Влияние кристаллографической текстуры на анизотропию физико-механических свойств деформированных полуфабрикатов из сплавов на основе титана

Аустенитные и азотосодержащие коррозионно-стойкие стали: способы получения, технология производства, выплавка, термомеханическая обработка, основные свойства. Метод электрошлакового переплава металлических электродов в водоохлаждаемый кристаллизатор.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 19.06.2011
Размер файла 2,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Для развития высокой температуры в зоне реза металла к головке резака по питательным штангам подводят природный газ и кислород (около 99% О), а также порошковую смесь: на два объема порошка силико-кальция один объем порошка ПАМ-4. При сгорании в кислороде порошка ПАМ-4 (50% А1 и 50% Mg) развивается температура около 2500°С, что обеспечивает плавление тугоплавких элементов, входящих в состав нержавеющей стали.

Отрицательным моментом в абразивной и огневой зачистке металла является получение немобильных отходов металла с потерей ценных легирующих элементов.

Как правило, нержавеющие стали обладают пониженной пластичностью, т.е. пониженной способностью деформироваться без разрушения. Пластичность стали зависит от ее природы, характера напряженного состояния при деформации, а также температурных и скоростных условий деформации.

Наибольшее влияние на горячую пластичность оказывает химический состав стали, определяющий ее свойства и фазовый состав при деформации. Образование избыточных фаз различного состава, находящихся в металле в виде включений, прослоек и пленок, существенно затрудняет протекание процесса пластической деформации. В этой связи влияет и ликвация химического, а следовательно, и фазового состава металла в слитке.

Выбор оптимального химического состава стали даже в пределах марки, подавление процесса ликвации при разливке, диффузионное выравнивание состава при термообработке или нагреве под прокатку являются существенными условиями повышения пластичности металла. К природе стали следует также отнести ее микросостав: с одной стороны, наличие вредных элементов-- цветных металлов: свинца, цинка, висмута, сурьмы, олова, мышьяка и др; с другой -- наличие поверхностно активных элементов в определенных дозах: бора, кальция, магния, церия и других РЗЭ.

Микросостав стали определяется составом шихтовых материалов, методом и технологией выплавки, составом футеровки печи и оказывает существенное влияние на поведение металла при деформации. Например, если удаление ряда цветных металлов при вакуумном дуговом и электроннолучевом переплавах положительно сказывается на уровне пластичности, то испарение магния может привести к ухудшению способности к деформации.

Большое влияние на пластичность оказывают температурно-скоростные условия, при которых осуществляется деформация металла. В большинстве случаев с повышением температуры пластичность металла возрастает, сопротивление деформации уменьшается, повышается производительность станов. В связи с этим обычно стремятся деформировать металл при более высоких температурах.

Однако для нержавеющих сталей при выборе температуры нагрева и деформации следует учитывать не только опасность пережога, но и фазовое состояние металла, рост зерна и т. п. факторы, существенно влияющие на горячую пластичность и свойства прокатанной стали.

Повышенным сопротивлением деформации обладают стали с наибольшей легированностью аустенита, особенно содержащие интерметаллидные соединения и карбиды вольфрама и молибдена.

Сопротивление деформации зависит от температуры: и с понижением оно увеличивается. Верхний предел температуры деформации определяется температурой перегрева и пережога стали, которая на 100--200 град ниже температуры плавления стали, и кривой пластичности стали. Если сталь обладает высокой температурой начала рекристаллизации, то ограничивают и температуру конца прокатки (ковки). Она должна быть выше температуры рекристаллизации, так как при снижении температуры происходит упрочнение стали рост сопротивления деформации.

Для многих нержавеющих сталей необходимо производить деформацию в узком интервале температур, но при этом нежелательно применять малые обжатия по проходам, так как большое число проходов ведет к ухудшению качества металла.

