Обеспечение безгидратного режима работы газопромысловых коммуникаций
Геолого-промысловая характеристика Ямбургского газоконденсатного месторождения. Продукция, исходное сырье, реагенты. Условия образования газовых гидратов. Предупреждение образования гидратов природных газов и борьба с ними. Снижение затрат на добычу газа.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 31.03.2011 |
Размер файла | 4,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
После разложения гидратов учитывают следующее: возможность накопления жидких углеводородов на продуваемом участке и образование повторных гидратоледяных пробок за счет резкого снижения температуры.
При отрицательных температурах по методу снижения давления в некоторых случаях не получают должного эффекта, так как вода, образовавшаяся в результате разложения гидратов, переходит в лед и образует ледяную пробку. В этом случае метод снижения давления используют в комбинации выводом в трубопровод ингибиторов. Количество ингибитора должно быть таким, чтобы при данной температуре раствор из введенного ингибитора и воды, получившийся при разложении гидратов, не замерзал (рисунок 4.1).
Разложение гидратов снижением давления в комбинации с вводом ингибиторов происходит гораздо быстрее, чем при использовании каждого метода в отдельности.
Ликвидация гидратных пробок в трубопроводах природных и сжиженных газов методом подогрева. При этом способе повышение температуры выше равновесной температуры образования гидратов приводит к их разложению. На практике трубопровод подогревают горячей водой или паром. Исследования показали, что повышение температуры в точке контакта гидрата и металла до 30 - 40°С достаточно для быстрого разложения гидратов.
4.2 Ингибиторы для борьбы с образованием гидратов
На практике для борьбы с образованием гидратов широко применяют метанол и гликоли. Иногда используют жидкие углеводороды, ПАВ, пластовую воду, смесь различных ингибиторов, например метанола с растворами хлористого кальция и т.д.
Метанол обладает высокой степенью понижения температуры гидратообразования, способностью быстро разлагать уже образовавшиеся гидратные пробки и смешиваться с водой в любых соотношениях, малой вязкостью и низкой температурой замерзания. Упругость паров чистого метанола и его водных растворов определяют по графику, приведенному на рисунке 4.2.
Метанол - сильный яд, попадание в организм даже небольшой дозы его может привести к смертельному исходу, поэтому при работе с ним требуется особая осторожность.
4.2.1 Ввод метанола
Наиболее распространен на газовых промыслах способ подачи метанола (СН3ОН) в струю газа. При этом он образует с парообразной и жидкой влагой спиртоводные смеси, температура замерзания которых значительно ниже нуля. Пары воды поглощаются из газа, что значительно снижает точку росы, и, следовательно, создаются условия для разложения гидратов или для предупреждения их образования.
Основным условием эффективного действия метанола является взаимодействие паров воды с парами метанола и дальнейшая конденсация их, что приводит к значительному понижению влагосодержания газа. Наибольшая эффективность метанола может быть достигнута с применением его в качестве средства, предупреждающего гидратообразование, а не для разрушения уже образовавшихся гидратов. При этом метанол необходимо впрыскивать в газовый поток, обеспечив хорошее распыление и смешение с общим газовым потоком. Для борьбы с гидратообразованием на групповом пункте предусматривается одна (иногда две) метанольная установка (рисунок 4.3), состоящая из метанольного бачка 1, емкости для хранения метанола 2, ручного насоса 5 типа БКФ - 2, обвязочных трубопроводов и вентилей. Метанол вводится, как правило, после сепараторов первой ступени под избыточным давлением, равным разности между давлением высоконапорной скважины, с которой соединен метанольный бачок, и давлением скважин, в которые вводится метанол, что составляет около 30 - 50 кгс/см2. Количество вводимого в газопровод метанола для разложения образовавшихся гидратов определяют по графикам (рисунок 4.4, 4.5).
Рисунок 4.3 - Схема группового пункта сбора и очистки газа.
1 - метанольный бачок; 2 - емкость для хранения метанола; 3 - емкость конденсата; 4 - штуцер регулируемый; 5 - ручной насос; 7 - сепаратор циклонный; К - линии конденсата
Сначала следует найти необходимое процентное содержание метанола в газе для разложения гидратов (см. рисунок 4.4), а затем по рисунку.4.5 соответствующий этому проценту расход метанола в килограммах на 1000 м3 газа.
10 - 5 0 5 10 15 20
Температура,°C
Рисунок 4.4 - Содержание метанола (в %) в газе, необходимое для разложения гидратов при различных давлениях и температурах
Рисунок 4.5 - Удельный расход метанола (кг/сут) для разложения гидратов, определяемый по содержанию метанола (%), давлению и температуре
Удельный расход метанола, необходимый для предотвращения гидратообразования при наличии в газе парообразной и жидкой влаги, определяется по формуле:
ем = x (a + e / 100), кг/1000 м3, (4.1)
где х - весовая концентрация метанола в воде в % (определяется по рисунку 4.6, исходя из снижения точки замерзания раствора t = t0 - t); t - температура гидратообразования; = eмг /x - отношение содержания метанола в газе, обеспечивающего насыщение газа, к весовой концентрации в воде в кг (СН3ОН) 1000 м3 /% вес (СН3ОН) в воде при нормальных условиях (определяется по рисунку 4.7 для данных р и t), е - содержание жидкой влаги в месте подачи метанола (кг/1000 м3) определяется экспериментально, а также приближенно:
е = е'н - е''н, (4.2)
где е'н - начальное влагосодержание; е''н - влагосодержание в точке ввода метанола. Величины е'н и е"н определяют для начальных и данных р и t. Суточный весовой расход метанола, необходимый для предотвращения гидратообразования, будет:
Qм. = Qм. г. + Qм. ж. = eмQ, кг/сут., (4.3)
Где Qм. ж. = Qe*x/100.
Здесь Q - дебит газа при нормальных условиях в тыс. м3/сут; Qм. ж. - количство метанола, насыщающего жидкую влагу, в кг/сут; Qм. г. - количество метанола, необходимое для насыщения газа, в кг/сут; Qм - общее количество метанола, необходимое для предотвращения гидратообразования, в кг/сут.
Из формул (4.1) и (4.3) видно, что чем меньше содержание жидкой влаги в газе, тем меньший требуется расход метанола.
Рисунок 4.6 - Весовой процент метанола в воде х, необходимый для предотвращения образования гидратов, в зависимости от температуры, соответствующей снижению точки замерзания раствора At = t0 - t (t0 - температура образования гидратов, t - температура газа в газопроводе)
Рисунок 4.7 - Отношение содержания метанола в газе к весовому проценту его в воде, для предотвращения образования гидратов в зависимости от давления и температуры в точке образования гидратов
4.2.2 Ввод электролитов
Для борьбы с гидратообразованием все большее применение находят электролиты и, в частности, водные растворы хлористого кальция. Это недорогой, безопасный и достаточно эффективный антигидратный ингибитор.
Водные растворы хлористого лития также относятся к сильным электролитам, а свойства гигроскопичности их гораздо выше, чем у хлористого кальция.
Ранее было установлено, что наиболее эффективным антигидратным ингибитором является 30 % - ный раствор хлористого кальция.
