Исследование физико-механических свойств и структуры наплавленного металла после различных технологических режимов нанесения покрытия

Повышение износостойкости наплавочных материалов за счет их структурно-фазового состояния. Назначение, характеристика состава и микроструктура наплавленного металла. Влияние легирующих элементов на повышение износостойкости. Борьба с шумом и вибрацией.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 22.06.2011
Размер файла 2,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

4.2.3 Период окупаемости (срок окупаемости) инвестиционного проекта .

Это продолжительность периода от начального момента до момента окупаемости.

,

где Ке - единовременные инвестиционные вложения, руб.;

Дг - величина годового дохода, руб.;

Ток - срок окупаемости, месяцы, годы.

Начальный момент указывается в задании на проектирование (обычно это начало операционной деятельности). Момент окупаемости - это тот наиболее ранний момент, когда поступления от производственной деятельности предприятия начинают покрывать затраты на инвестиции.

Алгоритм расчета срока окупаемости Ток зависит от равномерности распределения прогнозируемых доходов от инвестиций. Если доход распределен по годам равномерно, то срок окупаемости рассчитывается делением единовременных затрат на величину годового

дохода, обусловленного ими. (4)

Если доход по годам распределен неравномерно, то срок окупаемости рассчитывается прямым подсчетом числа лет, в течение которых инвестиции будут погашены кумулятивным доходом.

Используя показатель срока окупаемости ок) при анализе, следует обратить внимание на ряд его недостатков:

- не учитывает влияния доходов последних периодов;

- не обладает свойством аддитивности;

- не делает различия между проектами с одинаковой суммой кумулятивны доходов, но различным распределением их по годам, если при расчете окупаемости использовать не дисконтированные величины.

Помимо рассмотренных выше показателей эффективности инвестиционных проектов в Методических рекомендациях предусмотрено применение нижеследующих показателей:

- чистый доход;

- потребность в дополнительном финансировании;

- индексы доходности затрат и инвестиций.

Чистым доходом называется накопленный эффект за расчетный период (сальдо денежного потока).

Потребность в дополнительном финансировании (ПФ) - максимальное значение абсолютной величины отрицательного накопительного сальдо от инвестиционной и операционной деятельности. Величина ПФ показывает минимальный объем внешнего финансирования проекта, необходимый для обеспечения его финансовой реализуемости. Поэтому ПФ называют еще капиталом риска.

Индекс доходности затрат - отношение суммы денежных притоков (накопительных поступлений) к сумме денежных оттоков (накопленным платежам).

Индекс доходности инвестиций - отношение суммы элементов денежного потока от операционной деятельности к абсолютной величине суммы элементов денежного потока от инвестиционной деятельности. [98, 99]

4.3 Определение исходных данных для расчета показателей

Определение заводской себестоимости Сч осуществляется по статьям калькуляции. Типовое содержание статей калькуляции:

1-ая группа - Материальные затраты.

Статьи:

1.1 Сырьё и затраты.

1.2 Покупные запасные части и полуфабрикаты.

1.3 Топливо и энергия на технологические нужды (освещение 3-5%, отопление 2%, питание установки 4-6%)

2-ая группа - Трудовые затраты.

Статьи:

2.1 Основная заработная плата.

2.2 Дополнительная зарплата (8-12% от основной зарплаты).

2.3 Отчисления на социальное страхование (4-8% от суммы основной и дополнительной зарплаты).

3-ая группа - Расходы по обслуживанию и управлению производством.

Статьи:

3.1 Расходы на содержание и эксплуатацию оборудования (составляют от 50 до 100% основной зарплаты).

3.2 Цеховые расходы (составляют до 200% основной зарплаты).

3.3 Общезаводские расходы (расходы на командировки, представительские расходы, расходы на отдел подготовки кадров составляют от 60 до 150% основной зарплаты).

4-ая группа - Прочие производственные расходы.

Статьи:

4.1 Расходы по освоению. Расходы на научно-исследовательскую деятельность, конструкторскую, технологическую подготовку и организационно-плановую подготовку производства и т.п. (до 10% от заводской себестоимости)

4.2 Внепроизводственные расходы (расходы на рекламу, коммерческие расходы, до 10% от заводской себестоимости).

4.3 Специальные расходы (расходы на проектирование, разработку устройства, методики и изготовление специальной оснастки, расходы на специальные испытания).

И так, расчет заводской себестоимости С3 ведем по статьям:

С3=1.1 + 1.2 + 1.3 + 2.1 + 2.2 + 2.3 + 3.1 + 3.2 + 3.3 + 4.1 + 4.2 + 4.3

Кj - текущие затраты, затраты на производство продукции или проведение работ рассчитываются по статьям калькуляции.

К1 - затраты на научно-исследовательскую подготовку проектирования.

Расчет ведем по статьям:

К1=2.1 + 2.2 + 2.3 + 3.3 + 4.1 + 4.3

К2 - затраты на изготовление специальной оснастки, специальные испытания, на физическое и математическое моделирование. Разработка и опробирование методики, способов.

Расчет ведем по статьям:

К2=1.1 + 1.2 + 1.3 + 2.1 + 2.2 + 2.3 + 3.1 + 3.2 + 3.3 + 4.1 + 4.3

4.4 Расчет показателей эффективности проекта

Определение заводской себестоимости Сз осуществляется по статьям калькуляции. Затраты на выполнение статей калькуляции приведены в таблице 1.1

Таблица 1.1 - Затраты на выполнение статей калькуляции

Группа

Статья

Затраты за год, руб.

1

1.1 Сырье и затраты

1.2 Покупные запасные части и полуфабрикаты

1.3 Энергия на технологические нужды (6% от заводской себестоимости)

20400

10200

12439

2

2.1 Основная заработная плата

2.2 Дополнительная зарплата (10% от основной заработной платы)

2.3 Отчисления на социальное страхование (6% от 2.1 + 2.2)

36000

3600

2376

3

3.1 Расходы на содержание и эксплуатацию оборудования (50% от 2.1)

3.2 Цеховые расходы (70% от 2.1)

3.3 Общезаводские расходы (100% от 2.1)

18000

25200

36000

4

4.1 Расходы по освоению (10% от Сз)

4.2 Внепроизводственные расходы (5% от Сз)

4.3 Специальные расходы

16585

14511

12000

d=1.1 + 1.2 + 1.3 + 2.1 + 2.2 +2.3 + 3.1 + 3.2 +1.1 + 1.2 + 1.3 + 2.1 + 2.2 +2.3 + 3.1 + 3.2 + 3.3 +4.1 +4.2 + 4.3

Сз= 14425 руб. в месяц

Сз= 16585 руб. в год

К1 - затраты на научно-исследовательскую подготовку проектирования

К1=2.1 + 2.2 + 2.3 + 3.3 + 4.1 + 4.3

К1=111246 руб. в год

К2 - затраты на изготовление специальной оснастки, специальные испытания, на физическое и математическое моделирование. Разработка и опробирование методики, способов.

