Разработка автоматизированной системы управления установкой кондиционирования воздуха

Краткое описание технологического процесса, конструкция, режимы работы и технические характеристики центрального кондиционера. Выбор технических средств автоматизации, программного обеспечения и датчиков, расчет регулирующего и исполнительного механизма.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 26.05.2010
Размер файла 2,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

DI6 Внешняя авария. Внешние переключатели не в положении “Auto”.

DI7 Кнопка или таймер для задержки выключения (для одной скорости) /

Задержка выключения работы для двухскоростных систем вентиляции.

DI8 Кнопка или таймер для задержки выключения на низкой скорости (для

двухскоростных систем).

Аналоговые выходы AO

У контроллера С30 три аналоговых выхода, AO1...AO3. Выходы имеют сигнал 0...10 V DC, 5 mA и защищены от короткого замыкания.

АО1 Y1 - охлаждение, нагрев или заслонка.

АО2 Y2 - нагрев, пластинчатый теплообменник, роторный рекуператор, тепловой насос, охлаждение или заслонка.

АО3 Y3 - нагрев или охлаждение.

АО6 Увлажнение/осушение.

Цифровые выходы DO

У контроллера С30 семь дискретных выходов, DO1...DO7. Выходы имеют сигнал 0...10 V DC, 5 mA и защищены от короткого замыкания.

DO1 Управление приточным вентилятором.

Высокая скорость приточного вентилятора для двухскоростных систем.

DO2 Управление вытяжным вентилятором.

Высокая скорость вытяжного вентилятора для двухскоростных систем.

DO3 Управление циркуляционным насосом.

Блокировка электрического нагрева.

DO4 Управление компрессором 1 (DX-охлаждение).

Низкая скорость приточного вентилятора для двухскоростных систем.

DO5 Управление компрессором 2 (DX-охлаждение).

Низкая скорость вытяжного вентилятора для двухскоростных систем.

DO6 Управление внешней защиты от обмерзания.

Срабатывание противопожарной заслонки.

DO7 Аварийный выход.

Рис.5.1 Пример системы управления с контроллером серии С30

Функции контроля С30

Прикладное управление температурой воздуха

Датчик температуры приточного воздуха(AI3) управляет последовательностью для достижения установленной температуры.

Управление воздухом с компенсацией внешней температуры

Датчик температуры приточного воздуха(AI3) управляет последовательностью для достижения заданной температуры. Задатчик компенсирован, учитывая сенсор внешней температуры (AI1). Параметры, установленные в меню «Установки», в меню для внешней компенсации, становятся доступными, когда выбор сделан.

Компенсация внешней температуры может быть установлена с помощью двух начальных двух конечных позиций, см. раздел «Установки».

Управление температурой в помещении с каскадным контролем температуры воздуха

Датчик температуры приточного воздуха (AI3) управляет последовательностью, поэтому задатчик достигается, так же как и управление воздухом.

Датчик температуры Приточного воздуха (AI3) управляет последовательностью, так что задатчик достигается точно так же, как и контроль приточного воздуха. Задатчик для приточной температуры определяется Датчиком Комнатной температуры (AI2), который при необходимости нагревания увеличивает задатчик для приточного воздуха в соответствие с установленными параметрами или, при необходимости охлаждения понижает задатчик.

Каскадный фактор (насколько задатчик температуры помещения должен быть изменен (поградусно)) устанавливается в «Установках», см. соответствующий выбор.

ПРИМЕЧАНИЕ: каскадное управление является PI-управлением с устанавливаемым I-временем (фабричные установки 10 минут) и работает с установками между установленным минимальным и максимальным ограничением.

(Текущая установка температуры помещения отражена в меню каскадного фактора).

Управление температурой в помещении с мин/макс ограничением температуры приточного воздуха.

Датчик управления температурой Room (AI2) управляет последовательностью для достижения установленных параметров. Температура поддерживается этим датчиком с ограничением минимального и максимального значений.

Управление температурой в помещении без датчика приточного воздуха.

Датчик температуры Room (AI2) управляет последовательностью для достижения значений установок.

Управление температурой воздуха с компенсацией внешней температуры или управление температурой помещения с мин/макс ограничениями. Переключатель, зависимый от внешней температуры.

Датчик внешней температуры управляет переключением между управлением воздухом (зима) и управлением в помещении (лето).

Датчик приточного воздуха (AI3) управляет последовательностью для достижения установленных параметров. Установки - внешняя температура компенсируется датчиком внешней температуры (AI1). Параметры устанавливаются в меню «Установки».

Датчик в помещении (AI2) управляет последовательностью для достижения установленных параметров. Температура может быть макс/мин лимитирована. Параметры устанавливаются в меню «Установки».

