Анализ эксплуатации скважин установками ЭЦН на одном из участков месторождения Зимнего

Общие сведения о месторождении Зимнее. Рассмотрение геологического строения, сложности продуктивных пластов. Сведения об установках электроцентробежных насосов. Подбор насосов для скважины. Расчет общей безопасности и экологичности данного проекта.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 13.06.2015
Размер файла 2,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Неокомский водоносный комплекс включает в себя водоносные отложения ахской и черкашинской свит, представленные частым чередованием песчаников и алевролитов часто известковистых и аргиллитов плотных. Наибольшую толщину комплекс имеет в центральной части ЗСМБ, достигая 800 м, резко замещается в западном направлении и расчленяется на отдельные пачки (пласты) в восточном. Снизу вверх в комплексе выделяются водоносные горизонты ачимовской толщи и водоносные горизонты пластов групп АС и БС суммарной мощностью до 500 м. Пористость отложений 17-25%, проницаемость - от первых десятков до первых сотен мД. В связи с этим водообильность отложений комплекса различна: от 1,4 м3/сут при Р=7,5 МПа до 622,0 м3/сут при переливах. Водоносные горизонты ачимовской толщи включает в себя несколько проницаемых линзовидных песчаных тел. По В.А.Сулину, воды гидрокарбонатно-натриевого типа с минерализацией от 12,5 до 15,9 г/л. Основными солеобразующими компонентами подземных вод являются ионы хлора (75-95%-экв) и натрия с калием (93-98%-экв). Кальция содержится 1-6%-экв, магния - до 2%-экв, гидрокарбоната - 5-25%-экв. Из микрокомпонентов присутствуют: йод, бор, бром, фтор, из которых только содержание йода, достигающее 28 мг/л, считается промышленным. Газы, растворенные в воде, метанового и азотно-метанового состава с содержанием метана до 89,60%. Ожидаемые пластовые температуры +80 - +89°С. Воды пластов групп АС и БС, по В.А. Сулину, гидрокарбонатно-натриевого типа с минерализацией до 18,8 г/л. Газосодержание колеблется в пределах: для пласта АС4 - 0,3-0,9 м33; для пластов АС5-АС9 - 1,02-1,25 м33; для пласта АС10 отмечается повышенное газосодержание (интервал опробования 2045-2048 м) - 3,02 м33. Следует также отметить и более высокую водообильность пластов группы АС. Пластовые температуры для нижней группы пластов составляют от +70°С до +73°С. Газ, растворенный в воде, метанового состава (метана до 93,69%, азота до 10,60%). Максимальное содержание этана достигает 14,64%, пропана - 5,85%. Перекрывается неокомский водоносный комплекс выдержанной по простиранию толщей аргиллитов алымской свиты.

Апт-альб-сеноманский водоносный комплекс района включает в себя отложения викуловской, ханты-мансийской и уватской свит, представленных песками, песчаниками, алевролитами с прослоями глин (открытая пористость пород до 30%, проницаемость - десятки-сотни мД), хорошо выдержанных по площади и довольно однородных в пределах участка. Толщина комплекса до 700 м. Опробование проводилось на соседних площадях, дебиты достигают 300 м3/сут. Ожидаемые пластовые температуры до +50°С. Воды хлоридно-кальциевого типа (по В.А. Сулину) с минерализацией 11,1-13,0 г/л. Здесь, как и в нижележащем комплексе, 89-99% солевых компонентов приходится на ионы хлора и натрия с калием. Из микрокомпонентов присутствуют йод - до 22,5 мг/л, бром - до 66,3 мг/л, бор - до 50 мг/л, фтор - 0,3 мг/л. Газ, растворенный в воде, метанового состава, т.к. метана содержится до 96,28%, азота - до 0,13%, этана - до 0,22%, пропана - до 0,01%.Воды отличаются малой коррозионной способностью вследствие отсутствия в них сероводорода и кислорода, низкой газонасыщенностью, давлением насыщения - 5,0 МПа. Водоупором комплекса является мощная (порядка 700 м) толща преимущественно глинистых пород верхнемелового и палеогенового возраста, объединенная в турон-олигоценовый водоупорный комплекс.

Верхний гидрогеологический этаж

Приурочен к отложениям олигоцен-четвертичного возраста, представлен песчано-алевритовыми и глинистыми отложениями и характеризуется свободным водообменом. Особенностью этого комплекса является наличие инфильтрации атмосферных осадков, что служит главным фактором в формировании солевого и газового состава этого комплекса. В гидродинамическом отношении комплекс образует единую водонасыщенную толщу, грунтовые и межпластовые воды которой гидравлически связаны между собой и с поверхностными водами озёр, болот и рек. В комплексе выделяются: атлым-новомихайловский водоносный горизонт и водоносные горизонты четвертичных и современных отложений (общей мощностью до 200 м), которые представляют практический интерес для хозяйственно-питьевого водоснабжения буровой. Воды атлым-новомихайловского водоносного горизонта по результатам бурения колонковых скважин напорные, пресные с минерализацией от 0,12 до 1,0 г/л, гидрокарбонатно-натриевые и гидрокарбонатно-натриево-магниевые, мягкие (общая жесткость 1,21-5,38 мг-экв/л), от слабокислых до слабощелочных (рН=6,6-8,0). Водообильность горизонта высокая. Температура вод от +1 до +5°С.

Водоносные горизонты четвертичных и современных отложений приурочены к аллювиальным отложениям (пескам и супесям). Воды безнапорные, уклон группового потока совпадает с уклоном речных долин. Водообильность горизонтов высокая. Воды ультрапресные и пресные с минерализацией 0,02-0,25 мг/л, гидрокарбонатно-кальциево-магниевые.

3. Общие сведения об установках погружных электроцентробежных насосов

3.1 Установка погружного электроцентробежного насоса

Погружные центробежные электронасосы для добычи нефти предназначены для эксплуатации нефтяных, подчас сильно обводненных, скважин малого диаметра и большой глубины, они должны обеспечивать безотказную и длительную работу в жидкостях, содержащих агрессивные пластовые воды с растворенными в них различными солями, газы (в том числе сероводород), механические примеси, преимущественно в виде песка.

Рисунок 5. Принципиальная схема УЭЦН

1 - автотрансформатор; 2 - станция управления; 3 - кабельный барабан; 4 - оборудование устья скважины; 5 - колонна НКТ; 6 - бронированный электрический кабель; 7 - зажимы для кабеля; 8 - погружной многоступенчатый центробежный насос; 9 - приемная сетка насоса; 10 -обратный клапан; 11 -сливной клапан; 12 -узел гидрозащиты (протектор); 13 - погружной электродвигатель; 14 - компенсатор.

Установка ЭЦН состоит из погружного агрегата, оборудования устья, электрооборудования и колонны НКТ.

Погружной агрегат включает в себя электроцентробежный насос, гидрозащиту и электродвигатель. Он (агрегат) спускается в скважину на колонне НКТ, которая подвешивается с помощью устьевого оборудования, устанавливаемого на колонной головке эксплуатационной колонны.

