среды и эстетического оформления помещения.

На данном участке рекомендуется использовать светильники с газоразрядными лампами типа ОД [54].

Некоторые производственные процессы сопровождаются значительным шумом и вибрацией. Источники интенсивного шума и вибрации - машины и механизмы с неуравновешенными вращающимися массами, а также технологические установки и аппараты, в которых движения газов, жидкостей и твердых веществ происходит с большими скоростями и имеет пульсирующий характер.

В результате длительного воздействия шума и вибрации нарушается нормальная деятельность сердечно-сосудистой и ЦНС, органов равновесия, пищеварительных органов, появляются заболевания суставов. Интенсивный шум и вибрация ведет к снижению производительности труда и часто является причиной травматизма.


Подобные документы

  • Общие сведения о трубах, их виды, размеры и особенности установки. Оборудование для производства современных труб водоснабжения и газоснабжения, основные материалы для их изготовления. Технология и установки для производства полиэтиленовых труб.

    реферат [27,2 K], добавлен 08.04.2012

  • Классификация городских газопроводов. Схемы и описание работы городских многоступенчатых систем газоснабжения. Расчет газопровода на прочность и устойчивость. Технология укладки газопроводов из полиэтиленовых труб. Контроль качества сварных соединений.

    курсовая работа [1,6 M], добавлен 19.08.2010

  • Автоматизация технологического процесса литья под давлением термопластов. Характеристика продукции, исходного сырья и вспомогательных материалов. Описание технологического процесса. Технологическая характеристика основного технологического оборудования.

    курсовая работа [45,2 K], добавлен 26.07.2009

  • Основные стадии технологической схемы производства полиэтиленовых труб. Особенности подготовки и загрузки сырья, приготовление композиций. Экструзия полиэтилена с формированием трубной заготовки. Вакуумная калибровка, вытяжка, охлаждение и разрезка.

    реферат [29,8 K], добавлен 07.10.2010

  • Прочность полиэтилена при сложном напряженном состоянии. Механический расчет напорных полиэтиленовых труб на прочность, применяемых в системах водоснабжения. Программное обеспечение для расчета цилиндрических труб. Расчет тонкостных конструкций.

    курсовая работа [1,3 M], добавлен 22.08.2012

  • Технологические операции при производстве труб из стали и их контроль, технология локальной термообработки. Характеристика основного технологического оборудования. Виды дефектов: прожоги, наплывы, непровары. Расчёт калибровки трубы основного сорта.

    курсовая работа [383,3 K], добавлен 25.12.2012

  • Характеристика сырья и материалов. Характеристика готовой продукции - труб кольцевого сечения, изготавливаемые из полиэтилена. Описание технологической схемы. Материальный баланс на единицу выпускаемой продукции. Нормы расхода сырья и энергоресурсов.

    отчет по практике [200,0 K], добавлен 30.03.2009

  • Особенности изготовления тонкостенных труб. Состав оборудования стана. Расчет калибровки и энергосиловых параметров. Назначение детали в узле, анализ ее технологичности. Трудоемкость изготовления конструкции. Защита производства в чрезвычайных ситуациях.

    дипломная работа [1,3 M], добавлен 26.10.2014

  • Рассмотрение материалов и технических изделий, используемых в системах газоснабжения. Изучение использования стальных, полиэтиленовых и труб из цветных сплавов. Правила выбора материала арматуры и способов присоединения, вспомогательного оборудования.

    курсовая работа [26,0 K], добавлен 03.11.2014

  • Характеристика исходного сырья, вспомогательных материалов и готовой продукции. Описание технологического процесса и его основные параметры. Материальные и энергетические расчеты. Техническая характеристика основного технологического оборудования.

    курсовая работа [901,6 K], добавлен 05.04.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.