При сопоставлении величины понижения равновесной температуры гидратообразования, в присутствии растворов хлористого лития в зависимости от его концентрации с аналогичными характеристиками других антигидратных ингибиторов (рис.4.8) установлено, что исследованные растворы наиболее эффективны.
Так, если растворы хлористого кальция плотностью 1,08 снижают равновесную температуру на 3,5°С, то растворы хлористого лития этой же плотности приблизительно на 14°С. Дальнейшее повышение плотности раствора хлористого лития приводит к еще большему эффекту. При растворе плотностью 1,1 кристаллогидраты не были получены даже тогда, когда давление в системе было поднято до 240 кгс/см2, а температура снижена до 0,9°С.
Рисунок 4.8 - Снижение равновесной температуры гидратообразования (в системе газ - раствор соли) в зависимости от плотности раствора.
1 - газ - LiCI, 2 - газ - CaCI + 10 % LiСl (p = 1,1 Г см2); 3 - газ - CaCI2
Рисунок 4.9 - Равновесные условия гидратообразования природного газа с относительной плотностью с = 0,58.
Системы 1 - природный газ - вода, 2 - природный газ - пластовая вода, 3 - природный газ - комбинированный раствор (95 % пластовой воды + 5 % метанола)
Полученные данные свидетельствуют о весьма высокой эффективности растворов хлористого лития, применяемых в качестве антигидратных ингибиторов. Технологическая полезность этих растворов подтверждается не только относительно низкой рабочей концентрацией, но и достаточно низкой температурой замерзания. Например, для раствора плотностью 1,15 температура замерзания равна 62°С. Этот показатель играет особенно важную роль при решении вопросов борьбы с гидратами в условиях Крайнего Севера.
В целях экономии применение хлористого лития должно сочетаться с последующим улавливанием и регенерацией отработанного раствора. Было изучено влияние добавки хлористого лития к растворам хлористого кальция различной концентрации. В результате установлено, что эта добавка значительно увеличивает депрессию равновесной температуры гидратообразования, создаваемую растворами хлористого кальция (см. рисунок 4.8). Причем эффект резко возрастает с увеличением плотности последнего.
Таким образом, несмотря на тo, что смешанные растворы значительно уступают по эффективности растворам хлористого лития они обеспечивают снижение равновесной температуры гораздо в большем диапазоне, чем растворы хлористого кальция. В связи с этим применение растворов хлористого кальция в смеси с 10 % - ной (по объему) добавкой раствора хлористого лития плотностью 1,1 позволяет с большей эффективностью бороться с гидратами.
Вместе с добываемой жидкостью на поверхность выносятся пластовые воды. Эти воды, как правило, содержат значительные количества растворенных солей, из которых чаще всего преобладая хлористый кальций. Обычно температура замерзания пластовых вол ниже 0°С, а по характеристике они являются электролитами. Часто пластовые воды встречаются в виде крепких рассолов с достаточно низкой температурой замерзания. Кроме того, замечено, что в скважинах, где наблюдается приток минерализованной воды, интенсивность гидратообразования значительно ниже по сравнению с теми скважинами, в которых капельная влага имеет конденсатное происхождение. Это указывает на то, что пластовые воды, являясь электролитами, выполняют роль антигидратных ингибиторов, действия которых заключается в том, что при их смешивании с конденсирующейся влагой изменяется ее молекулярная структура.
Имеющиеся в растворе ионы солей разрушают ассоциации молекул воды, в результате чего исключается возможность гидратообразования. Отсюда следует, что чем больше ионов в растворе, тем меньше вероятность связывания молекул воды в кристаллическук решетку гидрата.
4.2.3 Ввод гликолей
Этиленгликоль (ЭГ), диэтиленгликоль (ДЭГ) и триэтиленгликоль (ТЭГ) применяются в качестве антигидратных ингибиторов.
В таблице 4.1 приведена характеристика гликолей.
По своим качествам гликоли являются более сильными, но и более дорогими ингибиторами по сравнению с растворами хлористого кальция и метанолом. При использовании отработанный раствор обязательно регенерируется и используется вновь. Это значительно снижает стоимость применения гликолей.
Таблица 4.1
Гликоль |
Температура замерзания,°С |
Температура кипения,°С |
|
С2Н6О2 (ЭГ) |
От - 17,4 до - 12 |
197,2 (198 - 200) |
|
С4Н10О3 (ДЭГ) |
От - 10,45 до - 6,5 |
244,5 (245 - 250) |
|
С6Н14О4 (ТЭГ) |
- 5 |
280 - 290 |
Рисунок 4.10 - Упругость паров метанола и воды над их растворами различной концентрации.
Выбор гликоля зависит от состава газа. Так, в магистральном газопроводе, где присутствует природный газ, лучше применять ЭГ. Однако в сепараторах, теплообменниках и других дегидраторных аппаратах использовать ЭГ невыгодно из-за высокой упругости его паров. Для этих условий более подходят ДЭГ и ТЭГ. Следует отметить, что в единой системе сбора и транспорта газа следует применять один вид гликоля, что упрощает сбор и регенерацию отобранного раствора. С этой точки зрения целесообразнее всего применять ДЭГ.
Гликоли (этиленгликоль, диэтиленгликоль, триэтиленгликоль) часто используют для осушки газа и в качестве ингибитора для борьбы с отложениями гидратов. Наиболее распространен как ингибитор диэтиленгликоль, хотя применение этиленгликоля более эффективно: его водные растворы имеют более низкую температуру замерзания, меньшую вязкость (рисунок 4.11), а также малую растворимость в углеводородных газах, что значительно снижает его потери.
Рисунок 4.11 - Зависимость вязкости водных растворов гликолей от температуры.
А - ЭГ; б - ДЭГ; в - ТЭГ; содержание гликоля (%): 1 - 10; 2 - 25; 3 - 50; 4 - кривая замерзания
Гликоли с водой также смешиваются в любых соотношениях. Плотность водных растворов гликолей и температуру их замерзания можно определить по графикам (рисунок 4.12 и 4.13). Наиболее низкие температуры замерзания этих растворов находятся в пределах концентрации 60 - 70%, которые являются оптимальными при использовании гликолей в качестве ингибиторов гидратов. Так как упругость паров гликолей при температуре образования гидратов небольшая (рисунок 4.14), то они при вводе в трубопровод практически полностью остаются в жидкой фазе, что упрощает их улавливание для повторного использования.
Регенерация гликолей проводится до получения свежего раствора. Потери гликолей при использовании их в качестве ингибиторов гидратов складываются из потерь при регенерации (термическое разложение и унос), потерь в результате неполного отделения от газа в сепараторах, растворения гликолей в конденсате и газе, всевозможных утечек и др.
Рисунок 4.12 - Зависимость плотности водных растворов гликолей от температуры. а - ЭГ. Температура (°С): 1 - 44; 2 - 156; 3 - 267; 4 - 378; б - ДЭГ; в - ТЭГ. Массовая доля в %: 1 - 100; 2 - 90, 3 - 80, 4 - 70; 5 - 60; 6 - 50; 7 - 40; 8 - 30; 9 - 20; 10 - 10
Рисунок 4.13 - Зависимость температуры замерзания водных растворов гликолей от концентрации. 1 - ДЭГ; 2 - ЭГ
Рисунок 4.14 - Зависимость упругости паров гликолей от температуры.