Электроэнергия от промысловой сети через трансформатор и станцию управления по кабелю, прикрепленному к наружной поверхности НКТ крепежными поясами (хомутами), подается на электродвигатель, с ротором которого связан вал центробежного электронасоса. ЭЦН подает жидкость по колонне НКТ на поверхность. Выше насоса установлен обратный клапан, облегчающий пуск установки после ее простоя, а над обратным клапаном спускной клапан для слива жидкости из НКТ при их подъеме.

Погружной насос, электродвигатель и гидрозащита соединяются между собой фланцами и шпильками. Валы насоса, двигателя и гидрозащиты имеют на концах шлицы и соединяются между собой шлицевыми муфтами.

Насос погружают под уровень жидкости в зависимости от количества свободного газа на глубину до 250-300 м, а иногда до 600 м.

Для привода ЭЦН применяют асинхронные двигатели трехфазного тока с короткозамкнутыми роторами в герметичном исполнении, маслозаполненные.

Для предохранения электродвигателя от попадания в его внутреннюю полость пластовой жидкости и компенсации изменения объема масла в двигателе при его нагреве и охлаждении, а также при утечке масла через неплотности служит гидрозащита. Гидрозащита включает в себя протектор и компенсатор.

Электроэнергия подводится к погружному двигателю по специальному трехжильному кабелю. Сечение токопроводящих жил кабеля выбирают в зависимости от мощности погружного электродвигателя и глубины его спуска.

Для подержания необходимого напряжения на зажиме погружного электродвигателя при изменениях потерь напряжения в кабеле и других элементах питающей сети, а также для возможности питания ПЭД с различными номинальными напряжениями при стандартных напряжениях промысловых сетей применяются автотрансформаторы и трансформаторы.

Управление и защита электродвигателей погружных центробежных насосов осуществляется с помощью комплекса аппаратуры, смонтированной в станции управления. Станция управления с помощью специального переключателя дает возможность установить три режима работы управления: ручной, автоматический и программный.

Основными параметрами центробежных насосов являются его подача (в м3/сут) и развиваемый напор (в м). Величина напора характеризует высоту, на которую жидкость может быть поднята данным насосом. Напор насоса и его подача взаимозависимые величины: чем выше развиваемый напор, тем ниже его подача. В паспортных данных насоса обычно указывается значения напора насоса и его подачи при максимальном к.п.д. установки.

3.2 Преимущества и недостатки УЭЦН по сравнению с ШСНУ

На сегодняшний день основной фонд добывающих скважин механизирован и состоит практически из двух видов насосных установок: ШСНУ и УЭЦН.

Установка глубинного штангового насоса состоит из плунжерного насоса, насосных труб, штанг и станка-качалки с электродвигателем, редуктором, устройством преобразования вращательного движения в возвратно-поступательное движение балансира.

Глубинный штанговый насос располагают в скважине на определенной глубине ниже уровня жидкости. Привод насоса устанавливают на поверхности у устья скважины. Движение плунжера осуществляется посредством штанг, свинченных между собою и пропущенным внутри колонны НКТ.

При работе электродвигателя его вращательное движение передается при помощи кривошипа и шатуна балансиру станка-качалки, который совершает возвратно-поступательное движение. Число качаний колеблется от 5 до 15 в минуту. Подача насоса зависит от длины хода, диаметра и числа двойных ходов плунжера.

Это простое в конструктивном исполнении устройство стало самым распространенным способом механической добычи нефти.

Однако, несмотря на относительную простоту конструкции и широкое применение в нефтедобывающей промышленности, установки глубинных штанговых насосов имеют много недостатков. Основным их недостатком является наличие механической связи между станком-качалкой и насосом в виде длинной колонны штанг, которая, не обладая достаточной прочностью и ограничивая передаваемую насосу мощность, снижает надежность и межремонтный срок работы установки и скважины. Под действием знакопеременных нагрузок, возрастающих с увеличением глубины подвески насоса и отбора жидкости, часто происходит аварии в результате обрыва и отвинчивания (отворота) штанг.

Другие недостатки данного способа эксплуатации:

ограниченная производительность;

большая металлоемкость, громоздкость;

наличие вращающихся и движущихся частей на поверхности;

неполная герметизация устья скважины.

Значительно усложняются условия механизированной добычи нефти в связи с ростом обводненности пластов и форсированными отборами жидкости.

Из приведенных выше описаний следует, что скважины, оборудованные УЭЦН, выгодно отличаются от скважин, оборудованных глубинонасосными установками.

Во-первых, погружной электродвигатель, расположенный в скважине, передает насосу более высокую мощность, и как следствие, установки электроцентробежных насосов более производительны и могут осуществлять подъем жидкости с больших глубин, чем установки штангового скважинного насоса.

Во-вторых, на поверхности нет механизмов с движущимися частями, отсутствуют громоздкие металлоемкие станки-качалки и массивные фундаменты, необходимые для их установки. Применение такого оборудования позволяет вводить скважины в эксплуатацию в любой период года без больших затрат времени и средств на сооружение фундаментов и монтаж тяжелого оборудования. Наземное оборудование, ввиду его малых габаритов, небольшого веса и наличия защитных кожухов, в зависимости от климатических условий может быть установлено непосредственно на открытом воздухе, либо в небольшой не отапливаемой будке.

В-третьих, при эксплуатации скважин установками электроцентробежных насосов устье легко поддается герметизации, что позволяет осуществлять сбор и отвод попутного газа.

В-четвертых, простота монтажа установки. Спуск насоса в скважину отличается от обычного спуска насосно-компрессорных труб лишь наличием кабеля и необходимостью его крепления к трубам, сборка же самого электронасоса на устье скважины проста и занимает по нормам времени не более 2-3 ч.

Характерной особенностью установок электроцентробежных насосов является простота обслуживания, экономичность и относительно большой межремонтный период их работы, возможность автоматизации процесса управления электронасосом.

Но установки электроцентробежных насосов обладают и серьезными недостатками:

существенное снижение эффективности их работы при откачке высоковязких жидкостей и водонефтяных эмульсий, а также при повышенном содержании в продукции скважины свободного газа;

размещение погружного электродвигателя в скважине предъявляет высокие требования к надежности гидрозащиты;

наличие длинного кабеля, помещенного в агрессивную среду, предъявляет высокие требования к его изоляции;

ограничение области применения УЭЦН температурой откачиваемой продукции;

сложность погружного оборудования, и как следствие высокая стоимость приобретения и ремонта;

высокие требования по подбору типоразмера и выводу на режим установки.

3.3 Оптимальные условия эксплуатации УЭЦН

Содержание воды в добываемой продукции не более 99%.

Содержание механических примесей не более:

для насосов обычного исполнения - 0,1 г/л;

для насосов износостойкого исполнения - 0,5 г/л.

Содержание сероводорода не более:

для насосов обычного исполнения - 0,01 г/л;

для насосов износостойкого исполнения - 1,25 г/л.

Максимальное объемное содержание газа на приеме насоса не более:

для установок без газосепаратора - 25%;

для установок с газосепаратором - 55%.

Микротвердость частиц не более 5 баллов по Моосу.

Водородный показатель для насосов коррозионностойкого исполнения 6-8,5.

Температура перекачиваемой жидкости не более 90 0С.

Минимальное допустимое снижение изоляции системы "кабель-ПЭД" - 0,03 МОм.