К2=1.1 + 1.2 + 1.3 + 2.1 + 2.2 + 2.3 + 3.1 + 3.2 + 3.3 + 4.1 + 4.3

К2=197807 руб. в год

Планируется ввод нового испытательного стенда на трение, на его изготовление израсходовано 100000 руб.

Для запуска проекта необходимо затратить в начальный момент времени 111246 руб. на организацию и научно-исследовательскую подготовку проектирования, через год - 197807 руб. на рекламу, на изготовление специальной оснастки, специальных испытаний, физическое и математическое моделирование. Чистая прибыль во второй, третий, четвертый, пятый годы составили:

Пt=rt?Сз/100,

где

rt - рентабельность; (r2=24; r3=23; r4=22; r5=21; r6=20)

Сз - заводская себестоимость

2 год - П2 - 117408 руб.; А2=20000,

3 год - П3 - 112516 руб.; А3=20000,

4 год - П4 - 107624 руб.; А2=20000,

5 год - П5 - 102732 руб.; А3=20000,

Аt - амортизационные отчисления в t-ом году.

Определяем величину чистого дисконтированного дохода (ЧДД)

ЧДД= (1) , где

- чистая прибыль, полученная в t-ом году от реализации инвестиционного проекта;

- амортизационные отчисления в t-ом году;

- инвестиции, необходимые для реализации проекта в t-ом году;

Е - норма дисконта, коэффициент доходности инвестиций; Ставки дисконта составили 20 %. (Е=20%)

ЧДД= -111246х1-197807/(1+0,2)1 + 137408/(1+ 0,2)2 + 132516/(1+ 0,2) + 127624/(1+0,2)4 + 122732/(1+0,2)5 =9681,5 руб.;

ЧДД > 0, следовательно, проект эффективен.

Определим индекс доходности (ИД) проекта:

Индекс доходности проекта представляет собой отношение сумм приведенного дохода (прибыли) к величине дисконтированных инвестиций (Kt) по всем периодам:

ИД = 137408/(1+0,2)2 + 132516/(1+0,2) + 127624/(1+0,2)4 + 122732/(1+0,2)5 =

111246?1-197807/(1+0,2)1

= 1,0362

ИД > 1, следовательно, проект эффективен.

Определим период окупаемости инвестиционного проекта (Ток)

Это продолжительность периода от начального момента до момента окупаемости.

,

где Ке - единовременные инвестиционные вложения, руб.;

Дг - величина годового дохода, руб.;

Ток - срок окупаемости, месяцы, годы.

Определим срок окупаемости без учета дисконтирования денежных поступлений.

А) На основе среднегодовой величины денежных поступлений составит:

Дг=137402+132516+127624+122732 = 104056 руб.

К= К12= 111246+197807=309053 руб.

Срок окупаемости:

Ток=309053 = 2,95 года

104056

Б) На основе нарастания денежных средств по годам до достижения величины капитальных вложений. В этом случае срок окупаемости составляет 3 года, т.к. за это время накапливается сумма денежных средств для покрытия капитальных вложений 309053 руб. (137408 + 132516 + 127624 - 397548 руб.)

Рассчитаем срок окупаемости с учетом дисконтирования денежных поступлений.

Дисконтирование суммы по годам составят:

Второй год 137408/(1+0,2)2 = 95422 руб.

Третий год 132516/(1+0,2)3 = 76688 руб.

Четвертый год 127624/(1+0,2)4 = 63547 руб.

Пятый год 122732/(1+0,2)5 = 49323 руб.

А) На основе среднегодовой величины денежных поступлений. Среднегодовая величина дисконтирования денежных поступлений составит:

Дг = 95422 + 76688 + 61547 + 49323 = 56596 руб.

5

Ке = 111246 + 167324 = 278570 руб.

Срок окупаемости:

Ток = 278570 = 4,82 года

56596

Б) На основе нарастания дисконтированных денежных поступлений до момента покрытия капитальных вложений:

Ток = 4 года 278570 - (95422 + 76688 + 61547) = 4,81 года

49323

Вывод. Так как ЧДД является положительной величиной, а индекс доходности (ИД) больше 1, проект является эффективным и окупится за 4,92 года. На основе расчета чистого дисконтированного дохода, индекса доходности, срока окупаемости принять решение об экономической целесообразности данного проекта.

5. Безопасность жизнедеятельности

5.1 Вредные производственные факторы - шум, вибрация

Шум и вибрация объединяются общим принципом их образования: все они являются результатом колебания тел, передаваемого непосредственно или через газообразные, жидкие и твердые среды. Отличаются они друг от друга лишь по частоте этих колебаний и различным восприятием их человеком.

Колебания с частотой от 20 до 20000 Гц (герц - единица измерения частоты, равная одному колебанию в секунду), передаваемые через газообразную среду, называются звуками и воспринимаются органами слуха человека как звуки; беспорядочное сочетание таких звуков составляет шум. Колебания ниже 20 Гц называются инфразвуками, а выше 20000 Гц - ультразвуками; они органами слуха человека не воспринимаются, однако оказывают на него влияние.

Колебания твердых тел или передаваемые через твердые тела (машины, строительные конструкции и т. п.) называются вибрацией. Вибрация воспринимается человеком как сотрясение при общей вибрации с частотой от 1 до 100 Гц, а при локальной (местной) - от 10 до 1000 Гц (например, при работе с виброинструментом). [100, 101, 102]

5.2 Шум и его влияние на организм человека

Шум представляет собой беспорядочное сочетание разнообразных звуков, поэтому для понимания физических основ образования и распространения шума, его восприятия человеком и влияния на организм следует рассматривать звук как составную часть всякого шума, включая и производственный.

Колебания источника звука производят попеременное сжатие и разрежение воздуха, образуя волнообразное колебание его, распространяющееся от источника звука во все стороны в виде увеличивающихся в объеме сфер. Это называется распространением звуковой волны.