Станы для прокатки нержавеющих сталей должны учитывать эти особенности и иметь повышенные прочность и мощность двигателя: контрольно-измерительная аппаратура должна обеспечить высокую точность температурного режима нагрева. [7]

3.4 Термомеханическая обработка аустенитных азотсодержащих коррозионно-стойких сталей

Введение в коррозионно-стойкие аустенитные стали большого количества азота, который превосходит по упрочняющей и аустенитнообразующей способности другие легирующие элементы, позволяет создать новые немагнитные сплавы с высокими механическими свойствами и сопротивлением коррозии. Такие сплавы не содержат других (кроме азота) г-стабилизаторов (Ni, Мn, Сu, Со), а также дорогих и дефицитных легирующих добавок, входящих в состав традиционных аустенитных коррозионно-стойких сталей (Mo, W, Nb или Ti). Например, сплавы, содержащие 21 -24 % Сr и 1,0 - 1,4 % N после нагрева до температуры, достаточной для растворения нитридов хрома в г-твердом растворе, и охлаждения в воде обладают сочетанием высокой прочности (у02 =850-900 МПа), пластичности (д=25-30%, ш=35-40 %) и износостойкости. По абразивной износостойкости эти сплавы в 2 - 3 раза превосходят известную сталь 110Г13Л, а по стойкости против межкристаллитной коррозии -- сталь типа 08Х18Н10Т

Существенным недостатком высокоазотистых Fe-Сr-N-сплавов, как и известных сплавов систем Fe-Cr-Mn-N, Fe-Cr-Ni-N и Fe-Cr-Mn-Ni-N, является их склонность к выделению нитридов хрома при температурах 500-900°С по механизму прерывистого распада. Это проявление нестабильности аустенита выражено тем более резко, чем выше степень пересыщения г-твердого раствора азотом. Прерывистый распад такого твердого раствора с высоким содержанием никеля и марганца происходит с образованием перлитоподобных колоний, состоящих из аустенита с равновесным содержание азота и пластинчатых частиц нитрида хрома типа Cr2N. В Fe-Сr-N-сплавах пересыщенный азоте аустенит или мартенсит при указанных выше температурах распадается с образованием ферритно-нитридной структуры.

Развитие прерывистого распада в высокоазотистых сплавах приводит к неоднородности механических свойств деталей, имеющих большие сечения, также к значительному снижению одновременно прочности, пластичности, вязкости, коррозионной стойкости и ухудшению свариваемости. Способы устранения отрицательного влияния прерывистого распада на эти свойства рассмотрены в работе. Наиболее эффективным из них является проведение холодной пластической деформации со значительными степенями обжатия (не менее 50 %), создающей высокую плотность дефектов кристаллического строения и, как следствие этого, изменение формы характера распределения нитридных частиц, формирующихся при последующих термических воздействиях. Холодная пластическая деформация Fe-Сr-Mn-N- или Fe-Сr-Ni-Мn-N-сплавов методами прокатки, волочения или гидроэкструзии с суммарной степенью обжатия 60 - 80 % обеспечивает повышение их прочности (до ув =2000-3000 МПа в зависимости от конечных размеров сечения образцов или изделий).

Другим возможным способом устранения прерывистого распада высокоазотистых сплавов является горячая пластическая деформация (при прокатке суммарная степень обжатия не менее 80 %) с окончанием при температурах, несколько превышают; температуру начала прерывистого распада, но не достаточных для развития процесса собирательной рекристаллизации аустенита. При горячей пластической деформации Fe-Сr-Мn-N- или Fe-Сr-Ni-Мn-N-сплавов (содержащих 0,6-1,0% N) прокаткой при 1000- 1100 °С с суммарным обжатием 70 % формируется фрагментированная структура (с размером ячеек 0,4-0,7 мкм), обеспечивающая сочетание высокой прочности (у0,2 =800-1000МПа), пластичности (д=30-50%), и ударной вязкости (KCU= 0,8-1,4 МДж/м2). [11]

Лист толщиной 20мм, полученный из «огарка» (часть электрода не подвергшийся ЭШП) имел предел текучести 560-770МПа и ударную вязкость 113-135Дж/см2, а лист 20 мм (ЭШП) имел предел текучести787-918МПа и ударную вязкость 172-215Дж/см2.