Темп набора кривизны не более:

в зоне прохождения УЭЦН - 12 '/м;

в зоне работы УЭЦН - 18 '/ м.

Зенитный угол в зоне работы УЭЦН не более - 400.

Выводы:

Установки погружного электроцентробежного насоса можно использовать для добычи большого количества жидкости из самых глубоких и наклонно направленных скважин, где нельзя установить другое оборудование. Применение УЭЦН не требует каких-либо сооружений или фундаментов и позволяет вводить скважины в эксплуатацию сразу же после бурения в любых районах в любое время года. УЭЦН не требует постоянного ухода и наблюдения за работой. Добыча жидкости скважинами, оборудованными УЭЦН, обходится значительно дешевле, межремонтный период работы этих скважин больше по сравнению с другими видами механизированной добычи.

4. Расчетная часть

4.1 Выбор типоразмера и глубины спуска УЭЦН в скважину

Для выбора типоразмера установки погружного центробежного насоса и глубины спуска насоса в скважину выполняем следующие операции.

Составляем таблицу исходных данных.

Таблица 6 - Основные параметра пласта, скважины и скважинной продукции.

№п/п

Наименование параметра

Единица измерения

Символ

Значения

1

Пластовое давление, приведенное к верхнему ряду отверстий фильтра эксплуатационной колонны

МПА

Рпл

24,6

2

Температура продукции у верхних отверстий фильтра, практически равная температуре пласта

К

Тф

357

3

Геотермический градиент (средний) горных пород вскрытых скважиной

К/м

G

0,030

4

Расстояние по вертикали от устья скважины до верхних отверстий фильтра

М

Нф

2435

5

Средний угол между осью ствола скважины и вертикалью

Град

13

6

Внутренний диаметр эксплуатационной колонны в месте размещения электродвигателя УЭЦН

М

Dэк

0,152

7

Коэффициент продуктивности скважины

м3(сут*Мпа)

К

21,2

8

Поправка на влияние попадания в призабойную зону пласта технологической жидкости при промывках или глушении скважины на коэффициент ее продуктивности

Безразмерная

0,5

9

Давление в выкидной линии скважины

Мпа

Рл

1,5

10

Технологическая норма отбора жидкости из скважины, приведенная к стандартным условиям (дебит скважины)

м3/с

Qжсу

0,0015

11

Внутренний диаметр колонны НКТ

м

Dнкт

0,062

12

Эквивалентная шероховатость внутренних стенок НКТ

м

Кэ

15*10-6

13

Давление насыщения нефти попутным газом по данным однократного разгазирования нефти при температуре пласта

МПа

Рнас

11,8

14

Газовый фактор нефти

м3/ м3

Гн.нас

70

15

Плотность попутного газа при СУ

кг/ м3

гсу

1,2

16

Объемная доля азота в попутном газе

м3/ м3

Уа

0,025

17

Плотность нефти при СУ

кг/ м3

нсу

869

18

Плотность технологической жидкости для глушения скважины

кг/ м3

тж

1180

19

Объемная доля попутной воды в добываемой из скважины жидкости при СУ

м3/ м3

всу

0,30

20

Плотность попутной воды при СУ

кг/ м3

всу

1011

21

Коэффициент растворимости попутного газа в попутной воде

м3(м3* МПа)

г

0,15

22

Постоянные количества газа растворенного в нефти при ТПЛ

-

-

18,197

0,394

23

Постоянные объемного коэффициента нефти

при ТПЛ

-

-

1,103

0,0199

24

Постоянные плотности насыщенной растворенным газом при ТПЛ нефти

-

-

m

n

819,53

0,089

25

Постоянные вязкости насыщенной растворенным газом при ТПЛ нефти.

-

-

m

n

0,054

0,199

1. Определяем значение забойного давления, соответствующего заданной технологической норме отбора жидкости, по уравнению (94) [2]:

Рзаб = Рпл - 86400* (МПа)

2. Рассчитываем и строим методом снизу вверх две кривые: кривую Р(Lэк) изменения давления по длине эксплуатационной колонны скважины в пределах от Рзаб до Рл, где Рл - давление в выкидной линии скважины, и кривую bг(Lэк) изменения объемного расходного газосодержания в скважинной продукции по длине эксплуатационной колонны в пределах того интервала давлений.

3. Разбиваем интервал давлений Рзаб - Рл на 6 ступений, руководствуясь следующими рекомендациями: если Рзаб > Рнас, то за первую ступень берем разность

DР1 = Рзаб - Рнас,

за DР2, DР3 и т.д. принимаем постепенно уменьшающиеся значения перепада давления. Для заданных значений исходных параметров берем следующий ряд ступений давления в МПа:

DР1 = Рзаб - Рнас = 18,66 - 11,8 = 6,66;

DР2 = 2,5; DР3 = 1,0; DР4 =0,75;DР5 =0,5 и DР6 =0,25.

4. Вычисляем значения среднего абсолютного давления для каждой ступени по уравнению (95):

;

получаем значения в МПа: Рср1=15,33;

Рср2= 10,75; Рср3= 9,0; Рср4= 8,13; Рср5= 7,50; Рср6 = 7,13.

5. Вычисляем длины участков DLi (i = 1,2…6) эксплуатационной колонны, соответствующие 1-й, 2-й и т.д. ступеням давления, по формуле (92) [2]. При расчете DL1 учитываем, что Рср1 > Рнас, поэтому jг = 0. Расчет DL1 ведем в следующем порядке:

находим по формуле (12) [2] среднюю плотность нефти rн1:

(кг/м3);

находим значение bн1 по формуле (11):

вычисляем bвж1 по (70):

вычисляем среднюю скорость смеси по (17) и (80), учитывая, что Qг = 0, bв = 1,

S=/4*Dэк2 = 3,14 / 4 *0,1522=0,0181 (м2):

wсм. 1 = 0,0015*[1,16*(1-0,30)+0,30] / 0,0181 = 0,097 (м/с);

вычисляем по (23) [2] значение первой критической скорости wкр1 потока, учитывая, что Dг =Dэк =0,152 м:

(м/c);

определяем тип и структуру смеси. Так как bвж1=0,270 < 0,5 и wсм1<wкр1, согласно таблице 1 [2] смесь относится к типу Н/В и имеет капельную структуру;

находим в первом приближении длину участка эксплуатационной колонны DL1, соответствующую перепаду давления DР1 по (92), приняв приближенно jв1= bвж1,

jн1= 1-bвж1, rв1 = rвсу = 1011 кг/м3 ;jн1= 1-bвж1 = 1 - 0,270 = 0,73,

(м);

вычисляем расстояние по оси скважины от ее устья до середины первого участка по формуле (96) [2]:

(м);

вычисляем среднюю температуру потока на глубине L1 по (63) [2]:

вычисляем по (33) [2] поверхностное натяжение sнв между нефтью и попутной водой, определив предварительно значения sвг по (34) и sнг по (35) при Р=Рср1=15,33 МПа и Т=345 К:

вычисляем истинную долю внутренней фазы (нефти) в потоке по (27), полагая, что rв1 = rвсу и что, согласно (17), w пр.н1=Qжсу*(1-bвсу)/S:

вычисляем истинную долю воды в потоке по (29): jв1 = 1- jн1= 1- 0,397=0,603;

вычисляем по (92), пренебрегая членом с lсмi, значение DL1 во втором приближении:

Переходим к расчету значения DL2. Поскольку Рср2 = 10,75 < Рнас, на участке DL2 колонны в отличие от участка DL1 течет газожидкостная смесь, поэтому jг2 > 0 и значение его надо определить.