Звуковые волны, встретив на пути распространения любые поверхности (твердые, жидкие), передают им эти колебания. Подобным препятствием звуковой волне может служить и орган слуха, который состоит у человека из ушной раковины со слуховым проходом (наружное ухо), барабанной перепонки, соединенной с системой слуховых косточек (среднее ухо), и так называемого кортнева органа с окончаниями слухового нерва (внутреннее ухо). Звуковая волна вызывает колебания барабанной перепонки, которые, приводя в движение систёму косточек среднего уха, передаются окончаниям (рецепторам) слухового нерва, вызывая в них соответствующие нервные импульсы, посылаемые в головной мозг. Более интенсивный звук, то есть с большей энергией колебаний, воспринимается как громкий, менее интенсивный - как тихий.

Установлено, что орган слуха человека воспринимает разность изменения звукового давления в виде кратности этого изменения, поэтому для измерения интенсивности шума используют логарифмическую шкалу в децибелах относительно порога слышимости (минимальное звуковое давление, воспринимаемое органом слуха) человека с нормальным слухом. Эта величина, равная 2х10-5 ньютон на 1 м2, принята за 1 децибел (дБ).

При повышении интенсивности звука создаваемое в звуковой волной давление на барабанную перепонку на определенном уровне может вызывать болевые ощущения. Такая интенсивность звука называется порогом болевых ощущений и находится в пределах 130 дБ.

Звуковая часть колебательного спектра, как сказано выше, имеет огромный диапазон частот - от 20 до 20000 Гц. Звуки различных частот даже при одинаковой их интенсивности воспринимаются по-разному. Низкочастотные звуки воспринимаются как относительно тихие; по мере увеличения частоты увеличивается громкость восприятия, но, приближаясь к высокочастотным колебаниям, и особенно к верхней границе звуковой части спектра, громкость восприятия снова падает. Наиболее хорошо ухо человека воспринимает колебания в пределах 500 - 4000 Гц.

Учитывая эти особенности восприятия, для характеристики звука или шума в целом надо знать не только его интенсивность, но и спектр, то есть частоту колебаний звуковой волны.

В условиях производства, как правило, имеют место шумы различной интенсивности и спектра, которые создаются в результате работы разнообразных механизмов, агрегатов и других устройств. Они образуются вследствие быстрых вращательных движений, скольжения (трения), одиночных или повторяющихся ударов, вибрации инструментов и отдельных деталей машин, завихрений сильных воздушных или газовых потоков и т. д. Шум имеет в своем составе различные частоты, и все же каждый шум можно охарактеризовать преобладанием тех или иных частот. Условно принято весь спектр шумов делить на низкочастотные - с частотой колебаний до 350 Гц, среднечастотные - от 350 до 800 Гц и высокочастотные - свыше 800 Гц.

К низкочастотным относятся шумы тихоходных агрегатов неударного действия, шумы, проникающие сквозь звукоизолирующие преграды (стены, перекрытия, кожухи), и т. п.; к среднечастотным относятся шумы большинства машин, агрегатов, станков и других движущихся устройств неударного действия; к высокочастотным относятся шипящие, свистящие, звенящие шумы, характерные для машин и агрегатов, работающих на больших скоростях, ударного действия, создающих сильные потоки воздуха или газов, и т. п.

Производственный шум различной интенсивности и спектра (частоты), длительно воздействуя на работающих, может привести со временем к понижению остроты слуха у последних, а иногда и к развитию профессиональной глухоты. Такое неблагоприятное действие шума связано с длительным и чрезмерным раздражением нервных окончаний слухового нерва во внутреннем ухе (кортиевом органе), в результате чего в них возникает переутомление, а затем и частичное разрушение. Исследованиями установлено, что чем выше частотный состав шумов, чем они интенсивнее и продолжительнее, тем быстрее и сильнее оказывают неблагоприятное действие на орган слуха. При чрезмерно интенсивных высокочастотных шумах, если не будут проведены необходимые защитные мероприятия, возможно поражение не только нервных окончаний, но и костной структуры улитки, кортиева органа и иногда даже среднего уха.

Помимо местного действия - на орган слуха, шум оказывает и общее действие на организм работающих. Шум является внешним раздражителем, который воспринимается и анализируется корой головного мозга, в результате чего при интенсивном и длительно действующем шуме наступает перенапряжение центральной нервной системы, распространяющееся не только на специфические слуховые центры, но и на другие отделы головного мозга. Вследствие этого нарушается координирующая деятельность центральной нервной системы, что, в свою очередь ведет к расстройству функций внутренних органов и систем. Например, у рабочих, длительное время подвергавшихся воздействию интенсивного шума, особенно высокочастотного, отмечаются жалобы на головные боли, головокружение, шум в ушах, а при медицинских обследованиях выявляются язвенная болезнь, гипертония, гастриты и другие хронические заболевания. [100, 101, 102]

5.3 Влияние вибрации на организм человека

Восприятие вибрации зависит от частоты колебаний, их силы и размаха - амплитуды. Частота вибрации, как и частота звука, измеряется в герцах, энергия - в килограммометрах, а амплитуда колебаний - в миллиметрах. За последние годы установлено, что вибрация, как и шум, действует на организм человека энергетически, поэтому ее стали характеризовать спектром по колебательной скорости, измеряемой в сантиметрах в секунду или как и шум, в децибелах; за пороговую величину вибрации условно принята скорость в 5х10-6 см/сек. Вибрация воспринимается (ощущается) лишь при непосредственном соприкосновении с вибрирующим телом или через другие твердые тела, соприкасающиеся с ним. При соприкосновении с источником колебаний, генерирующим (издающим) звуки наиболее низких частот (басовые), наряду со звуком воспринимается и сотрясение, то есть вибрация.

В зависимости от того, на какие части тела человека распространяются механические колебания, различают местную и общую вибрацию. При местной вибрации сотрясению подвергается лишь та часть тела, которая непосредственно соприкасается с вибрирующей поверхностью, чаще всего руки (при работе с ручными вибрирующими инструментами или при удержании вибрирующего предмета, детали машины и т. п.). Иногда местная вибрация передается на части тела, сочлененные с подвергающимися непосредственно вибрации суставами. Однако амплитуда колебаний этих частей тела обычно ниже, так как по мере передачи колебаний по тканям, и тем более мягким, они постепенно затухают. Общая вибрация распространяется на все тело и происходит, как правило, от вибрации поверхности, на которой находится рабочий (пол, сиденье, виброплатформа и т. п.).