3.5 Термообработка аустенитных азотсодержащих коррозионно-стойких сталей

Термическая обработка нержавеющих сталей аустенитного класса сравнительно проста и заключается в закалке в воде с 1050--1100°С. Фактически это отжиг на гомогенизацию (гомогенизационный отжиг) с охлаждением в воде - аустенитизация.

Рис. 10. Схема закалки нержавеющей стали

Нагрев до этих температур вызывает растворение карбидов хрома (М23С6), а быстрое охлаждение фиксирует состояние пересыщенного твердого раствора. Медленное охлаждение недопустимо, так как при этом, как и при отпуске, возможно выделение карбидов, приводящее к ухудшению пластичности и коррозионной стойкости. Кроме того, при закалке происходят рекристаллизационные процессы, устраняющие последствия пластической деформации, которой часто подвергаются нержавеющие аустенитные стали.

Механические свойства аустенитных нержавеющих сталей в закаленном (смягченном) состоянии характеризуются низким значением предела текучести, невысокой прочностью и очень высокой пластичностью.

Очевидно, что этот способ упрочнения применим лишь для так видов изделий, как тонкий лист или лента, проволока и т. п. [7]

Изменяя режимы термической обработки высокоазотистых хромистых сталей, можно влиять на фазовые и структурные превращения при нагреве и охлаждении сталей и как следствие на их свойства. Фазовые превращения, происходящие при нагреве сталей с аустенитной структурой, связаны с образованием нитридов, начинающимися при ~500°С (зонная стадия) и заканчивающимися при ~730°С (стадия выделений). Нитриды, обеспечивающие высокую твердость стали, весьма дисперсны и имеют вид тонких реек. Коагуляция нитридов при 700-800°С приводит к резкому снижению твердости. После выдержки при 950-1050°С твердость закаленных сталей достигает величины, близкой к твердости закаленной высокоуглеродистой стали с 0,6-1,0% С.

В процессе охлаждения (его скорость в наших экспериментах составляла 120°С/мин.) сталей происходит г>б -превращения по двум механизмам:

- диффузионному (при 680°С), с распадом обедненного азотом аустенита на феррит с крупными зернами полиэдрической формы и нитриды хрома;

- мартенситному, с образованием пластинчатого мартенсита из обедненного азотом аустенита.

При повышении температуры нагрева предварительно закаленных сталей температура начала мартенситного превращения снижается. Например, для стали, содержащей 18% хрома и 0,9% азота, после нагрева до 900, 1100 и выше 1150°С г>б превращение по мартенситному механизму протекает при температурах 305, 110°С и ниже комнатной соответственно. Чем выше температура нагрева под закалку, тем большее количество нитридов растворяется, что приводит к уменьшению количества б- фазы и понижению твердости. [5]

Термическая обработка листа толщиной 10мм показала возможность снятия избыточного наклепа и повышения ударной вязкости. Полученные значения предела текучести и ударной вязкости составили соответственно 670-770Мпа (вместо 920-990МПа до термической обработки) и 280-325Дж/см2 (вместо 135-160Дж/см2 до термической обработки).

Радикальный способ упрочнения аустенитных сталей -- холодный наклеп; при деформации порядка 80--90 % предел текучести достигает 980--1170 МПа, а предел прочности 1170--1370 МПа при сохранении достаточно высокой пластичности. [7]

Глава 4. Свойства аустенитных азотсодержащих коррозионно-стойких сталей

В настоящее время в химической промышленности находят применение хромоникелевые стали типа 18-12 и 20-20 (иногда легированные 2--3% Мо) с крайне низким содержанием углерода -- не более 0,03% (в отдельных случаях не более 0,02%). Эти стали не склонны к межкристаллитной коррозии в ряде весьма агрессивных сред и их не требуется стабилизировать титаном или ниобием. Однако из-за малого содержания углерода и повышенной склонности к рекристаллизации такие стали обладают пониженным пределом текучести в сравнении с классическими нержавеющими сталями, имеющими и без того невысокий предел текучести. С целью повышения прочностных свойств малоуглеродистых нержавеющих сталей без ущерба для коррозионной стойкости их легируют азотом в небольших количествах, что вызывает упрочнение за счет растворения азота в г-твердом растворе.