находим, как и при расчете DL1, значения: rн2= 663 кг/ м3; bн2= 1,15; bвж2 = 0,273;

вычисляем объемные расходы нефти и воды:

Qн2=0,0015* *(1-0,30)*1,15= = 0,00127 м3/с;

QВ2=0,03*0,0015 = 0,00047 м3

- величина, неизменная вдоль ствола скважины, поскольку приближенно можно принять bв=1;

вычисляем средние значения приведенных скоростей нефти и воды:

wН2 =0,00127/0,0181=0,0705 (м/с);

wВ2 =0,00047 / 0,0181 = 0,0261 (м/с);

вычисляем приближенно длину участка эксплуатационной колонны, соответствующую DР2, положив rн2= 663 кг/ м3; rв2= 1011 кг/ м3; jг 2 = 0, jн2 = jн1 = 0,397, jв2 = jв1 = 0,603:

;

вычисляем расстояние L2 от устья до середины второго участка колонны по (96):

(м);

вычисляем среднюю температуру потока на глубине L2 по (63) [2]:

;

вычисляем значение коэффициента сверхсжимаемости попутного газа, для чего находим сначала по (57), (61), (59), (60) [2]:

По Рпр2 и Тпр2 выбираем из (58) выражение для расчета коэффициента сверхсжимаемости углеводородной части попутного газа и, подстав в него значения Рпр2 , Тпр2, находим:

Далее вычисляем значение коэффициента сжимаемости азотной части попутного газа по (62):

а по (58) - значение z2:

Вычисляем объемный расход газа через среднее сечение участка DL2 по (79), положив Кс=0, Кфн=Кфв=1, приравняв 0 слагаемое с сомножителем aг, поскольку bвсу Ј 0,65, и подставив вместо Гн его выражение из (10):

вычисляем значение приведенной скорости газа:

wпр.г2= 0,0000707/0,0181=0,004 м/с;

вычисляем скорость смеси по (17):

wсм = Swпр.ф = 0,004+0,0697+0,0261=0,0998 м/с;

находим значение первой критической скорости wкр1:

(м/c);

определяем тип структуры смеси по таблице 2. Так как bвж2 < 0,5 и wсм2< wкр1, смесь относится к типу (Н+Г)/В и имеет пузырьково-капельную структуру;

вычисляем значения поверхностного натяжения между фазами:

вычисляем вязкость внешней фазы (воды) потока по (39):

вычисляем истинную долю газа в смеси приняв в (36) sжг = sвг2,

mж = mв2, поскольку поток трехфазный типа (Н+Г)/В капельно-пузырьковой структуры:

, где sвг = 0,068 и mв= 0,0011,

Тогда

вычисляем истинную долю нефти в жидкости трехфазного потока по (27), поскольку внутренней фазой из двух жидкостей является нефть:

находим долю воды в жидкой части потока по (29):

jв2 = 1- jн2= 1- 0,443=0,557;

вычисляем истинное водосодержание по (43) в водонефтегазовом потоке:

jв = jвж*(1-jг) = 0,557*(1-0,013) = 0,550;

jн = jнж*(1-jг) = 0,443*(1-0,013) = 0,437;

делаем проверку результатов оценки значений истинных долей фаз в трехфазном потоке: сумма долей фаз должна быть равна 1:

0,013 + 0,437 + 0,550 = 1,000;

вычисляем значение плотности попутного газа при Рср2, Т2 по (56):

;

вычисляем длину второго участка эксплуатационной колонны по (92):

вычисляем объемную расходную долю попутного газа в потоке на участке 2 эксплуатационной колонны по (22):

Далее вычисляем значения DL3…DL6 и bг3…bг6 аналогично вычислению DL2 и bг2

Результаты расчетов кривых Р(Lэк) и bг(Lэк) представлены в приложении 1, в которой: - давление в верхнем сечении i-го участка эксплуатационной колонны.; - расстояние от устья до верхнего сечения i-го участка колонны по ее длине; Lb=0 - расстояние от устья до середины участка, где bг=0; Lbi - расстояние от устья до середины i-го участка, где bг>0.

По значениям Рi, Lpi из приложения 1 строим зависимость Р(Lэк) - линия 1 на рисунке 1, а по значениям bгi, Lb=0 и Lpi строим зависимость bг(Lэк) - линия 2 на том же рисунке.

Задаемся значением объемного расходного газосодержания у входа в насос в пределах 0,15…0,25, т.к. всу< 0,5 и определяем по кривой 2 рисунка 1 расстояние Lн от устья скважины до сечения эксплуатационной колонны, в котором газосодержание равно принятой величине, а по кривой 1 - давление у входа в насос в стволе скважины на найденной глубине. Пусть гвх = 0,15. Тогда Lн = 1050 м и Рвх = 5,5 МПа.

Вычисляем обводненность жидкости у входа в насос, найдя предварительно значение объемного коэффициента нефти при Рвх = 5,5 МПа:

6. Проверяем, выполняется ли неравенство (93) то есть условие бескавитационной работы насоса. Для этого вычисляем по (93) значение (гвх)н, поскольку ввх< 0.5 и газожидкостная смесь относится к типу (Г+В)/Н:

сопоставляем найденное значение с гвх = 0,277. Так как (гвх)н >гвх, приходим к заключению, что насос в скважине не будет кавитировать и газосепаратор перед насосом ставить нет необходимости.

7. Вычисляем по (74) значение коэффициента сепарации свободного газа перед входом продукции в насос при работе его на глубине Lн = 1050 м, принимая Кс=0. Так как ввх<0,5, берем wдр.г= 0,02 м/с.

Принимаем, что для отбора заданного дебита жидкости из скважины диаметром 0,152 м надо использовать насос группы 5А. Тогда диаметр всасывающей сетки насоса, согласно таблице в п.4.7 [2, стр.28], будет Dсн=0,103 м.

Вычисляем значения приведенной скорости жидкости в зазоре между эксплуатационной колонной скважины и насосом перед всасывающей сеткой его:

Вычисляем значение Кск:

Кс = Кск = 0,186.

8. Вычисляем по (75) [2] действительное давление насыщения жидкости в колонне НКТ,

приняв Кфн = Кфв = 1:

методом последовательной итерации находим Рд.нас=10,562 с погрешностью 10-5.

9. Рассчитываем методом сверху низ кривую Р(Lнкт) изменения давления вдоль колонны НКТ в интервале от устьевого сечения ее (Lнкт= 0) до глубины Lн=1050 м, найденной в п. 3.4.

10. Расчет Р(Lнкт) в основном аналогичен расчету кривой Р(Lэк) и отличается от него необходимостью учета потерь давления на преодоление гидравлического трения в НКТ, то есть ведется на базе уравнения (92), но с учетом второго слагаемого в знаменателе его правой части, а также нагрева продукции, поступающей в колонну НКТ, теплом, выделяемым двигателем и насосом УЭЦН.