1 - ЭГ; 2 - ДЭГ; 3 - ТЭГ
Потери вследствие растворимости гликолей в углеводородах невелики, однако они увеличиваются при наличии в конденсате ароматических углеводоров (рисунок 4.15, 4.16, 4.17). При наличии в конденсате ароматических углеводородов гликоли образуют пену и эмульсии, что отрицательно влияет на работу установки и увеличивает потери.
Рисунок 4.15 - Зависимость температуры регенерации гликолей от концентрации. а-ЭГ, б-ДЭГ
Рисунок 4.16 - Зависимость растворимости ДЭГ в природном газе от давления. Температура (°С): 1 - 37,5; 2 - 25
Рисунок 4.17 - Зависимость растворимости гликолей в парафиновых углеводородах от температуры. 1 - ТЭГ; 2 - ДЭГ
Рисунок 4.18 - Номограмма для определения понижения температуры образования гидратов природных газов и расхода ингибиторов.
1 - LiCl; 2 - MgCl2; 3 - NaCl; 4 - NН4; 5 - CaCl2; 6 - СН3ОН; 7 - ЭГ; 8 - ДЭГ; 9 - ТЭГ
В некоторых случаях при эксплуатации скважин температура образования гидратов значительно снижается, например при обводнении скважин. Чем выше минерализация воды, поступающей из скважины вместе с газом, тем ниже температура образования гидратов. Присутствие нефти и дизельного топлива препятствует прилипанию образовавшихся гидратов к поверхности труб.
Понижение температуры образования гидратов, а также расход того или иного ингибитора (из расчета на 1 кг выделившейся из газа влаги) можно определить по графику (рисунок 4.18).
4.3 Осушка газа
Наиболее радикальным способом предотвращения в системе газоснабжения гидратов и водяных пробок образования является осушка газа. Специальные установки по осушке газа размещаются обычно на УКПГ или на головных сооружениях магистральных газопроводов.
Существующие способы осушки при подготовке газа к дальнему транспортированию подразделяются на две основные группы:
1). сорбционные - поглощение влаги жидкими (абсорбция) и твердыми (адсорбция) сорбентами;
2). охлаждением газового потока с дополнительным компримированием и без него.
В результате осушки газа точка росы паров воды должна быть снижена ниже минимальной температуры при транспортировании газа.
Наиболее распространены два способа осушки газа: с использованием жидкого поглотителя - ДЭГ, ТЭГ и твердого поглотителя - силикагеля, активированной окиси алюминия (боксита) и цеолитов. Эти вещества гранулированы и имеют сильно развитую внутреннюю поверхность сообщающихся между собой пор, размер которых составляет единицы и десятки ангстрем. Удельная поверхность составляет сотни квадратных метров на 1 г поглотителя. Влага адсорбируется в порах при низкой температуре поглотителя и испаряется при подогреве.
Методы абсорбции ди - и триэтиленгликолями обеспечивают снижение точки росы на 24 - 40°С.
Практика показала, что влагосодержание газа, транспортируемого по магистральным газопроводам, должно, составлять, не более 0,05 - 0,1 г/м3. Осушка газа предотвращает гидратообразование и снижает внутреннюю коррозию газопровода.
Жидкий сорбент, пригодный для осушки природных газов, должен удовлетворять требованиям: высокая взаимная растворимость с водой; низкая стоимость; антикоррозийность; стабильность по отношению к газовым компонентам; стабильность при регенерации; простота регенерации; малая вязкость; низкая упругость паров при температуре контакта, малое поглощение углеводородных компонентов газа; низкая способность к пенообразованию или образованию эмульсии.
В наибольшей степени этим требованиям отвечает диэтиленгликоль:
(СН2CH2OH) 2O, представляющий собой прозрачную глицериноподобную жидкость с температурой кипения 245°С и температурой замерзания минус 9°С. Плотность ДЭГ - 1,116 кг/м3.
Для осушки газа с целью снижения точки росы до минус 15 - минус 20°С используется ДЭГ концентрации 99 - 99,5 %. Необходимое количество ДЭГ можно рассчитать по формуле:
Q = (W1 - W2) c2/ (c1 - c2), (4.4)
где Q - расход ингибитора, кг/1000 м3 газа; W1 - влагосодержание газа до ввода в него ингибитора (берется по специальным графикам для пластовых условий), кг/1000 м3 газа; W2 - влагосодержание потока газа при условиях вывода ингибитора (например в сепараторе); с1 - концентрация вводимого раствора ингибитора, % вес. (величина заданная); с2 - концентрация выводимого раствора, % вес., величина либо заданная, либо определяемая.
Необходимый расход ДЭГ определяется по зависимости (рисунок 4.19).
Рисунок 4.19 Зависимость а от давления и температуры
Процесс абсорбции проходит в сравнительно узких температурных пределах. Верхний предел температуры абсорбции определяется потерями гликоля в результате испарения. Практически верхний температурный предел составляет около 35°С.
Требуемая температура абсорбции определяется границей, до которой может быть охлажден регенерируемый гликоль входящим газом, теплотой абсорбции поглощенной воды и газоконденсатным отношением. Низкий температурный предел абсорбции определяется влиянием вязкости гликоля на поглотительную способность воды. Минимальная температура процесса примерно равна 10°С. Схема установки осушки газа гликолями предусматривает вакуумную регенерацию раствора (рисунок 4.20); она предназначена для глубокой осушки газа. Поступающий газ проходит через входной сепаратор 1, в котором отделяется капельная влага. Затем он попадает в абсорбер - контактор 2 на нижнюю тарелку. Газ в абсорбере поднимается через тарелки вверх, контактируя с раствором гликоля, подающимся на верхнюю тарелку. Концентрированный раствор гликоля, постепенно насыщаясь, опускается в нижнюю часть контактора, откуда через теплообменник, выветриватель 5 и фильтр 6 поступает в выпарную колонну 7. В нижней части выпарной колонны поддерживается температура 150 - 180°С, а в верхней части 105°С. Регенерированный (концентрированный) раствор гликоля через теплообменник и холодильник снова подается на верхнюю тарелку абсорбера. Затем рабочий цикл начинается снова. Осушенный в абсорбере газ поступает в каплеотделитель 3, в котором отделяется уносимый капельный гликоль; газ из каплеотделителя уходит в газопровод. Раствор гликоля, определяемый в каплеотделителе, поступает через сбросную линию абсорбера на регенерацию. Для снижения потерь гликоля при регенерации в верхней части выпарной колонны обеспечивается холодное орошение; температура здесь поддерживается в пределах 80 - 105°С. Отходящие пары воды и гликоля из выпарной колонны через холодильник поступают в сборник конденсата 8, откуда пары воды эжектируются в атмосферу, а охлажденный гликоль поступает на орошение и хранение.
В современных установках совмещаются многие процессы по подготовке газа к транспорту.
Рисунок 4.20 - Принципиальная схема установки осушки газа гликолями.
1 - поступающий газ; II - осушенный газ; III - концентрированный гликоль; IV - охлаждающая вода; V - разбавленный гликоль; VI - поток орошения в колонну; VII - водяной пар; 1 - входной сепаратор; 2 - абсорбер; 3 - каплеуловитель; 4 - регулятор уровня; 5 - выветриватепь; 6 - фильтр; 7 - регенератор; 8 - сборник конденсата; 9 - паровой эжектор.