Колебания, передаваемые от вибрирующей поверхности телу человека, вызывают раздражение многочисленных нервных окончаний в стенках кровеносных сосудов, мышечных и других тканях. Ответные импульсы приводят к нарушениям обычного функционального состояния некоторых внутренних органов и систем, и в первую очередь периферических нервов и кровеносных сосудов, вызывая их сокращение. Сами же нервные окончания, особенно кожные, также подвергаются изменению - становятся менее восприимчивыми к раздражениям. Все это проявляется в виде беспричинных болей в руках, особенно по ночам, онемения, ощущения “ползания мурашек”, внезапного побеления пальцев, снижения всех видов кожной чувствительности (болевой, температурной, тактильной). Весь этот комплекс симптомов, характерный для воздействия вибрации, получил название вибрационной болезни. Больные вибрационной болезнью обычно жалуются на мышечную слабость и быструю утомляемость. У женщин от воздействия вибрации, помимо этого, нередко появляются нарушения функционального состояния половой сферы.

Развитие вибрационной болезни и других неблагоприятных явлений зависит в основном от спектрального состава вибрации: чем выше частота вибрации и чем больше амплитуда и скорости колебаний, тем большую опасность представляет вибрация в отношении сроков развития и тяжести вибрационной болезни.

Способствуют развитию вибрационной болезни охлаждение тела, главным образом тех его частей, которые подвержены вибрации, мышечные напряжения, особенно статическое, шум и другие. [100, 101, 102]

5.4 Меры борьбы с шумом и вибрацией

Мероприятия по борьбе с шумом и вибрацией во многом однотипны. Прежде всего, необходимо обратить внимание на технологический процесс и оборудование, по возможности заменить операции, сопровождающиеся шумом или вибрацией, другими. В ряде случаев можно заменить ковку металла его штамповкой, клепку и чеканку - прессованием или электросваркой, наждачную зачистку металла - огневой, распиловку циркулярными пилами - резанием специальными ножницами и т. д. Необходимо следить, чтобы при такой замене не создавались какие-либо дополнительные вредности, которые могут оказывать на работающих более неблагоприятное действие, чем шум и вибрация.

Устранение или сокращение шума и вибрации от вращающихся или двигающихся узлов и агрегатов достигается, прежде всего, путем точной подгонки всех деталей и отладки их работы (уменьшение до минимума допусков между соединяющимися деталями, устранение перекосов, балансировка, своевременная смазка и т. п.). Под вращающиеся или вибрирующие машины или отдельные узлы (между соударяющимися деталями) следует прокладывать пружины или амортизирующий материал (резина, войлок, пробка, мягкие пластики и т. п.). В тех случаях, где допустимо по техническим условиям, целесообразно заменить подшипники качения на подшипники скольжения, плоскоременные передачи с вшивным ремнем - на клиновидные, редукторные передачи - на безредукторные, детали и узлы с возвратно-поступательными движениями - на вращательные.

Не рекомендуется вращающиеся части машины (колеса, шестерни, валы и т. п.) размещать с одной ее стороны: это усложняет балансировку и приводит к вибрации. Вибрирующие большие поверхности, создающие шум (дребезжащие), такие, как кожухи, перекрытия, крышки, стенки котлов и цистерн при их .клепке или зачистке, галтовочные барабаны и т. п., следует более плотно соединять с неподвижными частями (основаниями), укладывать на амортизирующие подкладки или обтягивать подобным материалом сверху. [103, 104]

Для предупреждения завихрений воздушных или газовых потоков, создающих высокочастотные шумы, необходимо тщательно монтировать газовые и воздушные коммуникации и аппараты, особенно находящиеся под большим давлением, избегая шероховатостей внутренних поверхностей, выступающих частей, резких поворотов, неплотностей и т. п. Для выпуска сжатого воздуха или газа следует использовать не простые краны, а специальные задвижки типа Лудло. Давление воздуха или газа в системах нельзя повышать выше величин, необходимых для данного технологического процесса, для чего желательно устанавливать ограничители давления. Окружная скорость турбин вентиляторов и других вращающихся частей оборудования, увлекающих за собой воздушные потоки, не должна превышать 35 - 40 м/сек. Соединения вентиляторов с воздуховодами, а в ряде случаев газовых и воздушных коммуникаций целесообразно производить мягкими переходами (резиновые, брезентовые рукава, резиновые прокладки на фланцах и т. п.). На выхлопах пневматических установок оборудуются шумоглушители.

Немаловажную роль в борьбе с шумом и вибрацией играют архитектурно-строительные и планировочные решения при проектировании и строительстве промышленных зданий. Прежде всего, необходимо наиболее шумящее и вибрирующее оборудование вынести за пределы производственных помещений, где находятся рабочие; если это оборудование требует постоянного или частого периодического наблюдения, на участке его размещения оборудуются звукоизолированные будки или комнаты для обслуживающего персонала.

Помещения с шумящим и вибрирующим оборудованием надо как можно лучше изолировать от остальных рабочих участков. Аналогичным образом целесообразно изолировать между собой и помещения или участки с шумами разной интенсивности и спектра. Стены и потолки в шумных помещениях покрываются звукопоглощающими материалами, акустической штукатуркой, мягкими драпировками, перфорированными панелями с подкладкой из шлаковаты и др. [103, 104]

Мощные машины и другое оборудование вращательного или ударного действия устанавливаются в нижнем этаже на специальном фундаменте, полностью отделенном от основного фундамента здания, а также пола и опорных конструкций. Подобное оборудование меньшей мощности устанавливается на несущих конструкциях здания с прокладками из амортизирующих материалов или на консолях, крепящихся на капитальных стенах. Оборудование, создающее шум, укрывается кожухами или заключается в изолированные кабины со звукопоглощающими покрытиями. Звукоизолируются также газовые или воздушные коммуникации, по которым может распространяться шум (от компрессоров, пневмоприводов, вент Эффективным путем решения проблемы борьбы с шумом является снижение его уровня в самом источнике за счет изменения технологии и конструкции машин. К мерам этого типа относятся замена шумных процессов бесшумными, ударных -- безударными, например замена клепки -- пайкой, ковки и штамповки обработкой давлением; замена металла в некоторых деталях незвучными материалами, применение виброизоляции, глушителей, демпфирования, звукоизолирующих кожухов и др. При невозможности снижения шума оборудование, являющееся источником повышенного шума, устанавливают в специальные помещения, а пульт дистанционного управления размещают в малошумном помещении. В некоторых случаях снижение уровня шума достигается применением звукопоглощающих пористых материалов, покрытых перфорированными листами алюминия, пластмасс. При необходимости повышения коэффициента звукопоглощения в области высоких частот звукоизолирующие слои покрывают защитной оболочкой с мелкой и частой перфорацией, применяют также штучные звукопоглотители в виде конусов, кубов, закрепленных над оборудованием, являющимся источником повышенного шума. Большое значение в борьбе с шумом имеют архитектурно-планировочные и строительные мероприятия. В тех случаях, когда технические способы не обеспечивают достижения требований действующих нормативов, необходимо ограничение длительности воздействия шума и применение противошумов.