Рис. 11. Влияние растворенного азота на предел текучести (у0,2) стали.

Рис. 12. Влияние азота на механические свойства малоуглеродистых аустенитных сталей Cr-Ni, Cr-Ni-Mo и Cr-Ni-Mn-Mo сталей типа 18-10, 18-14-3 и 20-12-10-3

Влияние азота, растворенного в г-твердом растворе, на изменение механических свойств ряда хромоникелевых, Сr-- Ni -- Мо и Сr -- Ni -- Мn сталей иллюстрируют рис. 11 и 12, из рассмотрения которых следует, что упрочнение пропорционально содержанию азота, растворенного в стали. Для стали Х18Н10 при 0,02% С и 0,15% N предел текучести достигает 30 кГ/мм2. Количество растворенного азота в свою очередь тем больше, чем выше концентрация хрома и марганца. Упрочнение, связанное с растворением азота в твердом растворе, вызывает незначительное уменьшение пластичности и ударной вязкости аустенитных сталей в отличие от дисперсионно-твердеющих сталей, в которых упрочнение сопровождается значительной потерей вязкости. В г-твердом растворе стали 00ХТ5НТ4АМЗ, закаленной после аустенитизации при температуре 1050°С, может быть растворено до 0,20% N, а в случае дополнительного легирования марганцем (сталь 00Х18Н12Г10АМЗ) в твердом растворе растворяется до 0,34% N . Следует, однако, учитывать, что растворимость азота в твердом растворе и в расплаве различна, поэтому фактическое содержание азота в стали зависит от условий выплавки, разливки, кристаллизации слитка и других факторов.

Азот, находящийся в г-твердом растворе низкоуглеродистых хромо-никелевых сталей типа 18-12, не ухудшает их общей коррозионной стойкости в кипящей 65%-ной HNO3 и не ухудшает поведения металла после провоцирующего отпуска в критическом интервале температур. Понижая содержание углерода, можно достигнуть существенного улучшения коррозионной стойкости стали с повышенными прочностными свойствами. Так, уменьшение содержания углерода в стали 00Х18Н14АМЗ (0,18% N) с 0,047 до 0,015% приводит к увеличению, минимального времени до возникновения склонности к межкристаллитной коррозии с 30 мин до 1000 ч при испытании по методу AM (рис. 13).

Рис. 13. Результаты испытаний на межкристаллитную коррозию хромоникельмолибденовых сталей с содержанием 0,015 и 0,047% С, а также с повышенным содержанием азота в кипящем растворе сульфата меди в серной кислоте: 1 - коррозия отсутствует; 2 -- коррозия на глубину до 0,05 мм; 3 -- слабая коррозия; 4 -- сильная коррозия

Содержание, %

C

Si

Mn

Cr

а

0,015

0,5

1,39

17,53

б

0,047

0,46

1,50

17,97

Ni

Mo

N

а

13,97

2,87

0,182

б

14,97

2,81

0,184

На примере стали 00Х18Н14АМЗ можно также сделать вывод, что в небольших количествах азот не оказывает отрицательного влияния на поведение однофазной аустенитной стали в условиях коррозии под напряжением в кипящем 42%-ном растворе хлористого магния. С учетом области разброса (рис. 14) предел длительной коррозионной прочности образцов с 0,04 и 0,16% N практически одинаков.

Рис. 14. Результаты испытаний на коррозионное растрескивание под напряжением Сr -- Ni -- Мо сталей с присадкой и без присадки азота в кипящем 42% -ном растворе хлористого магния. Поверхность образцов электрополирована и пассивирована в 15% -ном растворе азотной кислоты в течение 1 ч при 40°С. Стрелкой отмечено появление отдельных надрывов

Содержание, %

C

Si

Mn

Cr

а

0,024

0,4

1,42

17,64

б

0,030

0,42

1,23

18,50

Ni

Mo

N

а

14,40

2,98

0,04

б

14,07

2,97

0,16

В малоуглеродистой хромоникелевой стали, легированной азотом, наличие стабильной аустенитной структуры и отсутствие второй фазы исключает опасность структурно-избирательной коррозии и делает сталь не подверженной охрупчиванию при отпуске в интервале температур 600--900°С. Подобные стали хорошо полируются в противоположность титан содержащим нержавеющим сталям, обработка которых затруднена из-за образования скоплений или больших размеров карбонитридов.