11. Разбиваем перепад давлений Рд.нас - Ру = 10,562 - 1,5 = 9,62 МПа на 4 ступени:

Р1 = 1,9; Р2 = 2,1; Р3 =2,3; Р4 =2,5 и находим значения среднего давления для каждой ступени: Рср1=2,45; Рср2= 4,45; Рср3= 6,65; Рср4= 9,05.

Вычисляем значения н1 по (12), bн1 по (11) и вж1 по (70) для 1-го участка колонны НКТ, примыкающего к устью скважины:

,

- вычисляем средние значения объемных расходов и приведенных скоростей нефти и воды для 1-го участка НКТ:

Qн2=0,0015*(1-0,30)*1,12 = 0,00118 м3/с; QВ2=0,3*0,0015 = 0,00045м3

wН2 =0,00114 / 0,003018 =0,377 (м/с); wВ2 =0,00045/ 0,003018 =0,0149 (м/с);

- вычисляем приближенно длину первого участка колонны НКТ, соответствующего перепаду Р1, положив н1 =757 кг/м3; в1=1011 кг/м3, вж1=0,276, bн1 = 1-вж1 = 1-0,276 = 0,724; wг1 = 0, wсм1 = 0, то есть допустив, что колонна НКТ на первом участке заполнена неподвижной смесью нефти и воды с водосодержанием вж1=0,276. Подставляем перечисленные данные в (92) и получаем:

вычисляем расстояние от устья до середины участка L1:

Определяем приращение температуры потока продукции за счет нагрева ее теплом двигателя и насоса по (67). Для этого предварительно оцениваем значения входящих в (67) величин Н, Сср, д, н, а также вжн и жн, используемых при вычислении Н.

Находим приближенно водосодержание в насосе по (70) при bн = bн.нас:

Вычисляем приближенно напор насоса при работе его в скважине по (68):

вычисляем приближенно среднюю теплоемкость жидкости в насосе по (71):

,

где Сн -средняя теплоемкость нефти, равная 2000 Дж/(кг*К), Свсу - средняя теплоемкость пластовой воды, равная 4380 Дж/(кг*К).

Значение д принимают равным номинальному КПД двигателя, который должен быть спущен в скважину вместе с насосом (двигатели диаметром 117 мм, комплектуемые с насосами группы 5А, имеют д= 0,81.

Для оценки значения КПД насоса при работе в скважине сначала определяем значение номинального КПД насоса группы 5А, номинальная подача которого не меньше (равна или несколько больше) среднего расхода продукции через насос, равного приближенно величине:

Qжн =130*(1,103*120,0199*(1-0,27)+1*0,27) = 145,1 м3/сут.

Из справочника [2] находим ближайшую по подаче установку группы 5А - ЭЦН5А - 250 с КПД насоса 0,6. Затем находим приближенно кажущуюся вязкость продукции в насосе. Для этого сначала определяем приближенно вязкость нефти в насосе, являющейся внешней фазой проходящей через него продукции, при температуре пласта по (13):

Па*с

Но поскольку температура продукции в насосе ниже Тпл и равна приближенно температуре в стволе скважины перед входом в насос:

вносим поправку на вязкость нефти по номограмме Льюиса и Сквайрса [2, рисунок 4, стр.22] Вязкость нефти в насосе при Т = 318,75 К будет: нн 0,052 Па*с.

Так как вжн=0,270 <0,5, то значение кажущейся вязкости определяем по (40):

Па*с

Находим по (73) значение параметра В, учитывающего влияние вязкости жидкости на КПД насоса:

Так как В< 47950, КПД насоса при работе в скважине, согласно (72), будет:

Теперь по (67) находим:

Вычисляем по (65) температуру потока в НКТ на середине 1-го участка, то есть на глубине L1 = 120,3 м:

Вычисляем значение коэффициента сверхсжимаемости попутного газа в НКТ на глубине Lнкт1=120,3 м, аналогично как в п.1.2.3 [2]:

Находим zу по соответствующей формуле из (50) по Рпр1 и Тпр1:

Далее вычисляем значение коэффициента сжимаемости азотной части попутного газа по (62):

,

а по (58) - значение z2:

Вычисляем объемный расход газа через среднее сечение 1-го участка колонны НКТ по (79) без слагаемого с сомножителем г (поскольку всу< 0,65), положив Ккф=Кфв=1, Кс=0,186, Рвх=5,5 МПа:

Вычисляем значение приведенной скорости газа, скорости жидкости и скорости ГЖС в среднем сечении 1-го участка НКТ:

wпр.г1= 0,0011 / 0,003018 =0,368 (м/с);

wпр.ж1= 0,391 + 0,2290,149 = 0,540 (м/с);

wсм1 = 0,368 + 0,540 = 0,909 (м/с);

Вычисляем значения 1-й и 2-й критических скоростей потока в среднем сечении 1-го участка:

Определяем по приложению 2 тип и структуру потока нефтеводогазовой смеси через среднее сечение 1-го участка НКТ. Так как вж1< 0,5, wсм1 >wкр2, Рср1> 0,7МПа, смесь относится к типу (В+Г)/Н и имеет эмульсионно-пузырьковую структуру. Вычисляем значение поверхностного натяжения между фазами ГЖС

Вычисляем по (13) значение вязкости нефти при Рср1=2,45 МПа и Тпл=357К:

Пересчитываем это значение на Т1=295,1 К по номограмме Льюиса и Сквайрса [2, рисунок 4, стр.22]. Так как снижение температуры нефти Т1 = 357 - 295,1 = 61,9 К, то вязкость нефти при 295,1 К будет н1 = 0,068 Па*с.

Вычисляем значение параметра А по (42) и (25):

,

где ,

тогда

Находим кажущуюся вязкость жидкой части ГЖС по (41) т.к. А > 1:

Вычисляем истинное газосодержание г1 по (36):

Вычисляем истинную долю в жидкой части ГЖС на 1-ом участке колонны НКТ по (30) [2], поскольку внешней фазой потока является нефть:

Находим долю нефти в жидкости по (32):

нж1 = 1 - 0,266 = 0,734.

Вычисляем истинное водосодержание по (43) и нефтесодержание по (44) в ГЖС на участке 1:

в = вж*(1-г) = 0,266*(1-0,361) = 0,170;

н = нж*(1-г) = 0,734*(1-0,361) = 0,469;

делаем проверку результатов оценки значений истинных долей фаз в трехфазном потоке: сумма долей фаз должна быть равна 1:

0,361 + 0,170 + 0,469 = 1,000.

Вычисляем значение плотности попутного газа при Рср1=2,45 МПа и Т1=295,1 К по (56)

Оцениваем кажущуюся вязкость ГЖС в среднем сечении 1-го участка НКТ, принимая ее равной кажущейся вязкости смеси нефти и воды в том же сечении, то есть гжс1=ж1=0,227 (Па*с).