Диэтиленгликолевые установки выгодны при осушке газа до точек росы, не превышающих минус 20°С. При необходимости обеспечить более глубокую осушку используют адсорбционные установки, в которых поглотителем влаги служит силикагель. Другим важным технологическим показателем работы установки является скорость газа в свободном сечении колонны. Ее можно найти по формуле:
, (4.5)
Величина К зависит от с (плотности газа в рабочих условиях, кг/м3). В первом приближении v можно принять равной 0,82 м/с. При заданных расходе обрабатываемого газа и его скорости в колонне можно найти диаметр абсорбера:
, (4.6)
где Q - расход газа, м3/с; Р - давление в колонне, МПа; v - скорость движения газа в рабочих условиях; Т - абсолютная температура в колонне.
Диаметр испарительной колонны обусловлен допустимой скоростью в ней паров воды - 0,5 - 0,6 м/с.
Адсорбционная установка в отличие от абсорбционной работает циклически: поглотитель в ней неподвижен. Схематически процесс происходит следующим образом. Имеются две одинаковые колонны, заполненные адсорбентом (см. рисунок 4.21). Одна предназначена для поглощения влаги, другая - для регенерации. Газ через сепаратор 1 поступает снизу в колонну 2, проходит через адсорбент и осушенным уходит из верхней части емкости в газопровод. В это время в колонну 3 с помощью газодувки 4 сверху нагнетается нагретый до 250 - 300°С газ, который высушивает поглотитель. В теплообменнике 5 и холодильнике 6 газ охлаждается и направляется в сепаратор 7, где влага из системы удаляется. Холодный сухой газ подогревается в теплообменнике 5 и в печи 8 и направляется снова в колонну 2. Процесс продолжается до полного восстановления поглотительной способности адсорбента. Затем роли колонн меняются. Поглотительная способность твердых сорбентов составляет 4 - 8% их собственного веса. Механические примеси природного газа, тяжелые углево-дороды, сероводород заметно снижают активность твердых поглотителей. В благоприятных условиях поглотитель работает два-три года.
Рисунок 4.21 - Схема сорбционной установки для осушки газа
Необходимое количество сорбента G (кг) может быть найдено по формуле:
G = Q (W1 - W2) t/ a (4.7)
где W1, W2 - влагосодержание газа соответственно до обработки и после нее, кг/м3; Q - расход газа, м3/с; а - активность сорбента в %; t - продолжительность цикла, с.
Допустимая скорость газа в адсорбере может быть найдена по полуэмпирической формуле Леду:
, (4.8)
Здесь v - весовая скорость, кг/м3; г - плотность газа в колонне, кг/м3; а - плотность адсорбента, кг/м3; d - средний диаметр гранулы адсорбента, м. Сорбент размещен на полках высотой 2 - 3 м. Производительность одной колонны до 50 - 100 м3/с. При необходимости осушать большее количество газа строят ряд параллельно работающих установок. Продолжительность поглощения 8 - 12 ч., регенерации - 4 - 8 ч.
4.4 Предупреждение гидратообразования в системах промыслового сбора газа залежей Ямбургского ГКМ
Для сбора газа на УКПГ Ямбургского месторождения, согласно проекту обустройства, была принята коллекторно-кустовая схема. Скважины куста работают в единый газопровод - шлейф ? 530 мм, при этом имеются как короткие (1 - 2 км), так и очень длинные шлейфы (до 12 км). Все шлейфы теплоизолированы пенополиуретановыми скорлупами толщиной 60 мм, теплоизоляция заключена в кожух из листового алюминия АД - 1. Параллельно газосборному шлейфу проложен метанолопровод ? 57 мм. В начальный период разработки давление газа составляло 9,4 - 9,8 МПа при температуре 10 - 16 ?С на устье скважин. Заметим, что температура начала гидратообразования при этих давлениях составляет 12 - 13 ?С. следовательно, часть шлейфов (главным образом, длинные) работало в режиме гидратообразования.
Проведенное еще в 1987 году сотрудниками ВНИИГАЗа и “Ямбурггаздобычи” обследование термобарических режимов шлейфов подтвердило достаточно высокую эффективность проектного решения - теплоизоляции шлейфов: при температурах до минус 20 ?С падение температуры составило в среднем 0,5 ?С/км и определялось не только (а иногда, - и не столько) теплопередачей в окружающую среду, но и снижением температуры за счет падения давления, т.е. дроссель-эфектом.
Значение фактических коэффициентов теплопередачи К, полученных по промысловым замерам, колебались в широком диапазоне - от 0,3 до 3 - 4 ккал/м ч град (при расчетном проектном значении для новой сухой и неповрежденной теплоизоляции - 1 ккал/м ч град). Это объясняется главным образом сравнительно низкой точностью температурных измерений (особенно ненадежным представляется измерение температуры в начале шлейфа в зимнее время года), а также небольшим перепадом температур между началом и концом шлейфа. При более точных температурных измерениях по-видимому следует ожидать, что экспериментальный коэффициент теплопередачи для шлейфов Ямбургского месторождения будет не очень сильно подвержен влиянию сезонного колебания из-за того, что все шлейфы теплоизолированы с наземной прокладкой. Для сравнения отметим, что на месторождении Медвежье имеются теплоизолированые шлейфы, уложенные подземным способом. При этом осредненный коэффициент теплопередачи таких шлейфов испытывает весьма сильное колебание в течении года (в три - четыре раза). Особо отметим, что максимальных значений коэффициент теплопредачи К достигает в период активного таяния снегов и появления талых вод (май, июнь), а также с наступлением дождливого периода и резкого снижения среднесуточной температуры (сентябрь, октябрь, ноябрь), что связано с появлением открытых участков шлейфа и насыщением влагой грунта, окружающего шлейф.
В то же время наземная прокладка шлейфов в теплоизоляции позволяет в значительной степени избежать этого негативного явления, но вместе с тем все-таки приводит к заметному охлаждению газа в шлейфах при сильных морозах (минус 35 ?С и ниже).
4.5 Основные характеристики, влияющие на расход ингибиторов
Для расчета изменения условий образования гидратов в присутствии ингибиторов, а также их содержания в газовой и жидкой углеводородных фазах необходимо определять активности компонентов водного раствора ингибитора. Активности воды и метанола в системе вода - метанол. Поведение системы вода - метанол слабо отличается от идеального, поэтому для описания зависимости коэффициентов активности от состава можно пользоваться практически любыми уравнениями. Воспользуемся уравнениями Ван - Лаара:
lnг1 = lnг1? [1 + ()] - 2, (4.9)
lnг2 = lnг2? [1 + ()] - 2, (4.10)
где ч - мольная доля метанола в растворе.
Индекс 1 относится к воде, индекс 2 - к метанолу и используется симметричная нормировка коэффициентов активности.
Предельные коэффициенты активности г1?, г2? в диапазоне температур 243 К < T < 320 K могут быть аппроксимированы следующими зависимостями:
lnг1? = 2,2 - 530/Т;
lnг2? = 3.1 - 715/Т.