Противошумы - средства индивидуальной защиты органа слуха и предупреждения различных расстройств организма, вызываемых чрезмерным шумом. Их используют в основном тогда, когда технические средства борьбы с шумом не обеспечивают снижения его до безопасных пределов. Противошумы подразделяют на три типа: вкладыши, наушники и шлемы.

Противошумные вкладыши вводят в наружный слуховой проход. Вкладыши бывают многократного и однократного пользования. К вкладышам многократного пользования относятся многочисленные варианты заглушек в виде колпачков различной конструкции и формы из резины, каучука и других пластичных полимерных материалов, в некоторых случаях надетых на железные стержни. Противошумные вкладыши многократного использования выпускают нескольких типов и размеров; вес их не регламентируется и колеблется в пределах до 10 г. «Беруши» - коммерческое название отечественных противошумных вкладышей однократного пользования из органического перхлорвинилового фильтрующего шумопоглощающего материала. [103, 104]

Противошумные наушники представляют собой чаши, по форме близкие к полусфере, из легких металлов или пластмасс, наполненные волокнистыми или пористыми звукопоглотителями, удерживаемые с помощью оголовья. Для удобного и плотного прилегания к околоушной области они снабжаются уплотняющими валиками из синтетических тонких пленок, часто заполненных воздухом или жидкими веществами с большим внутренним трением (глицерин, вазелиновое масло и др.). Уплотняющий валик одновременно демпфирует колебания самого корпуса наушника, что существенно при низкочастотных звуковых колебаниях.

Противошумные шлемы - самые громоздкие и дорогостоящие из индивидуальных средств противошумной защиты. Они используются при высоких уровнях шумов, часто применяются в комбинации с наушниками или вкладышами. Расположенный по краю шлема уплотняющий валик обеспечивает плотное прилегание его к голове. Имеются конструкции шлемов с поддутием валика воздухом для надежного облегания головы.

Медицинскими противопоказаниями к допуску на работу, связанную с воздействием интенсивного шума, являются следующие заболевания:

1. Стойкое понижение слуха, хотя бы на одно ухо, любой этиологии

2. Отосклероз и другие хронические заболевания уха с заведомо неблагоприятным прогнозом

3. Нарушение функции вестибулярного аппарата любой этиологии, в том числе болезнь Меньера

4. Наркомании, токсикомании, в том числе хронический алкоголизм

5. Выраженная вегетативная дисфункция

6. Гипертоническая болезнь (все формы)

При работе в условиях воздействия общей вибрации под ноги рабочему ставится специальная виброгасящая (амортизирующая) площадка. При воздействии местной вибрации (чаще на руки) рукоятки и другие вибрирующие части машин и инструмента (например, пневмомолоток), соприкасающиеся с телом рабочего, покрываются резиной или другим мягким материалом. Виброгасящую роль играют и рукавицы. Мероприятия по борьбе с вибрацией предусматриваются не только при непосредственной работе с вибрирующими инструментами, машинами или другим оборудованием, но и при соприкосновении с деталями и инструментами, на которые распространяется вибрация от основного источника.

Необходимо организовать трудовой процесс таким образом, чтобы операции, сопровождающиеся шумом или вибрацией, чередовались с другими работами без этих факторов. Если организовать такое чередование невозможно, нужно предусматривать периодические кратковременные перерывы в работе с отключением шумящего или вибрирующего оборудования или удалением рабочих в другое помещение. Следует избегать значительных физических нагрузок, особенно статических напряжений, а также охлаждения рук и всего тела; во время перерывов обязательно делать физкультурные упражнения (физкультпаузы).

При приеме на работу, связанную с возможным воздействием шума или вибрации, проводятся обязательные предварительные медицинские осмотры, а в процессе работы - периодические медосмотры раз в год.

Сроки периодических медицинских осмотров устанавливаются в зависимости от интенсивности шума. При интенсивности шума от 81 до 99 дБА -- 1 раз в 24 мес, 100 дБА и выше -- 1 раз в 12 мес. Первый осмотр отоларинголог проводит через б мес после предварительного медицинского осмотра при поступлении на работу, связанную с воздействием интенсивного шума. Медицинские осмотры должны проводиться с участием отоларинголога, невропатолога и терапевта. [103, 104]

5.5 мероприятия, направленные на снижение выбросов вредных газов и пыли

При строительстве, вводе в эксплуатацию, реконструкции и технической реконструкции предприятий должны предусматриваться меры по улавливанию, обезвреживанию вредных веществ, снижению или полному исключению загрязняющих выбросов в атмосферу. При этом указывается на необходимость соблюдения нормативов ПДВ, имея в виду, что совокупность выбросов от проектируемых и действующих предприятий не должна ухудшать качество атмосферного воздуха. Особо подчеркивается, что введение в эксплуатацию любых технологических установок, двигателей, транспортных и иных передвижных средств и установок, независимо от того, произведены они на территории России или ввезены из-за рубежа, допускается только при наличии специальных сертификатов, подтверждающих их соответствие установленным экологическим нормативам.

Исходя из Санитарно-эпидемиологических правил и нормативов СанПиН 2.2.1/2.1.1.1200-03 «Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов», любые объекты, которые являются источниками выбросов в ОПС вредных веществ, а также источниками шума, вибрации, ультразвука, электромагнитных волн, радиочастот, статического электричества, необходимо в обязательном порядке отделять от жилой застройки санитарно-защитными зонами (СЗЗ). Поэтому СЗЗ стали ныне обязательными составными компонентами промышленного предприятия или иного объекта, являющихся источниками химического, биологического или физического воздействия на ОПС и здоровье человека.

СЗЗ -- это зона пространства и растительности, специально выделенная между промышленным предприятием и районом проживания населения. Обеспечивая пространство для безопасного рассеивания вредных выбросов, она должна быть надлежащим образом озеленена и удовлетворять специальным гигиеническим требованиям.

В зависимости от концентрации объектов на данной территории, их мощности, условий эксплуатации, характера и количества выбрасываемых в атмосферу токсических веществ и т.п. для предприятий, производств и иных объектов установлены следующие минимальные размеры СЗЗ: предприятия 1-го класса опасности -- 2000 м; 2-го -- 1000 м; 3-ro -- 500 м; 4-го -- 300 м; 5-го -- 100 м. Допускается размер СЗЗ 50 м для предприятий пищевой промышленности, общественного питания, зрелищных и культурных объектов.