Вычисляем значение числа Рейнольдса потока ГЖС по (48):

Определяем значение см1 по (49), поскольку полученное значение Reсм1 меньше 2000:

Вычисляем значение L1 по (92):

12. Рассчитываем значения L2L4 колонны НКТ аналогично расчету L1 и определяем расстояние по оси скважины от ее устья до сечения НКТ, в котором давление равно Рд.нас. Эта длина оказывается 680,5 м.

13. Определяем длину участка L5 колонны НКТ от сечения, где давление равно Рд.нас, до глубины спуска насоса Lн = 1050 м. L5 = 1050 - 680,5 = 369,5 м.

14. Вычисляем перепад давления на длине L5 НКТ, учитывая, что на этом участке течет водонефтяная смесь, не содержащая свободного газа, г5 = 0, что можно принять: bн5 = bн.нас, н5 = н.нас и что вязкость нефти н5 отличается от вязкости нпл при Тпл. Расчет выполняем аналогично расчету участка L1 эксплуатационной колонны.

Результаты расчетов кривой Р(Lнкт) представлены в приложении 2, в которой Li - расстояние по оси скважины от устья до нижнего сечения i-го участка НКТ; Рi - давление в этом сечении.

15. Строим кривую Р(Lнкт) - линия 3 на рисунка 1 по значениям Рi, Li таблицы 3 и экстраполируем ее в область L > Lн = 1050 м в расчете на возможность спуска насоса в процессе дальнейшего подбора УЭЦН к скважине на глубину, большую 1050 м.

16. Определяем давление в НКТ на выходе из насоса по кривой 3 рисунка 1 и давление Рс, которое требуется для работы системы скважина - УЭЦН с заданным дебитом жидкости:

Рвых = 13,43, тогда Рс = Рвых - Рвх = 13,43 - 5,5 = 7,93 МПа.

17. Вычисляем среднюю температуру продукции в насосе по (64):

18. Вычисляем среднеинтегральный расход жидкой части продукции через насос по (88), принимая Кфн = 0,9; Кфв = 0,1; Рд.нас = 10,562 МПа:

19. Вычисляем по (89) среднеинтегральный расход свободного газа через насос.

Сначала находим значения А,В и zcр в насосе:

,

Значение zcр определяем по (58) при Тср.н= 299,07 и Рвх = 5,5 МПа и у.отн = 0,996.

Находим zу по соответствующей формуле из (50) по Рпр1 и Тпр1:

Далее вычисляем значение коэффициента сжимаемости азотной части попутного газа по (62):

а по (58) - значение z2:

Подставив значения А, В и zср, в (89) получаем:

20. Вычисляем среднеинтегральный расход ГЖС через насос по (85):

Qср = 0,00188 + 0,000028 = 0,0019 (м3/с).

21. Вычисляем массовый расход через насос по (76):

22. Вычисляем среднеинтегральную плотность продукции в насосе по (90):

23. Вычисляем напор, который необходим для работы системы скважина - УЭЦН с заданным дебитом Qжсу = 0,0015 м3/с по (91):

24. Вычисляем среднеинтегральное газосодержание в насосе:

.

25. Определяем кажущуюся вязкость жидкости и ГЖС в насосе при Тср.н=299,07 К.

Поскольку вязкость нефти, являющейся внешней фазой продукции в насосе, Тпл=357 К равна 0,0329 Па*с (согласно п.1.9.1), то при Тср.н=299,07 К, пользуясь графиком Льюиса и Сквайрса, находим нн 0,067 Па*с. Кажущаяся вязкость жидкой части так же как и ГЖС в насосе, будет:

(Па*с);

26. Вычисляем значение коэффициента КQдля учета влияния вязкости на подачу по формуле (97):

и напор по формуле (98):

27. Вычисляем значения подачи и напора, которые должны иметь насос при работе на воде, чтобы расход ГЖС был 0,0019 м3/с , а напор 972 м:

,

,

28. Выбираем по Qв, Нвс, Dэк и каталогу [3] типоразмер УЭЦН (шифр установки), насос который удовлетворял бы условия (2), (3) [2]. Такой установкой является УЭЦН5А-250-1700 (оптимальная подача насоса 250 м3/сут, номинальный напор 1700 м), так как

и

Нвс = 1270,5 1460 - 133,5 =1326,5,

где 133,5 = Н - величина, на которую необходимо переместить по вертикали сверху вниз параллельно самой себе паспортную кривую Н - Q насоса, чтобы получить вероятную напорно-расходную характеристику работы на воде (4).

В комплект выбранной установки, кроме насоса, входят электродвигатель ПЭД90- 117АВ5 номинальной мощностью 90 кВт и допустимой температурой охлаждающей жидкости 70 0С, кабель КПБК 3х16, трансформатор ТМПН-160/3-73У1 и станция управления ШГС5804-49АЗУ1.

29. Определяем вероятное значение КПД насоса при работе на воде с подачей 245,1 м3/сут:

30. Находим КПД выбранного насоса при работе в скважине.

Предварительно оцениваем значение коэффициента К, учитывающего влияние вязкости проходящей через насос продукции на КПД насоса, по формуле:

Так как согласно (73):

То

Поэтому КПД насоса, работающего в скважине, будет:

н.см = 0,385 * 0,544 = 0,209;

31. Вычисляем мощность, которую будет потреблять насос при откачке скважинной продукции, по формуле (99):

где Nгс - мощность, потребляемая газосепаратором т.к. его в УЭЦН нет, то надо принять Nгс = 0.

32. Сопоставляем значение Nн из п.1.25 со значением номинальной мощности штатного двигателя Nдш установки, выбранной в п.1.22. Если Nдш>Nн и разность N= Nдш - Nн не больше одного шага в ряду номинальных мощностей погружных электродвигателей типа ПЭД, которые могут быть спущены в скважину вместе с выбранным насосом, оставляем штатный. В противном случае берем такой ближайший типоразмер ПЭД, номинальная мощность которого, при прочих равных условиях, не меньше 1,3 Nн, где 1,3 - коэффициент запаса мощности двигателя в расчете на увеличение его ресурса, выработанный практикой эксплуатации УЭЦН:

N = Nдш - Nн = 90 - 65,5 = 24,5 (кВт).

33. Определяем по табл. 6 [2 стр.58] минимально допустимую скорость wохл (м/с) потока в зазоре между стенкой эксплуатационной колонны скважины и корпусом двигателя и вычисляем по формуле (100):

Qохл - минимально допустимый отбор жидкости из скважины (м3/сут) с точки зрения необходимой интенсивности охлаждения ПЭД. Согласно табл.6 [2 стр.58] для ПЭД90 -117АВ5 wохл = 0,75 м/с.

34. Вычисляем глубину спуска насоса, исходя из возможности освоения скважины (в частности, после ее промывки или глушения технологической жидкостью) по формуле (101):

,

где Нпогр - минимально допустимое погружение (по вертикали) приемной сетки насоса под уровень жидкости в период освоения скважины, м (по рекомендации [2. стр59] принимаем = 100 м). Рмтр - давление в устьевом сечении межтрубного пространства скважины, которое можно принять равным давлению Рл в выкидной линии скважины, увеличенному на 0,1 МПа, т.е. Рмтр Рл + 0,1 = 1,5 + 0,1 = 1,6 МПа; К - коэффициент продуктивности скважины м3/(сут.МПа);; - поправка на уменьшение К вследствие загрязнения призабойной части пласта попавшей в нее технологической жидкостью при промывке или глушении скважины. Ну.осв - расстояние в м (по вертикали) от устья скважины до уровня жидкости в ней в период освоения, определяемое по формуле (102):

Тогда

35. Сопоставляем значения предварительно принятой в п.1.4 глубины спуска Lн насоса и длины Lосв из п.1.28. т.к.