Коэффициенты активности г1и г2 связанны с активностями воды а1 и метанола а2 соотношениями:
а1 = г1 (1 - ч), а2 = г2ч, (4.10)
Мольная доля метанола ч связанна с его массовой концентрацией соотношением:
чмас = 3200ч/ (18 + 14ч), (4.11)
где чмас - содержание метанола в растворе, мас. %.
Точность расчета по формулам (4.9), (4.10) оценивается в 5 - 15 %.
Активность воды и ДЭГа в системе вода - ДЭГ. По данным ЮжНИИГипроГаза, коэффициенты активности воды (г1) и ДЭГа (г2) в системе вода - ДЭГ с погрешностью 15 % в диапазоне температур 273 К < T < 303 K равны:
lnг1 = [1 + ()] - 2, (4.12)
lnг2 = [1 + ()] - 2, (4.13)
Мольная доля (ч) ДЭГа связана с его массовой концентрацией (чмас) соотношением:
ч = , (4.14)
Активность воды в системе вода - ЭТ - 1. Для нового осушителя и ингибитора гидратов ЭТ - 1, коэффициент активности воды г1 по экспериментальным данным ТюменНИИГИПРОГаза равен:
Lgг1 = - , (4.15)
где ч - мольная доля ЭТ - 1 в водном растворе (здесь ЭТ - 1 рассматривается как компонент с некоторой средней молекулярной массой).
Следует отметить, что поведение систем спирт (гликоль) - вода не сильно отличается от идеального и в оценочных расчетах можно полагать г1 ? 1 при х ? 0,3 и г2 ? 1 при х ? 0,7.
Активность воды в водных растворах электролитов. Прежде всего отметим, что коэффициенты активности воды в растворах электролитов слабо зависят от температуры. Существует ряд аналитических выражений, связывающих температуру замерзания водного раствора Тз и активность воды при 298,15 К. простая формула Здановского имеет вид:
Тз = 320,8/ (1,1750 - lg а10), (4.16)
Наиболее точная эмпирическая формула такого рода (Зайцева и Цейтлина), пригодная для любых электролитов имеет вид:
Тз = 10-3/ [3.6608 - 3.2979lg а10 - 7,4302 (lg а10) 2 - 60,731 (lg а10) 3], (4.17)
Среднеквадратическая погрешность формулы (4.17) составляет 0,16 К. следует отметить, что формулу (4.17) можно использовать и для оценки активности воды в водных растворах органических ингибиторов.
4.6 Анализ возможности замены метанола на другие антигидратные реагенты на базе алифатических спиртов
Взамен чистого метанола практически с той же антигидратной эффективностью можно использовать технические его сорта, а также полупродукты производства или кубовые остатки химических производств, где метанол применяется в технологическом цикле. При этом ставится задача снижения эксплуатационных затрат на предупреждение гидратообразования за счет использования более дешевых, чем метанол, продуктов, либо за счет введения в состав ингибитора малолетучих добавок. В последнем случае уменьшается потери метанола с газовой фазой, тогда как использование нелетучих реагентов-добавок в чистом виде или невозможно, или экономически нецелесообразно (из-за высокой вязкости, неподходящей температуры замерзания, наличия предела ингибирующего действия).
В последнее время детально исследуются возможности получения различных кислородосодержащих продуктов (в основном метанольных) непосредственно на месторождениях посредством неполного окисления природного газа кислородом воздуха. В результате проведенных исследований выявлено влияние гидродинамических параметров воздуха (окислителя) и природного газа на количество и состав полученных продуктов. Выход жидкой фазы на 1000 м3 газа составляет 39 - 43 кг, в состав входят СН3ОН (около 50 мас. %), высшие спирты (1 - 2 %), формальдегид (8 %), альдегиды, эфиры, кислоты и вода (32 - 34 мас. %). Определены оптимальные термодинамические параметры ведения процесса: давление - 10 МПа, температура - 400 - 420 єС. механизм реакции - цепной. Следует, однако, отметить определенные недостатки получаемого метанольного продукта: нестабильность состава (т.к. возможно продолжение процесса окисления) и наличие кислот, что обуславливает его коррозионную активность. Поэтому при промышленном внедрении в состав метанольного продукта необходимо вводить небольшие добавки ингибиторов коррозии, а также нейтрализовать кислоты. Антигидратная активность метанольного продукта ниже на 20 - 30 %, чем чистого метанола (см. рисунок 4.22).
В ряде случаев из-за высокой упругости паров метанола имеют место большие его потери с газовой фазой. Поэтому определенное внимание уделяется разработке смешанных составов, в которые помимо метанола входят и менее летучие водорастворимые органические реагенты. Так, предложен (А.С. № 510256) ингибитор гидратообразования, содержащий наряду с СН3ОН изопропиловый спирт (8 - 11 мас. %) и этиленгликоль (10 - 19 мас. %).
При гидратном методе получения метанола и фурфурола из этилена на стадии очистки целевого продукта с метанольной и очистной колонн отбирают метанольную фракцию (МФ), а с укрепляющей эфирной колонны - эфироальгидную фракцию (ЭФА). Впервые как ингибиторы гидратообразования МФ и ЭАФ предложено использовать еще 15 лет назад, однако, реального внедрения данные композиции до настоящего времени не получили.
Метанольная фракция по ТУ 81-04-175-78 содержит органической части не менее 93 мас. %, причем метанола не менее 80 мас. %, кислотность в перерасчете на уксусную кислоту до 500 мг/дм3. Состав МФ непостоянный (и зависит от технологического режима работы колонн), при хранении состав меняется (продукт окисляется).
В состав ЭФА входят главным образом этанол и диэтиловый эфир (в среднем в пропорции 2:
1) с небольшими примесями ацетальальдегида (и других альдегидов и эфиров) и воды. Состав ЭАФ также непостоянный. МФ и ЭАФ проявляют коррозионную активность.
С целью анализа реальных возможностей внедрения МФ и ЭАФ в практику ингибирования во ВНИИПромгазе недавно проведены детальные исследования по следующим направлениям:
анализ промышленной базы (возможности гидролизных заводов и анализ составов этих продуктов);
изучение антигидратной активности отдельных гидролизных фракций, их смесей и композиций;
рассмотрение возможности выпадения твердой при контакте гидролизных фракций с пластовыми водами и при низких (до минус 60°С) температурах;
изучении коррозионной активности продуктов.
Проведенные исследования позволили выработать определенную тактику использования МФ. Для усреднения состава рекомендовано смешивать поступающие МФ с разных заводов, а с целью снижения коррозионной активности использовать МФ в виде композиции с метанолом-сырцом, причем количество МФ не должно превышать 30 %.
Другой пример побочного продукта спиртового производства - упаренная последрожжевая барда (УПБ). УПБ представляет собой темно-коричневую жидкость со специфическим запахом, нетоксична, смешивается с водой и спиртами в любых соотношениях. Не коррозионно-активна и мало растворима в углеводородном конденсате, имеется достаточная промышленная база. Как ингибитор гидратообразования УПБ предложена во ВНИПИГАЗе. Ее основные физико-химические свойства: кинематическая вязкость при 20°С равна 2,4 м2/с, температура замерзания - минус 30°С, плотность при 20°С - 1,145 кг/м3. При практическом использовании УПБ снижение температуры гидратообразования может составить 10 - 12°С.