Выбор регулирующего органа и исполнительного механизма

Необходимая мощность для подогрева приточного воздуха в зимний период составляет 381 кВт; для охлаждения в летний период - 123 кВт. Разность температур теплоносителя 80…60С, хладоносителя 7…12С. Расход теплоносителя составляет:

хладоносителя:

В качестве регулирующего органа на подаче теплоносителя применен трехходовой клапан типа NMTR производства фирмы Regin. Подбор клапана производится при условии перепада давления на нем не выше 20 кПа. Подбор производится по диаграмме, изображенной на рис.6.1.

Рис. 6.1 Диаграмма подбора трехходового клапана типа NMTR

В качестве регулирующего органа на подаче хладоносителя применен трехходовой клапан типа BGTR производства фирмы Regin. Подбор клапана производится при условии перепада давления на нем не выше 20 кПа. Подбор производится по диаграмме, изображенной на рис. 6.2.

Рис. 6.2. Диаграмма подбора трехходового клапана типа BGTR

На подаче теплоносителя установлен трехходовой клапан NMTR50-39 (рис. 5) с условным проходом DN=50мм и условной пропускной способностью Кv=39 м3/ч. На подаче хладоносителя установлен трехходовой клапан BGTR65-63 (рис. 6) с условным проходом DN=65 мм и условной пропускной способностью Кv=63м3/ч.

В качестве исполнительного механизма на клапане теплоносителя применен электропривод AQM24-1R (рис.7) производства фирмы Regin. Технические характеристики электропривода AQM24-1R:

Напряжение питания______________________________________24 В.

Частота_________________________________________________50 Гц.

Управляющий сигнал________________________________0…10 В.

Потребляемая мощность__________________________________6 Вт.

Длина штока_______________________________________20 мм.

Время хода штока_________________________________10 с/мм.

Фактическое усилие____________________________________500 Н.

В качестве исполнительного механизма на клапане хладоносителя применен электропривод AV24-MFT (рис.8) производства фирмы Belimo. Технические характеристики электропривода AV24-MFT:

Напряжение питания____________________________________24 В.

Частота________________________________________________50 Гц.

Управляющий сигнал___________________________________0…10 В.

Потребляемая мощность___________________________________6 Вт.

Длина штока____________________________________________50 мм.

Время хода штока________________________________________3 с/мм.

Фактическое усилие_____________________________________2000 Н.

Рис. 6.3 Трехходовой регулирующий клапан NMTR50-39

А=160 мм

В1=100 мм

В2=73 мм

С=G 2”

D=126 мм

Масса - 5,0 кг.

Рис. 6.4 Трехходовой регулирующий клапан BGTR65-63

А=260 мм

В1=170 мм

В2=190 мм

С=185 мм

D=200 мм

Масса - 23 кг.

Рис. 6.5 Электропривод AQM24-1R

Рис. 6.6 Электропривод AV24-MFT

8. Технико-экономическое обоснование

8.1 Введение

Автоматизированные системы кондиционирования приводят, в конечном счете, к экономии потребляемой электроэнергии. Это происходит за счет равномерного потребления. В нашем случае экономия электроэнергии оценивается в 5% от годового потребления. Предполагается, что экономия электроэнергии покроет затраты на приобретение и установку АСУ.

8.2 Расчет капитальных вложений, необходимых для реализации проекта.

Табл. 8.1 - Расчет капитальных вложений

Оборудование и затраты

Кол.-во

Цена за ед.,

грн.

Общая стоимость, грн.

1. Контроллер “Corrigo-C30”

1

4947.6

4947.6

2. Трехходовой регулирующий клапан NMTR50-39

2

1407.4

2814.8

3. Трехходовой регулирующий клапан BGTR65-63

1

3087.6

3087.6

4. Электропривод AQM24-1R

2

1686.4

3372.8

5. Электропривод AV24-MFT

1

6280.6

6280.6

6. Канальный датчик температуры TG-K3/Pt1000

1

198.4

198.4

7. Комнатный датчик температуры TG-R5/Pt1000

1

204.6

204.6

8. Наружный датчик температуры TG-R6/Pt1000

1

285.2

285.2

9. Накладной датчик температуры TG-А1/Pt1000

1

161.2

161.2

10. Комнатный преобразователь влажности HRT

1

1227.6

1227.6

11. Канальный преобразователь влажности НDТ 3200

1

1159.4

1159.4

12. Капиллярный термостат ТС3

1

83.7

83.7

13. Дифференциальный датчик давления DPS500

3

272.8

818.4

14. Электропривод DA2.F

1

1277.2

1277.2

15. Электропривод DМ1.1

2

923.8

1847.6

16. Щит управления и питания

1

5580

5580

17. Монтаж оборудования

1

8336.7

8336.7

18. Пусконаладочные работы

1

1667.4

1667.3

19. Непредвиденные расходы

1

3334.7

3334.7

20. Накладные расходы

1

2667.7

2667.7

Итого: 49353.1 грн.