Lн / Lосв = 1050 / 1991,3 = 0,52 < 1,

то необходимо увеличить глубину спуска насоса до

Lн = (1+0,02)* Lосв = 1991,3 - 2031,1.

Выбираем Lн = 2000 м.

(Lн / Lосв = 2000 / 1991,3 = 1,004 > 1).

36. Вычисляем напор, который должен располагать подбираемый к скважине насос в период ее освоения при работе с дебитом Qохл из п.1.27 по формуле (103):

где Нсопр - потеря напора в м на преодоление трения и местных сопротивлений на пути движения жидкости от напорного патрубка насоса до выкидной линии скважины, определяемые по формуле:

,

Где

где тж = 0,0015 Па*с - вязкость технологической жидкости.

Подставляя соответствующие величины в (103), получаем:

37. Определяем по паспортной характеристике насоса его напор НQохл при подаче Qохл и проверяем, выполняется ли условие (104):

где Н - поправка к паспортному напору из п.38.

По паспортной характеристике насоса ЭЦН5А - 250 -1700 находим НQохл =1950 м, при Qохл = 172,4 м3/сут.

Подставив соответствующие значения в (104), получаем:

то есть типоразмер насоса, выбранный в п.28 удовлетворяет неравенству (104).

38. Определяем для новой глубины спуска насоса Lн из п.35 новые значения: Рвх и гвх по Lосв и кривым 1 и 2 рисунка 1; ввх, как п.4; гвх, как в п.5; Кс, как в п.6; Рд.нас, как в п.7; рассчитываем и строим новую кривую Р(Lнкт), как в п.8; находим Рвых и Рс, как в п.9; Тн.ср., как в п.10, но с учетом уточненного н.ср из п.15; Qжср, как в п.11; Qг.ср, как в п.12; Qср, как п.13; m, как в п.17; см, как в п.18.

Выполнив соответствующие операции, находим: Рвх = 14,3 МПа; ввх = 0,269; гвх = 0,324; Кс = 0,197; Рд.нас=12,2 МПа; Рвых=22 МПа; Рс = 7,7 МПа; Тн.ср. = 327,7 К; н.ср = 849,2 кг/м3; HС =1110,3 м; Qжср = 0,0020 м3/с; Qг.ср = 0,000043 м3/с; Qср = 0,002043 м3/с; m = 1,438; см = 0,0376 Па*с.

39. Уточняем значения подачи Qв и напора Нвс выбранного ранее насоса при работе его на воде в режиме, соответствующем значению Qср и Нс из п.26.

Для этого:

39.1. Определяем значение коэффициента быстроходности рабочей ступени выбранного насоса по табл.6* [2 стр.62].

Для насоса ЭЦН5А - 250 - 1700 nS = 167.

39.2. Вычисляем значение модифицированного числа Рейнольдса потока в каналах ступеней центробежного насоса по формуле (105):

,

где - подача насоса (м3/с) в оптимальном режим работы на воде по паспортной характеристике;

Подставив соответствующие величины, получаем:

39.3. Определяем относительную подачу насоса , где Qв берем из п.27., а с паспортной характеристик насоса.

.

39.4. Вычисляем значение КH-Q для найденных выше Reц и по формулам (106) и (107):

.

Из полученных двух значений берем наименьшее, а именно КH-Q = 0,909.

39.5. Определяем уточненное значение подачи Qв и напора Нвс при работе насоса на воде, соответствующее Qср:

39.6. Проверяем, удовлетворяют ли найденные в п.3.33.5. значения Qв и Нвс неравенствам (2) и (3):

; 1222 1700 - 162 = 1538.

Так как упомянутые неравенства удовлетворяются, переходим к п.40

40. Вычисляем значения коэффициента Кдля найденных выше Reц и по формулам (108) и (109):

и берем наименьшее: К = 0,618.

41. Определяем разность между давлением, которое может создать насос с номинальным числом ступений при работе в скважине на установившемся режиме с дебитом Qжсу, то есть при среднеинтегральном расходе скважинной продукции через насос Qср из п.38 и давлением, достаточным для работы системы скважина - УЭЦН на этом режиме, (МПа), по формуле:

,

где Нвн = 1700 - 162 = 1538 м; Нвс = 1222 м.

42. Вычисляем значение отношения , Рс из п.38.:

Т.к. 0,163>0,05, давление, которое насос способен развивать при работе со среднеинтегральной подачей 193,5 м3/сут в скважине, намного превышает требуемое, благодаря чему действительный дебит жидкости из скважины, если не принять необходимых мер, может оказаться существенно больше заданного.

43 Выбираем один из двух возможных способов уменьшения подачи жидкости из скважины подобранным выше насосом до значения QЖСУ : 1) уменьшение числа ступеней в насосе, 2) установку в начале выкидной линии скважины устьевого штуцера.

44. Принимаем решение использовать первый способ. Определяем число ступеней по формуле,

которое надо из насоса удалить, чтобы напор насоса с меньшим числом ступеней стал равным напору, требуемому скважиной.

ZН - номинальное число ступеней в насосе. (ZН = 300).

Примечание: При корректировке напора насоса уменьшением числа ступеней, необходимо следить за тем, чтобы напор насоса с уменьшенным числом ступеней, соответствующий подаче QОХЛ = 172,4 м3/сут, по его паспортной характеристике, удовлетворял неравенству после подстановки в него вместо HQОХЛ - H величины:

где HQОХЛ - напор насоса с номинальным числом ступеней по паспортной характеристике при QОХЛ = 172,4 м3/сут;

H - разница между паспортным и вероятными напорами насоса при номинальном числе ступеней ZН = 300;

ZН - номинальное число ступеней в насосе.

Подставив соответствующие величины, получаем:

Подставляя H/QОХЛ, находим:

то есть неравенство удовлетворяется.

45. Определяем мощность на валу насоса при его работе на установившемся режиме системы скважина - УЭЦН для проверки соответствия выбранного в п.28. или п.32 погружного электродвигателя уточненным значениям потребляемой насосом мощности.

45.1. Вычисляем мощность, потребляемую насосом при работе системы скважина - УЭЦН в установившемся режиме по формуле (113):

,

где н - КПД насоса при работе с подачей Qв из п.1.33.5 по вероятной водяной характеристике, определяемый по формуле (114):

45.2. Сопоставляем значение Nн из п.3.40.1. со значением номинальной мощности штатного двигателя Nдш:

Таким образом, штатный двигатель ПЭДС - 90-117АВ5, может быть использован для привода насоса 5А - ЭЦН5А - 250.

Таблица 7 - Результаты расчетов к построению кривых Р (Lэк) и г (Lэк)

Параметр

Единица измерен.

№ ступени, считая от забоя скважины.