Таким образом, имеется ряд ингибиторов на базе метанола, которые могут быть использованы на УНТС Ямбургского ГКМ с целью сокращения эксплуатационных затрат на предупреждение гидратообразования.
5. Расчет расхода ингибитора на УКПГ - 5
5.1 Гидравлический и тепловой расчет шлейфов
Гидравлический расчет шлейфа выполняется для определения потерь при движении определенного количества газа по трубопроводу, распределения потерь давления по его длине.
Тепловой расчет шлейфа производится с целью оценки распределения температуры по его длине и определения места возможного образования гидратов.
Конечное давление в шлейфе при известном начальном давлении определяется так:
PК = , (5.1)
где Рн - давление газа в начале газопровода, МПа;
л - коэффициент гидравлического сопротивления газопровода;
ТСР - средняя температура в газопроводе, К;
l - длина газопровода, км;
? - относительная плотность газа в нормальных условиях и определяется по уравнению:
? = = , (5.2)
где сГ, сВ - плотность газа и воздуха соответственно;
МГ - молекулярная масса газа;
29 - молекулярная масса воздуха.
Коэффициент гидравлического сопротивления л зависит от режима движения газа. В промысловых газопроводах режим движения всегда турбулентный. Для такого режима существует несколько формул, определяющих величину л. Наиболее простая и известная из них эмпирическая формула, предложенная Веймаутом:
л = 0,009407/d3, (5.3)
Среднюю температуру газа на расчетном участке вычисляют по уравнению:
Т = ТОС + , (5.4)
где Т и Ту - температура окружающей среды и на устье скважины соответственно, К; L - длина шлейфа, км;
а - параметр Шухова, рассчитывают по формуле:
а = , (5.5)
где К - коэффициент теплопередачи от транспортируемого газа окружающей среде, Вт/ (м·°С), для приближенных расчетов принимают К=1,745 Вт/ (м·°С); С - изобарическая теплоемкость газа, кДж/кг, для приближенных расчетов принимают СР=2,177 кДж/кг; dН - наружный диаметр шлейфа, мм. При известном значении РК - давление на заданном участке шлейфа определяют по формуле:
РХ = , (5.6)
где x - расстояние от начала до расчетной точки шлейфа, км.
Температура газа на заданном участке шлейфа может определяться по уравнению:
TL = ТОС + (ТУ - ТОС) ·е-аL - Di, (5.7)
где Di - эффект Джоуля-Томпсона, то есть снижение температуры газа при понижении давления, С°/МПа, для приближенных расчетов применяют Di = 2,5 С°/Мпа; L - длина шлейфа, км;
РСР - среднее значение давления на расчетном участке шлейфа, определяется по уравнению:
РСР = , (5.8)
где РУ и РК - давление в начале и конце шлейфа, МПа.
Гидравлический и тепловой расчет шлейфа по предложенной выше методике произведен при помощи ПЭВМ. Программа расчета приведена в приложении А.
Для расчета были использованы следующие исходные данные:
Расход газа в шлейфе, млн. м3/сут. - 2,85 и 5.71
Давление газа на устье скважины, МПа - 4,9
Температура газа на устье скважины, К - 285
Температура окружающей среды, К - 238; 273; 293
Относительная плотность газа по воздуху - 0,561
Внутренний диаметр шлейфа, м - 0,5
Наружный диаметр шлейфа, м - 0,53
Длина шлейфа, км - 2,0 и 10,0
Коэффициент сверхсжимаемости газа - 0,9
Изобарическая теплоемкость газа, кДж/кг - 2,21
Коэффициент теплопередачи от газа
к окружающей среде, Вт/ (м2·°С) - 1,75
Эффект Джоуля-Томпсона Di,°С/МПа - 2,5
Результаты теплового расчета приведены в таблице 5.1.
Таблица 5.1 - Результаты гидравлического и теплового расчета
Расстояние от устья скважины, Х, км |
Давление в участке газопровода, Рх, МПа |
Температура газа в участке газопровода, Тl, К |
Температура гидратообразования, Тg, К |
|
Q = 5,71 млн. м3 сут., Тос = - 35 0С, Ру = 4,9 МПа, L = 2 км |
||||
0 |
4,9 |
285 |
282,22 |
|
0,2 |
4,9 |
284,72 |
282,22 |
|
0,4 |
4,9 |
284,44 |
282,21 |
|
0,6 |
4,89 |
284,17 |
282,21 |
|
0,8 |
4,89 |
283,9 |
282,2 |
|
1 |
4,88 |
283,63 |
282, 19 |
|
1,2 |
4,88 |
283,36 |
282,17 |
|
1,4 |
4,87 |
283,09 |
282,16 |
|
1,6 |
4,86 |
282,82 |
282,14 |
|
1,8 |
4,85 |
282,55 |
282,12 |
|
2 |
4,83 |
282,29 |
282,09 |
|
Q = 5,71 млн. м3 сут., Тос = 0 0С, Ру = 4,9 МПа, L = 2 км |
||||
0 |
4,9 |
285 |
282,22 |
|
0,2 |
4,9 |
284,92 |
282,22 |
|
0,4 |
4,9 |
284,83 |
282,21 |
|
0,6 |
4,89 |
284,75 |
282,21 |
|
0,8 |
4,89 |
284,67 |
282,2 |
|
1 |
4,88 |
284,59 |
282, 19 |
|
1,2 |
4,88 |
284,51 |
282,17 |
|
1,4 |
4,87 |
284,43 |
282,16 |
|
1,6 |
4,86 |
284,34 |
282,14 |
|
1,8 |
4,85 |
284,26 |
282,12 |
|
2 |
4,83 |
284, 19 |
282,09 |
|
Q = 5,71 млн. м3 сут., Тос = + 20 0С, Ру = 4,9 МПа, L = 2 км |
||||
0 |
4,9 |
285 |
282,22 |
|
0,2 |
4,9 |
285,03 |
282,22 |
|
0,4 |
4,9 |
285,06 |
282,21 |