8.3 Расчет годовых эксплуатационных расходов, связанных с эксплуатацией АСУ

Для того, чтобы АСУ выполняла свои функции, необходимы расходы по содержанию и эксплуатации АСУ. В нашем случае такие годовые расходы определяются следующим образом:

, (8.1)

где - амортизация, - затраты на ремонт, - зарплата, - затраты на электроэнергию, - прочие затраты.

Амортизация определяется по формуле

, (8.2)

где - норма амортизации, составляющая 25%, - общая стоимость АСУ.

Ремонтные затраты составляют

, (8.3)

Затраты на заработную плату составляют

, (8.4)

где - численность по штату, - заработная плата с начислениями одного человека.

Затраты на электроэнергию определятся по формуле

(8.5)

Прочие затраты составляют

(8.6)

8.4 Расчет экономии электроэнергии

Экономия электроэнергии составляет

,

где

- годовая потребляемая электроэнергия,

- потребляемая мощность,

- число часов работы кондиционера за год;

- коэффициент загрузки электродвигателя;

- коэффициент одновременного включения.

9. Техника безопасности

Здоровье, работоспособность, да и просто самочувствие человека в значительной степени определяются условиями микроклимата и воздушной среды в жилых и общественных помещениях, где он проводит значительную часть своего времени.

По мере насыщения зданий современными отопительно-вентиляционными системами, осветительной техникой и разнообразным электробытовым оборудованием все более очевидным становится выражение: «Дом - это машина для жилья».

Если говорить о физиологическом воздействии на человека окружающего воздуха, то следует напомнить, что человек в сутки потребляет около 3 кг пищи и 15 кг воздуха. Что это за воздух, какова его свежесть и чистота, душно, жарко или холодно человеку в помещении, во многом зависит от инженерных систем, специально предназначенных для обеспечения воздушного комфорта.

Среди инженерных систем здания можно выделить: систему вентиляции, систему отопления (либо комбинированную отопительно-вентиляционную систему) и систему кондиционирования воздуха (СКВ). Воздушное отопление, совмещенное с вентиляцией, создает в помещении вполне удовлетворительный микроклимат и обеспечивает благоприятные условия воздушной среды. СКВ представляет собой систему более высокого порядка (с большими возможностями). Принципиальное преимущество состоит в том, что, помимо выполнения задач вентиляции и отопления, СКВ позволяет создать благоприятный микроклимат (комфортный уровень температур) в летний, жаркий период года, благодаря использованию в своем составе фреоновой холодильной машины.

Таким образом, подготовка воздуха в СКВ может включать его охлаждение, нагрев, увлажнение или осушку, очистку (фильтрацию, ионизацию и т.п.), причем система позволяет поддерживать в помещении заданные кондиции воздуха независимо от уровня и колебаний метеорологических параметров наружного (атмосферного) воздуха, а также переменных поступлений в помещение тепла и влаги.

9.1 Определение параметров внешнего воздуха и оптимальных микроклиматических условий

Расчетные параметры внешнего воздуха определяются климатическими условиями местности, в которой будет работать СКВ, и ее назначением. Расчет принято вести по параметрам, определяемым следующим образом:

- для холодного времени года - средняя температура наиболее холодной пятидневки и энтальпия воздуха, соответствующая этой температуре и средней относительной влажности наиболее холодного месяца в 13 ч;

- для теплого времени года - температура воздуха, наиболее высокое значение которой наблюдается в данном пункте на протяжении 220 ч, и соответствующая энтальпия воздуха (в среднем по многолетним наблюдениям).

Для г. Одессы параметры внешнего воздуха приведены в табл. 9.1.

Таблица 9.1

период года

температура

энтальпия

влагосодержание

относительная влажность

холодный и переходный

- 15

- 3,1

16,4

68,0

теплый

30,5

14,5

11,7

41,5

Системы кондиционирования воздуха комфортного назначения рассчитываются на поддержание параметров воздуха в кондиционируемых помещениях, оптимальных для самочувствия людей, находящихся в них. Параметры определяются условиями тепло- и влагообмена, которые в свою очередь зависят от состояния здоровья человека, характера выполняемой им работы, нервного напряжения, одежды, а также от температуры, влажности, скорости движения окружающего воздуха и других факторов. Учет всех перечисленных условий для каждого конкретного случая весьма громоздок. Значения оптимальных параметров воздуха для различных производственных, общественных и жилых помещений регламентированы соответствующими нормами.