СЗЗ является полосой, отделяющей промышленное предприятие от селитебной территории. Селитебная зона, или жилая, -- район населенного пункта, в пределах которого размещены жилые дома и в котором запрещено строительство промышленных, транспортных и иных предприятий, загрязняющих окружающую человека среду.

Функции зеленых насаждений многообразны. Они не только обогащают воздух кислородом, создают благоприятный микроклимат, но и способствуют рассеиванию вредных веществ и поглощают их.

При озеленении территории промышленных предприятий и их СЗЗ, обочин дорог обычно выбирают древесные, кустарниковые, цветочные и газонные растения в зависимости от климатического района, характера производства и эффективности данной породы для очистки воздуха, а также ее устойчивости к вредным газам. Установлено, что наиболее стойкими являются, например, акация белая, атлант высокий, клен яснелистовый.

Эффективность озеленения характеризуют следующие данные: хвоя одного гектара елового леса улавливает 32 т пыли, листва букового леса -- 68 т. На расстоянии 500 м от предприятия при отсутствии озеленения загрязнение воздуха диоксидом серы, сероводородом и диоксидом азота в 2 раза ниже, чем непосредственно у источника загрязнения, а при наличии озеленения ниже в 3--4 раза. [105]

5.6 Улавливание пыли из газопылевых выбросов

Принцип улавливания основан на отделении взвешенных частиц от воздушным потоком за счет сил тяжести, инерции или центробежных сил. По конструкции это пылеосадительные камеры и циклоны.

Весьма простыми устройствами являются пылеосадительные камеры, в которых за счет увеличения сечения воздуховода скорость пылевого потока резко падает, вследствие чего частицы пыли выпадают под действием сил тяжести. Пылеосадительные камеры используют для очистки от крупных частиц пыли и применяют в основном для предварительной очистки воздуха. Эффективность улавливания в пылеососадительных камерах зависит от времени пребывания газов в камере и расстояния, проходимого частицами под действием гравитационных сил. В спою очередь время пребывания газов зависит от объема камеры и скорости потока.

Эффективными пылеуловителями являются инерционные аппараты. в которых пылевой поток резко изменяет направление своего движения, что способствует выпадению частиц пыли. К ним относятся аппараты, в которых действие удара о препятствие используется в большей степени, чем инерция. Широко распространенными инерционными пылеуловителями являются циклоны. В них частицы пыли движутся вместе с вращающимся газовым потоком и под воздействием центробежных сил оседают на стенках. Циклоны широко применяются для улавливания частиц размерами около 10 мкм. По конструкции они подразделяются на циклические, конические и прямоточные.

Наиболее совершенными и универсальными аппаратами для очистки выбросов от взвешенных частиц являются электрические фильтры, в основе работы которых лежит осаждение взвешенных частиц под действием электрических сил.

Установки состоят из двух частей: агрегатов питания и собственно электрофильтра. Агрегаты питания включают повышаю­щий трансформатор с регулятором напряжения и высоковольтный выпрямитель. Собственно электрофильтр состоит из корпуса с входным и выходным патрубком, бункером для сбора уловленной пыли, пылевыпускным патрубком. В корпусе расположены осадительные и коронируюшие электроды. Осадительные электроды в виде труб или пластин подключаются к заземлению и положительному полюсу выпрямителя. Коронирующие электроды, выполняемые чаще всего в виде проволоки, изолированы от земли с помощью изоляторов, и к ним подводится по кабелю выпрямленный электрический ток высокого напряжения (до 50--80 кВ) отрицательной полярности.

Улавливание частиц пыли в электрофильтре включает следующие стадии: электрическая зарядка взвешенных в газе частиц; движение заряженных частиц к электродам; осаждение их на электродах и удаление осажденных частиц с электродов.

Метод электроосаждения заключается в следующем. Частицы пыли сначала получают заряд от ионов газа, которые образуются в электрическом поле высокого напряжения, а затем движутся к заземленному осалительному электроду. Попав на заземленный уловитель, частицы прилипают и разряжаются. Когда осадительный электрод обрастает слоем частиц, они стряхиваются «постукиванием» и собираются в бункере. [105]

5.7 Улавливание газообразных примесей из технологических газов

Многие промышленные газы, кроме пыли и золы, содержат вредные газообразные выбросы в виде оксидов серы, оксидов азота, сероводорода и другие. Улавливание газообразных примесей преследует две цели: санитарную очистку газов и использование улавливаемых компонентов для получения удобрений, кислот, серы и других ценных химических продуктов.

В целях очистки выбросов от газообразных примесей применяют методы хемосорбции, адсорбции, каталитического и термического окисления.

Хемосорбция основана на поглощении газа жидкими поглотителями с образованием малолетучих химических соединений. Молекулы загрязняющих веществ могут абсорбироваться жидкой поверхностью физически либо взаимодействовать с абсорбентом и превращаться в другие вещества. Большинство реакций, протекающих в процессе хе­мосорбции, являются экзотермическими и обратимыми. Поэтому при последующем повышении температуры раствора образовавшееся химическое соединение разлагается с выделением исходных компонентов. Так, для очистки выбросов от диоксида серы применяется аммиачно-циклический метод. Он основан на обратимой реакции:

2(NH4)2SО3 + SО2 + Н2О= 2NH4HSО3 + Q.

При температуре 0--35 °С эта реакция протекает слева направо, а при кипячении раствора -- в обратном направлении. Сначала выбросные газы пропускают через раствор (NH4)2SО3 при 30--35 °С, затем раствор, насыщенный NH4HSО3, нагревают, при этом выделяется концентрированный SО2. После охлаждения раствор (NH4)2SО3 снова поступает на улавливание SО2. Метод позволяет получать сжиженный 100%-ный SO2 являющийся сырьем для получения серной кислоты.

Очистку газов проводят в специальных устройствах -- абсорберах. В этих аппаратах абсорбция может быть осуществлена противоточно, т.е. газ и жидкость движутся в противоположных направлениях, либо прямоточно, когда оба потока имеют одинаковое направление. В случаях относительно высоких концентраций вредных газов (1% и более) используют противоточный метод. Для удаления вредных газов, имеющих сравнительно невысокую концентрацию, чаще всего применяют прямоточные скрубберы. В них жидкость диспергируется в потоке газа или газовый поток барботирует через жидкость. При этом достигается тесный контакт между пузырьками газа в жидкости либо мелкими каплями абсорбирующей жидкости в газовом потоке.