|
0,6 |
4,89 |
285,08 |
282,21 |
|
0,8 |
4,89 |
285,11 |
282,2 |
|
1 |
4,88 |
285,14 |
282, 19 |
|
1,2 |
4,88 |
285,16 |
282,17 |
|
1,4 |
4,87 |
285, 19 |
282,16 |
|
1,6 |
4,86 |
285,22 |
282,14 |
|
1,8 |
4,85 |
285,24 |
282,12 |
|
2 |
4,83 |
285,27 |
282,09 |
|
Q = 2,85 млн. м3 сут., Тос = - 35 0С, Ру = 4,9 МПа, L = 2 км |
||||
0 |
4,9 |
285 |
282,22 |
|
0,2 |
4,9 |
284,47 |
282,22 |
|
0,4 |
4,9 |
283,95 |
282,22 |
|
0,6 |
4,9 |
283,44 |
282,21 |
|
0,8 |
4,9 |
282,93 |
282,21 |
|
1 |
4,9 |
282,43 |
282,21 |
|
1,2 |
4,89 |
281,93 |
282,21 |
|
1,4 |
4,89 |
281,44 |
282, 20 |
|
1,6 |
4,89 |
280,95 |
282, 20 |
|
1,8 |
4,89 |
280,47 |
282, 19 |
|
2 |
4,88 |
280 |
282, 19 |
|
Q = 2,85 млн. м3 сут., Тос = 0 0С, Ру = 4,9 МПа, L = 2 км |
||||
0 |
4,9 |
285 |
282,22 |
|
0,2 |
4,9 |
284,86 |
282,22 |
|
0,4 |
4,9 |
284,73 |
282,22 |
|
0,6 |
4,9 |
284,59 |
282,21 |
|
0,8 |
4,9 |
284,46 |
282,21 |
|
1 |
4,9 |
284,33 |
282,21 |
|
1,2 |
4,89 |
284,2 |
282,21 |
|
1,4 |
4,89 |
284,07 |
282, 20 |
|
1,6 |
4,89 |
283,94 |
282, 20 |
|
1,8 |
4,89 |
283,82 |
282, 19 |
|
2 |
4,88 |
283,69 |
282, 19 |
|
Q = 2,85 млн. м3 сут., Тос = + 20 0С, Ру = 4,9 МПа, L = 2 км |
||||
0 |
4,9 |
285 |
282,22 |
|
0,2 |
4,9 |
285,08 |
282,22 |
|
0,4 |
4,9 |
285,17 |
282,22 |
|
0,6 |
4,9 |
285,25 |
282,21 |
|
0,8 |
4,9 |
285,33 |
282,21 |
|
1 |
4,9 |
285,41 |
282,21 |
|
1,2 |
4,89 |
285,49 |
282,21 |
|
1,4 |
4,89 |
285,57 |
282, 20 |
|
1,6 |
4,89 |
285,65 |
282, 20 |
|
1,8 |
4,89 |
285,73 |
282, 19 |
|
2 |
4,88 |
285,8 |
282, 19 |
|
Q = 5,71 млн. м3 сут., Тос = - 35 0С, Ру = 4,9 МПа, L = 10 км |
||||
0 |
4,9 |
285 |
282,22 |
|
1 |
4,9 |
283,63 |
282,21 |
|
2 |
4,89 |
282,29 |
282, 19 |
|
3 |
4,87 |
280,99 |
282,16 |
|
4 |
4,85 |
279,73 |
282,12 |
|
5 |
4,82 |
278,5 |
282,06 |
|
6 |
4,78 |
277,3 |
281,99 |
|
7 |
4,73 |
276,14 |
281,91 |
|
8 |
4,68 |
275,01 |
281,82 |
|
9 |
4,62 |
273,91 |
281,7 |
|
10 |
4,56 |
272,84 |
281,58 |
|
Q = 5,71 млн. м3 сут., Тос = 0 0С, Ру = 4,9 МПа, L = 10 км |
||||
0 |
4,9 |
285 |
282,22 |
|
1 |
4,9 |
284,59 |
282,21 |
|
2 |
4,89 |
284, 19 |
282, 19 |
|
3 |
4,87 |
283,79 |
282,16 |
|
4 |
4,85 |
283,41 |
282,12 |
|
5 |
4,82 |
283,04 |
282,06 |
|
6 |
4,78 |
282,68 |
281,99 |
|
7 |
4,73 |
282,33 |
281,91 |
|
8 |
4,68 |
281,99 |
281,81 |
|
9 |
4,62 |
281,65 |
281,7 |
|
10 |
4,55 |
281,33 |
281,56 |
|
Q = 5,71 млн. м3 сут., Тос = + 20 0С, Ру = 4,9 МПа, L = 10 км |
||||
0 |
4,9 |
285 |
282,22 |
|
1 |
4,9 |
285,14 |
282,21 |
|
2 |
4,89 |
285,27 |
282, 19 |
|
3 |
4,87 |
285,4 |
282,16 |
|
4 |
4,85 |
285,52 |
282,12 |
|
5 |
4,81 |
285,64 |
282,06 |
|
6 |
4,78 |
285,75 |
281,99 |
|
7 |
4,73 |
285,87 |
281,91 |
|
8 |
4,68 |
285,97 |
281,81 |
|
9 |
4,62 |
286,08 |
281,69 |
|
10 |
4,55 |
286,18 |
281,56 |
|
Q = 2,85 млн. м3 сут., Тос = - 35 0С, Ру = 4,9 МПа, L = 10 км |
||||
0 |
4,9 |
285 |
282,22 |
|
1 |
4,9 |
282,43 |
282,21 |
|
2 |
4,9 |
280 |
282,21 |
|
3 |
4,89 |
277,7 |
282,2 |
|
4 |
4,89 |
275,53 |
282, 19 |
|
5 |
4,88 |
273,47 |
282,18 |
|
6 |
4,87 |
271,53 |
282,16 |
|
7 |
4,86 |
269,69 |
282,14 |
|
8 |
4,85 |
267,95 |
282,12 |
|
9 |
4,83 |
266,31 |
282,1 |
|
10 |
4,82 |
264,75 |
282,07 |
|
Q = 2,85 млн. м3 сут., Тос = 0 0С, Ру = 4,9 МПа, L = 10 км |
||||
0 |
4,9 |
285 |
282,22 |
|
1 |
4,9 |
284,33 |
282,21 |
|
2 |
4,9 |
283,69 |
282,21 |
|
3 |
4,89 |
283,09 |
282,2 |
|
4 |
4,89 |
282,53 |
282, 19 |
|
5 |
4,88 |
281,99 |
282,18 |
|
6 |
4,87 |
281,48 |
282,16 |
|
7 |
4,86 |
281 |
282,14 |
|
8 |
4,85 |
280,55 |
282,12 |
|
9 |
4,83 |
280,12 |
282,09 |
|
10 |
4,82 |
279,71 |
282,06 |
|
Q = 2,85 млн. м3 сут., Тос = + 20 0С, Ру = 4,9 МПа, L = 10 км |
||||
0 |
4,9 |
285 |
282,22 |
|
1 |
4,9 |
285,41 |
282,21 |
|
2 |
4,9 |
285,8 |
282,21 |
|
3 |
4,89 |
286,17 |
282,2 |
|
4 |
4,89 |
286,52 |
282, 19 |
|
5 |
4,88 |
286,85 |
282,18 |
|
6 |
4,87 |
287,17 |
282,16 |
|
7 |
4,86 |
287,46 |
282,14 |
|
8 |
4,85 |
287,74 |
282,12 |
|
9 |
4,83 |
288,01 |
282,09 |
|
10 |
4,81 |
288,26 |
282,06 |
Рисунок 5.1 - График зависимости температуры газа от расстояния при Q = 5,71, L = 2 км.
1 - Тос = 20 0С; 2 - Тос = 0 0С; 3 - Тос = - 35 0С;
4 - кривая гидратообразования
Рисунок 5.2 - График зависимости температуры газа от расстояния при Q = 2,85, L = 2 км.
1 - Тос = 20 0С; 2 - Тос = 0 0С; 3 - Тос = - 35 0С;
4 - кривая гидратообразования
Рисунок 5.3 - График зависимости температуры газа от расстояния при Q = 5,71, L = 10 км.
1 - Тос = 20 0С; 2 - Тос = 0 0С; 3 - Тос = - 35 0С;
4 - кривая гидратообразования
Рисунок 5.4 - График зависимости температуры газа от расстояния при Q = 2,85, L = 10 км.