В табл. 9.2 приведены параметры внешнего воздуха для легких условий.

Табл. 9.2 - параметры внешнего воздуха для легких условий

период года

температура

энтальпия

влагосодержание

относительная влажность

холодный и переходный

20

13,7

14,7

30

теплый

22

15,3

16,6

30

Подачу СКВ необходимо рассчитывать отдельно для теплого, переходного и холодного периодов года.

Для каждого из периодов согласно инструкциям производят расчеты по излишкам явной теплоты, по излишкам влаги, по излишкам полной теплоты и по количеству выделяющихся вредных веществ. Для упрощения расчета параметры удаляемого воздуха - температура, влагосодержание, энтальпия и концентрация вредных веществ - принимаются равными соответствующим параметрам воздуха в помещении.

9.2 Расчет по излишкам явной теплоты

Количество воздуха, удаляемого из помещения, ,

, (9.1),

где - излишек явной теплоты в помещении, ;

, (9.2),

- явная теплота, выделяемая организмами людей, находящихся в помещении;

===0 - теплота от солнечной радиации (инсоляции), работающих электродвигателей и источников освещения соответственно;

, - температура удаляемого и приточного воздуха соответственно, .

Явная теплота, выделяемая организмами людей, ,

, (9.3),

где - количество явной теплоты, выделяемой одним человеком в спокойном состоянии:

при = 20 = 85 , ;

при = 22 = 70 , .

Таким образом, для холодного и переходного периодов года количество удаляемого воздуха составляет

Для теплого периода

9.3 Расчет по излишкам влаги

Количество воздуха, удаляемого из помещения, ,

, (9.4)

где - излишек влаги в помещении, ;

, (9.5)

- количество людей, находящихся в помещении; - количество влаги, выделяемой одним человеком (в спокойном состоянии):

при = 20 =75 ;

при = 22 =100 ;

, - влагосодержание удаляемого и приточного воздуха соответственно, .

Таким образом, для холодного и переходного периодов года количество удаляемого воздуха составляет

Для теплого периода

9.4 Расчет по излишкам полной теплоты

Количество воздуха, удаляемого из помещения, ,

, (9.6)

где - излишек полной теплоты в помещении, ;

, (9.7)

- явная теплота, выделяемая организмами людей, находящихся в помещении;

===0 - теплота от солнечной радиации (инсоляции), работающих электродвигателей и источников освещения соответственно;

, - энтальпия удаляемого и приточного воздуха соответственно.

Полная теплота, выделяемая организмами людей, ,

, (9.8),

где - количество полной теплоты, выделяемой одним человеком в спокойном состоянии:

при = 20 = 130;

при = 22 = 125 .

Таким образом, для холодного и переходного периодов года количество удаляемого воздуха составляет

Для теплого периода

9.5 Определение категории помещения по пожарной опасности и расчет установок пожаротушения

Согласно [7] здание относится к категории Д (в помещении находятся материалы в холодном состоянии, кабельные электропроводки и оборудование, отдельные предметы мебели). Исходя из этого, расчетная масса комбинированного углекислотно-хладонового состава (УХС) для объемного пожаротушения определяется по формуле

, (9.9)

где - коэффициент компенсации не учитываемых потерь УХС, для помещений с дверными и оконными проемами принимается =1.2;

- нормативная массовая огнетушащая концентрация УХС, при времени заполнения помещения, равном 60 , принимается = 0.4 ;

- объем защищаемого помещения, .

Расчетное число баллонов определяется из расчета вместимости в 40-литровый баллон 25 УХС:

Внутренний диаметр магистрального трубопровода определяется по формуле

, (9.10)

где =12 - диаметр сифонной трубки баллона, ; =245 - число одновременно разрежаемых баллонов.

Эквивалентная длина магистрального трубопровода определяется по формуле

, (9.11)

где - коэффициент увеличения длины трубопровода для компенсации не учитываемых местных потерь, принимается = 1.05; =120 - длина трубопровода по проекту, .

Площадь сечения выходного отверстия оросителя определяется по формуле

, , (9.12)

где - площадь сечения магистрального трубопровода, ; 20 - число оросителей.

Расход УХС , для трубопровода диаметром 35 определяется в зависимости от эквивалентной длины; при = 120 и = 4.4 .

Удельный расход УХС составляет:

(9.13)

Площадь сечения трубопровода:

(9.14)

Расход УХС составляет

(9.15)

Расчетное время подачи УХС:

,

где - расчетная масса УХС, ; - расход УХС, .

Масса основного состава запаса УХС определяется по формуле

, (9.16)

где - коэффициент, учитывающий остаток УХС в баллонах и трубопроводах, принимается


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.