Адсорбция основана на селективном (избирательном) поглощении вредных газов и паров твердыми адсорбентами, имеющими развитую микропористую структуру.

В адсорберах очищаемый газовый поток пронизывает снизу вверх слой адсорбента, который состоит из зернистого материала, например, активированного угля, силикагеля, оксида алюминия, пиролюзита, синтетичекого цеолита и т.п. При этом вредные примеси газа связываются адсорбентом и впоследствии могут быть выделены из него. Как правило, применяются адсорберы с неподвижным (фильтрующим) слоем адсорбента, который меняется после насыщения улав­ливаемым веществом, а также адсорберы непрерывного действия, в которых адсорбент медленно перемещается и одновременно очищает проходящий через него поток. Поверхность адсорбции очень велика: для некоторых материалов она достигает нескольких квадратных метров на грамм (для силикагеля) и даже несколько сотен квадратных метров на грамм - для активированного угля.

Каталитический метод основан на превращении вредных компонентов промышленных выбросов в менее вредные или безвредные вещества в присутствии катализаторов. Иногда образующиеся продукты каталитического превращения остаются достаточно токсичными, однако они легко удаляются из системы в виде утилизируемых в дальнейшем продуктов. Так, хорошо известен жидкофазный каталитический метод окисления диоксида серы, где в качестве катализатора ис­пользуются Fe2+ и Мn2+. В абсорбер, орошаемый водным раствором солей железа или марганца, поступает дымовой газ. Орошающий раствор поглощает из газа SО2.

При этом образуется 20%-ная серная кислота, содержащая ионы железа или марганца. Она может быть использована в сельском хозяйстве как мелиорант солонцов содового засоления.

Аналогичные газы, содержащие диоксид серы, можно окислять на твердофазных катализаторах (оксидах ванадия, железа, меди или хрома, либо полиоксидных катализаторах), предварительно подогрев газы до 400--500°С.

Образовавшийся триоксид серы SО3 затем поглощается водой с получением серной кислоты.

Термический метод предусматривает высокотемпературное сжигание вредных примесей, которые содержатся в технологических выбросах. Его применяют для удаления, например, углеводородов, монооксида углерода и др. Для осуществления дожигания (реакции окисления) необходимо поддержание высокой температуры очищаемого газа и наличие достаточного количества кислорода. [105]

5.8 Правила поведения при наводнении. Гидродинамические аварии

Наводнения - это временное затопление значительной части суши водой в результате действий сил природы. Происходят они по трем причинам.

Во-первых, в результате обильных осадков или интенсивного таяния снега. Такое часто бывает в Екатеринбургской, Кировской, Читинской областях, Приморском и Хабаровском краях, Северо-Кавказском регионе.

Во-вторых, из-за сильных нагонных ветров, которые наблюдаются на морских побережьях, например Каспия, и в устьях рек, впадающих в море (залив). Нагонный ветер задерживает воду в устье, в результате чего повышается ее уровень в реке. Наводнения такого рода характерны для Санкт-Петербурга, населенных пунктов низовья р. Волги и Урала. Дважды 3 и 11 мая 1990 г., в месте впадения р. Урал в Каспийское море высокая морская волна, поднятая сильным ветром, как бы наполнила реку и погнала ее вспять, заливая все вокруг на 20 км. Оказалась затопленной часть Гурьевской области.

В-третьих, подводные землетрясения вызывают возникновение гигантских волн-цунами. Скорость их распространения достигает 400-800 км/час. При приближении к берегу волна образует серию валов со средней высотой 5-10 м. На небольших участках береговой линии, главным образом в заливах типа фьордов, возникают волны, достигающие высоты 20-30 м. Они с колоссальной силой обрушиваются на побережье, смывая все на своем пути.

В России цунами наблюдаются в основном на побережье Камчатки и у Курильских островов. [106]

5.9 Как подготовиться к наводнению

Если Ваш район часто страдает от наводнений, изучите и запомните границы возможного затопления, а также возвышенные, редко затапливаемые места, расположенные в непосредственной близости от мест проживания, кратчайшие пути движения к ним. Ознакомьте членов семьи с правилами поведения при организованной и индивидуальной эвакуации, а также в случае внезапно и бурно развивающегося наводнения. Запомните места хранения лодок, плотов и строительных материалов для их изготовления. Заранее составьте перечень документов, имущества и медикаментов, вывозимых при эвакуации. Уложите в специальный чемодан или рюкзак ценности, необходимые теплые вещи, запас продуктов, воды и медикаменты

При угрозе наводнения проводят предупредительные мероприятия, позволяющие снизить ущерб и создать условия для эффективных спасательных работ. В первую очередь надо информировать население о возникновении угрозы, усилить наблюдение за уровнем воды, привести в готовность силы и средства. Проверяется состояние дамб, плотин, мостов, шлюзов, устраняются выявленные недостатки. Возводятся дополнительные насыпи, дамбы, роются водоотводные каналы, готовятся другие гидротехнические сооружения.

Надо помнить - времени мало и его надо использовать с максимальной пользой.

Если угроза наводнения будет нарастать, то в предполагаемой зоне затопления работа предприятий, организаций, учебных заведений и дошкольных учреждений прекращается. Детей отправляют по домам или переводят в безопасные места. Продовольствие, ценные вещи, одежду, обувь переносят на верхние этажи зданий, на чердаки, а по мере подъема воды и на крыши. Скот перегоняют на возвышенные места.

Если принято решение об эвакуации из опасной зоны, то в первую очередь вывозят детей, детские учреждения и больницы.

Эвакуация - один из способов сохранения жизни людей. Для этого используются все имеющиеся плавсредства: боты, баржи, катера, плоты, машины-амфибии и др.

Входить в лодку, катер следует по одному, ступая на середину настила. Во время движения запрещается меняться местами, садиться на борта, толкаться. После причаливания один из взрослых выходит на берег и держит лодку за борт до тех пор, пока все не окажутся на суше.

Когда плавательнные средства отсутствуют, надо воспользоваться тем, что имеется поблизости под рукой - бочками, бревнами, деревянными щитами и дверями, обломками заборов, автомобильными шинами и другими предметами, способными удерживать человека на воде. Отпускать в такое плавание детей можно только со взрослыми.