1 - Тос = 20 0С; 2 - Тос = 0 0С; 3 - Тос = - 35 0С;
4 - кривая гидратообразования
В таблице 5.1 представлены результаты теплового расчета по шлейфам Ямбургского месторождения на 1999 год для двух характерных длин шлейфов (2 км и 10 км) и двух расходов газа по шлейфам, моделирующим соответственно работу 4-х (с сумарным дебитом 2,85 млн. м3/сут.) и 8-ми (5,71 млн. м3/сут.) скважин одного куста в шлейф. Здесь принята средняя проектная производительность скважин, что на практике не всегда реализуется. Весьма существенно отметить, что при заданных расходах газа в шлейфах имеет место дисперсно-кольцевой режим течения газожидкостного потока и обеспечивается непрерывный вынос жидкой фазы (воды, либо водного раствора метанола) из шлейфа. Из рассмотрения видно, что при температуре окружающей среды до минус 20 ?С и работе шести и более скважин в один шлейф темп падения температуры не превышает 0,5 - 0,6 град/км. Однако при уменьшении производительности шлейфов и при низких температурах воздуха (минус 30 - минус 35 ?С), температура газа в конце шлейфа может быть на 10 - 14 ?С ниже температур газа на устьях скважин. Следовательно, гидратный режим работы шлейфов Ямбургского месторождения реализуется в настоящее время (при температурах газа на устьях 12 - 14 ?С и давлениях 4,8 - 5,0 МПа) главным образом для данных шлейфов и при температуре воздуха ниже минус 20 ?С.
5.2 Расчет количества ингибитора
Вводимый в систему ингибитор гидратообразования расходуется для насыщения газовой фазы и растворяется в водном и углеводородном конденсатах, образовавшихся при изменении термодинамических параметров системы. Следовательно, количество ингибитора, необходимого для предупреждения гидратообразования, может определяться по уравнению:
G = gж + gг + gк, (5.9)
где gж - количество ингибитора, необходимого для насыщения жидкой фазы, кг/1000 м3;
gг - количество ингибитора, необходимого для насыщения газовой фазы, кг/1000 м3;
gк - количество ингибитора, растворенного в жидкой углеводородной фазе, выделяемой из 1000 м3 газа, кг.
Значение gж определяют по уравнению:
gж = W·X2/ (X1 - X2), (5.10)
где Х1 и Х2 - массовая доля ингибитора в исходном и отработанном растворах;
W - количество воды в жидкой фазе на расчетной точке, кг/1000 м3.
Массовая доля ингибитора в исходном растворе (Х1) относится к известным параметрам системы, а в отработанном растворе (Х2) зависит от требуемого понижения температуры гидратообразования газа, природы самого вещества и определяется по формуле:
Х2 = , (5.11)
где М - молекулярная масса ингибитора; К - коэффициент зависящий от типа раствора. Для метанола М = 32, К = 1220.
Если известна величина Х2, то величину понижения температуры гидратообразования для ингибитора определяют по формуле:
?t = , (5.12)
Значение необходимой температуры понижения гидратообразования рассчитывают по формуле:
?t = Тг - Тр, (5.13)
где Тг - температура гидратообразования газа, ?С;
Тр - температура газа в расчетной точке, ?С.
После определения ?t находят значение Х2.
Полученное значение Х2 соответствует такому раствору, который имеет температуру застывания ниже, чем температура в расчетной точке. Этот раствор не образует гидратов с компанентами газа.
Количество воды в жидкой фазе определяют по формуле:
W = b1 - b2 + ?b, (5.14)
где b1 и b2 - влагосодержание газа в начальной и расчетной точках системы соответственно, кг/1000 м3;
?b - количество капельной влаги в газе в начальной точке системы, кг/1000 м3.
При отсутствии фактических данных о количестве капельной влаги в системе, расход ингибитора, необходимого для насыщения газовой фазы, принимают на 10…20 % больше его расчетного значения.
Количество ингибитора, необходимое для насыщения газовой фазы определяют по формуле:
Gг = 0,1•а•Х2, (5.15)
где а - отношение содержания ингибитора, необходимого для насыщения газовой фазы, к концентрации метанола в отработанном растворе.
Для упрощения расчета необходимого количества ингибитора гидратообразования, по представленной выше методике, проведем его с применением ПЭВМ с помощью программы представленной в приложении В. Расчет проведен при тех же условиях и данных, что и при гидравлическом и тепловом расчете шлейфа. Для летних условий расчет не проводился т.к. в летнее время, по расчетам, образование гидратов не наблюдается.
Подобные документы
Сведения и геолого-промысловая характеристика Арланского месторождения. Физико-химические свойства нефти, газа и воды. Режим работы нефтесборных сетей месторождения. Проектирование трубопроводов системы сбора. Расчет экономической эффективности проекта.
дипломная работа [361,1 K], добавлен 11.03.2012Геолого-промысловая характеристика и состояние разработки Лянторского месторождения. Анализ технологических режимов и условий эксплуатации добывающих скважин. Характеристика призабойной зоны пласта. Условия фонтанирования скважины и давления в колоннах.
курсовая работа [1,4 M], добавлен 06.01.2011Характеристика Уренгойского газоконденсатного месторождения. Описание оборудования для очистки и одоризации газа. Рассмотрение источников и основных производственных опасностей на месторождении. Определение себестоимости газа, расчет заработной платы.
дипломная работа [4,5 M], добавлен 21.10.2014Развитие переработки газовых конденсатов. Характеристика углеводородных газов, совершенствование технологии их переработки. Естественные и искусственные углеводородные газы. Сепарация газа (низкотемпературная) как важнейшая промысловая операция.
реферат [232,2 K], добавлен 27.11.2009Фарфор - вид керамики, непроницаемый для воды и газа. История происхождения, исходное сырье, технология производства; характеристика и свойства материала; виды фарфора. Области применения фарфоровых изделий: промышленность, медицина; декоративный фарфор.
презентация [181,9 K], добавлен 29.05.2013Изучение классификации методов осушки природных газов. Состав основного технологического оборудования и механизм работы установок подготовки газа методом абсорбционной и адсорбционной осушки. Анализ инновационного теплофизического метода осушки газа.
доклад [1,1 M], добавлен 09.03.2016Назначение и цели создания автоматизируемой системы управления технологическими процессами. Приборы и средства автоматизации абсорбционной установки осушки газа. Оценка экономической эффективности применения кориолисовых расходомеров Micro Motion CMF.
дипломная работа [1,1 M], добавлен 22.04.2015Геолого-физическая характеристика продуктивных пластов Кыртаельского месторождения. Анализ состояния скважины, расчеты процесса освоения, условий фонтанирования на начальных и текущих стадиях. Техническое обоснование оборудования и способа эксплуатации.
курсовая работа [547,0 K], добавлен 06.01.2011Дренируемые запасы сухого газа, их физические свойства. Разработка нефтяных и газовых скважин, их эксплуатация и методы повышения дебитов. Анализ состояния разработки месторождения "Денгизкуль", технологические показатели и гидрохимический контроль.
диссертация [9,9 M], добавлен 24.06.2015Характеристика производства лидокаина гидрохлорида, его технико-экономический уровень и обоснование основных технических решений. Исходное сырье, материалы и полупродукты. Физико-химические основы технологического процесса. Нормы технологического режима.
дипломная работа [3,0 M], добавлен 15.05.2014