1

2

3

4

5

6

Pi

МПа

6,66

2,50

1,00

0,75

0,50

0,25

Pcpi

МПа

15,3

10,8

9,0

8,1

7,5

7,1

Li

м

805,7

304,3

120,5

89,8

59,2

29,5

bгi

м3/м3

0

0,039

0,073

0,098

0,130

0.167

Pi

МПа

12,00

9,50

8,50

7,75

7,25

7,00

Lpi

м

1693,5

1389,2

1268,7

1178,9

1119,7

1090,2

Lb=0

м

2064,2

-

-

-

-

-

Lbi

м

-

1541,3

1328,9

1223,8

1149,3

1104,9

Таблица 8 - Результаты расчетов к построению кривой Р1 (Lнкт)

Параметр

Единица

№ ступени НКТ.

измерен.

1

2

3

4

5

P

МПа

1,90

2,10

2,30

2,50

3,13

Рср

МПа

2,45

4,45

6,65

9,05

11,87

L

м

188,4

187,0

160,1

145,0

369,5

Li

м

188,4

375,4

535,5

680,5

1050,0

Pi

МПа

3,40

5,50

7,80

10,30

13,43

Рисунок 6 - График зависимостей Р1 (Lнкт), Р (Lэк) и г (Lэк)

5. Безопасность и экологичность проекта

5.1 Защитное заземление

Защитное заземление -- это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.

Цель защитного заземления -- снизить до безопасной величины напряжение относительно земли на металлических частях оборудования, которые не находятся под напряжением, но могут оказаться под напряжением вследствие нарушения изоляции электроустановок. В результате замыкания на корпус заземленного оборудования снижается напряжение прикосновения и, как следствие,- ток, проходящий через тело человека, при его прикосновении к корпусам.

Применяется также заземление электрооборудования, зданий и сооружений для защиты от действия атмосферного электричества.

Защитное заземление применяется в трехфазных трехпроводных сетях напряжением до 1000 В с изолированной нейтралью, а в сетях напряжением 1000 В и выше -- с любым режимом нейтрали.

Заземляющее устройство -- это совокупность заземлителя и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

Различают естественные и искусственные заземлители.

Для заземляющих устройств в первую очередь должны быть использованы естественные заземлители:

§ водопроводные трубы, проложенные в земле;

§ металлические конструкции зданий и сооружений, имеющие

§ надежное соединение с землей;

§ металлические оболочки кабелей (кроме алюминиевых);

§ обсадные трубы артезианских скважин.

Запрещается в качестве заземлителей использовать трубопроводы с горючими жидкостями и газами, трубы теплотрасс.

Естественные заземлители должны иметь присоединение к заземляющей сети не менее чем в двух разных местах.

В качестве искусственных заземлителей применяют:

§ стальные трубы диаметром 3-5 см, толщиной стенок 3,5 мм,

§ длиной 2-3 м;

§ полосовую сталь толщиной не менее 4 мм;

§ угловую сталь толщиной не менее 4 мм;

§ прутковую сталь диаметром не менее 10 мм, длиной до 10 м и более.

Для искусственных заземлителей в агрессивных почвах (щелочных, кислых и др.), где они подвергаются усиленной коррозии, применяют медь, омедненный или оцинкованный металл.

В качестве искусственных заземлителей нельзя применять алюминиевые оболочки кабелей, а также голые алюминиевые проводники, так как в почве они окисляются, а окись алюминия -- это изолятор.

Каждый отдельный проводник, находящийся в контакте с землей, называется одиночным заземлителем, или электродом. Если заземли- тель состоит из нескольких электродов, соединенных между собой параллельно, он называется групповым заземлителем.

Для погружения в землю вертикальных электродов предварительно роют траншею глубиной 0,7-0,8 м, после чего забивают трубы или уголки с помощью механизмов. Стальные стержни диаметром 10-12 мм заглубляют в землю с помощью специального приспособления, а более длинные -- с помощью вибратора. Верхние концы погруженных в землю вертикальных электродов соединяют стальной полосой методом сварки.

Устройство защитного заземления может быть осуществлено двумя способами: контурным расположением заземляющих проводников и выносным.

При контурном размещении заземлителей обеспечивается выравнивание потенциалов при однофазном замыкании на землю. Кроме того, благодаря взаимному влиянию заземлителей уменьшается напряжение прикосновения и напряжение шага в защищаемой зоне. Выносные заземления этими свойствами не обладают. Зато при выносном способе размещения есть выбор места для заглубления заземлителей.

В помещениях заземляющие проводники следует располагать таким образом, чтобы они были доступны для осмотра и надежно защищены от механических повреждений. На полу помещений заземляющие проводники укладывают в специальные канавки. В помещениях, где возможно выделение едких паров и газов, а также с повышенной влажностью заземляющие проводники прокладывают вдоль стен на скобах в 10 мм от стены.

Каждый корпус электроустановки должен быть присоединен к заземлителю или к заземляющей магистрали с помощью отдельного ответвления. Последовательное включение нескольких заземляемых корпусов электроустановок в заземляющий проводник запрещается .

Сопротивление заземляющего устройства представляет собой сумму сопротивлений заземлителя относительно земли и заземляющих проводников.

Сопротивление заземлителя относительно земли есть отношение напряжения на заземлителе к току, проходящему через заземлитель в землю.

Величина сопротивления заземлителя зависит от удельного сопротивления грунта, в котором заземлитель находится; типа размеров и расположения элементов, из которых заземлитель выполнен; количества и взаимного расположения электродов.

Величина сопротивления заземлителей может изменяться в несколько раз в зависимости от времени года.

Наибольшее сопротивление заземлители имеют зимой при промерзании грунта и в засушливое время.

Наибольшее допустимое значение сопротивления заземления в установках до 1000 В: 10 Ом -- при суммарной мощности генераторов и трансформаторов 100 кВА и менее, 4 Ом -- во всех остальных случаях.

Указанные нормы обосновываются допустимой величиной напряжения прикосновения, которая в сетях до 1000 В не должна превышать 40 В.

В установках свыше 1000 В допускается сопротивление заземления R3 <= 125/I3 Ом, но не более 4 Ом или 10 Ом.

В установках свыше 1000 В с большими токами замыкания на землю сопротивление заземляющего устройства не должно быть более 0,5 Ом для обеспечения автоматического отключения участка сети в случае аварии.

5.2 Расчет защитного заземления станции управления УЭЦН

Расчет производится в следующем порядке:

1) На основании исходных данных и в соответствии с требованиями ПУЭ, определяется допустимое нормативное сопротивление заземляющего устройства Rз. Для установок с изолированной нейтралью при суммарной мощности питающих генераторов или трансформаторов не более 100 кВА, допустимое нормативное сопротивление Rз ? 10,0.

Исходные данные для расчёта приведены в таблице 5.1.

Таблица 9

Исходные данные для расчета заземления станции управления

Наименование параметра

Значение

1. Напряжение электроустановки, U, В

380

2. Мощность питающих трансформаторов, N, кВА

80

3. Форма вертикальных электродов

труба

4. Размеры вертикальных заземлителей, м

длина, l

диаметр, d

2

0,05

5. Расстояние между вертикальными электродами, а, м

4

6. Форма соединительной полосы


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.