Как быть, что делать, если вода застала вас в поле или в лесу. Срочно выходить на возвышенные места, а в лесу забраться на прочные развесистые деревья. [106]

5.10 Как действовать после наводнения

Перед тем, как войти в здание проверьте, не угрожает ли оно обрушением или падением какого-либо предмета. Проветрите здание (для удаления накопившихся газов). Не включайте электроосвещение, не пользуйтесь источниками открытого огня, не зажигайте спичек до полного проветривания помещения и проверки исправности системы газоснабжения. Проверьте исправность электропроводки, трубопроводов газоснабжения, водопровода и канализации. Не пользуйтесь ими до тех пор, пока не убедитесь в их исправности с помощью специалистов. Для просушивания помещений откройте все двери и окна, уберите грязь с пола и стен, откачайте воду из подвалов. Не употребляйте пищевые продукты, которые были в контакте с водой. Организуйте очистку колодцев от нанесенной грязи и удалите из них воду. [106]

5.11 Как действовать в условиях наводнения при гидродинамических авариях

При внезапном затоплении для спасения от удара волны прорыва срочно займите ближайшее возвышенное место, заберитесь на крупное дерево или верхний этаж устойчивого здания. В случае нахождения в воде, при приближении волны прорыва нырните в глубину у основания волны.

Оказавшись в воде, вплавь или с помощью подручных средств выбирайтесь на сухое место, лучше всего на дорогу или дамбу, по которым можно добраться до незатопленной территории.

При подтоплении Вашего дома отключите его электроснабжение, подайте сигнал о нахождении в доме (квартире) людей путем вывешивания из окна днем флага из яркой ткани, а ночью - фонаря. Для получения информации используйте радиоприемник с автономным питанием. Наиболее ценное имущество переместите на верхние этажи и чердаки. Организуйте учет продуктов питания и питьевой воды, их защиту от воздействия прибывающей воды и экономное расходование.

Готовясь к возможной эвакуации по воде, возьмите документы, предметы первой необходимости, одежду и обувь с водоотталкивающими свойствами, подручные спасательные средства (надувные матрасы, подушки).

Не пытайтесь эвакуироваться самостоятельно. Это возможно только при видимости незатопленной территории, угрозе ухудшения обстановки, необходимости получения медицинской помощи, израсходовании продуктов питания и отсутствии перспектив в получении помощи со стороны. [106]

5.12 Как действовать после гидродинамической аварии

Перед тем, как войти в здание, убедитесь в отсутствии значительных повреждений перекрытий и стен. Проветрите здание для удаления накопившихся газов. Не используйте источники открытого огня до полного проветривания помещения и проверки исправности системы газоснабжения. Проверьте исправность электропроводки, труб газоснабжения, водопровода и канализации. Пользоваться ими разрешается только после заключения специалистов об исправности и пригодности к работе. Просушите помещение, открыв все двери и окна. Уберите грязь с пола и стен, откачайте воду из подвалов. Не употребляйте пищевые продукты, которые находились в контакте с водой. [106]

Выводы

1. Проведены комплексные исследования на макро-, микро- и субмикроскопическом уровне структуры наплавленного металла, зоны сплавления и основного металла с шагом 2 мм на глубину 18 мм от поверхности. Изучены послойно наплавочные материалы из стали с мартенситно-аустенитной и перлито-ферритной структурами. В обоих случаях формировалась регулярная структура с твердыми зернами мартенсита или перлита, оконтурованными мягкой фазой из аустенита или феррита.

2. По единому целенаправленному плану изучены структурно-фазовые превращения в объёме многослойных наплавочных материалов с аустенитно-мартенситной структурой, предназначенных для рабочих лопаток смесителей.


Подобные документы

  • Основные способы легирования наплавленного металла при дуговой и электрошлаковой наплавке. Применение и устройство шланговых полуавтоматов. Основные требования техники безопасности при сварке. Устранение доли основного металла в составе наплавленного.

    курсовая работа [1,5 M], добавлен 05.10.2014

  • Условия эксплуатации дробилок агломерата. Исследование износостойкости наплавленного металла при работе в условиях абразивного износа. Разработка технологии наплавки новых и реставрации изношенных звездочек. Контроль качества восстановленной детали.

    курсовая работа [624,3 K], добавлен 11.04.2014

  • Требования к качеству материалов труб для газопроводов. Определение параметров трещиностойкости основного металла. Исследование механических свойств металла трубы опытной партии после полигонных пневмоиспытаний. Протяжённые вязкие разрушения газопроводов.

    дипломная работа [4,7 M], добавлен 24.01.2013

  • Наплавка – нанесение расплавленного металла на поверхность изделия, нагретую до оплавления или до определенно температуры. Изнашиваие поверхности деталей – процесс постепенного изменения размеров тела при трении. Способы легирования наплавленного металла.

    контрольная работа [323,6 K], добавлен 26.11.2010

  • Повышение износостойкости плазменных покрытий из эвтектических самофлюсующихся сплавов, путём введения в состав серийного материала мелкодисперсной добавки диборида титана. Зависимость количества и размера образующихся фаз от количества вводимой добавки.

    статья [1,9 M], добавлен 05.08.2013

  • Классификация инструментальных сталей. Влияние легирующих элементов на структуру и свойства штамповых сталей. Химический состав стали 4Х5МФ1С. Влияние температуры закалки на структуру и твердость материала. Оценка аустенитного зерна и износостойкости.

    дипломная работа [492,5 K], добавлен 19.02.2011

  • Повышение механических свойств стали путем введения в нее легирующих элементов. Классификация стали в зависимости от химического состава. Особенности сварки углеродистых и легированных сталей. Причины возникновения трещин. Типы применяемых электродов.

    курсовая работа [33,2 K], добавлен 06.04.2012

  • Процесс ручной дуговой сварки электродами с основным видом покрытия и автоматической сварки порошковой проволокой в защитных газах. Расчет предельного состояния по условию прочности, времени сварки кольцевого стыка и количества наплавленного металла.

    курсовая работа [167,8 K], добавлен 18.05.2014

  • Описание сварной конструкции (фермы), ее назначение и обоснование выбора материала. Выбор и обоснование методов сборки и сварки, ее режима. Расчёт количества наплавленного металла, расхода сварочных материалов, электроэнергии. Методы контроля качества.

    курсовая работа [512,7 K], добавлен 03.03.2015

  • Закономерности и кинетика мартенситного превращения. Зарождение и рост кристаллов мартенсита. Термоупругое равновесие фаз. Структура порошков после азотирования. Исследование микроструктуры и фазового состава образцов после закалки от разных температур.

    курсовая работа [1,7 M], добавлен 11.10.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.