Для сварки сталей, не подвергаемых дальнейшей термообработке, могут быть использованы аустенитные присадочные материалы из Сr -- Ni--Мо сталей, а для сварки конструкций, подвергаемых термообработке, используют присадочный материал, содержащий примерно 0,03% С, 18% Сr, 14% Ni, 10% Мn, 2,5% Мо и 0,2% N. [6]

Выводы

На основе проведенного выше анализа литературы можно сделать вывод, что использование ЭШП эффективно для выплавки азотсодержащих коррозионно-стойких аустенитных сталей. Свойства, получаемые после проведения ЭШП намного выше, чем после проведения только электродуговой плавки. Формируемый при ЭШП слиток, за счет направленной кристаллизации в водоохлаждаемом кристаллизаторе, обработке химически активным шлаком и затвердеванию в шлаковом гарнисаже, характеризуется высокой однородностью структуры, высокой плотностью, низким содержанием неметаллических включений, вредных примесей и гладкой поверхностью, не требующей дополнительной механической обработки. За счет однородной структуры, получаемой при ЭШП, получаем однофазную аустенитную структуру с низкой магнитопроницаемостью (м ? 1,01 Гс/Э). В сталях полученных электродуговой плавкой с последующей прокаткой возможно большие включения ферритной составляющей (особенно при недостатке марганца). Макроструктура слитков ЭШП характеризуется высокой плотностью и однородностью, что, естественно, обеспечивает высокое качество деформированного металла даже при малых степенях деформации.

Для слитка ЭШП характерно очень равномерное и дисперсное распределение второй фазы, например, первичного феррита, боридной или карбидной эвтектики в аустенитной основе.

Список использованной литературы

1. Банных О.А., Блинов В.М., Деркач Г.Г., Колесников А.Г., Костина М.В., Петраков А.Ф., Семенов В.Н. Научные основы создания нового поколения сталей и сплавов для эксплуатации в экстремальных условиях и технологии их обработки. Москва 2000 г.

2. Б. Е. Патон, Б.И. Медовар, Г.А.Бойко. Электро-шлаковая технология. Общество «Знание» украинской ССР Киев - 1976 г.

3. Гуляев А. П. Металловедение. Москва «МЕТАЛЛУРГИЯ» 1986 г. 541 с.

4. О. А. Банных, В. М. Блинов. Дисперсионно-твердеющие немагнитные ванадийсодержащие стали. Издательство «Наука», 1980г.

5. Химушин Ф.Ф. Нержавеющие стали. Государственное научно-техническое издательство литературы по черной и цветной металлургии. Москва 1963 г. 600 с.

6. М. В. Приданцев, Н. П. Талов, Ф. Л. Левин Высокопрочные аустенитные стали. М.: изд. «Металлургия», 1969, с. 248.

7. Г.М. Бородулин, Е. И. Мошкевич. Нержавеющая сталь. Москва «МЕТАЛЛУРГИЯ», 1973г. 319с.

8. В. И. Коротич С.Г. Братчиков. Металлургия черных металлов. Москва «МЕТАЛЛУРГИЯ», 1987г. 239с.

9. Журнал Современная электрометаллургия №2 2008 г. А.Митчелл Кристаллизация металла в процессах переплава. с. 4-12.

10. Журнал Металловедение и термическая обработка металлов №1 2002 г. Костина М.В., В.М. Дымов., Банных О.А., Блинов В.М. Влияние пластической деформации на структуру и свойства высокоазотистых сплавов системы Fe - Сr

11. Журнал Металловедение и термическая обработка металлов №7 2001 г. Костина М.В., Банных О.А., Блинов В.М. Влияние пластической деформации и термической обработки на структуру и упрочнение азотистой стали 0Х16АН4Б

12. А. Д. Крамаров. Производство стали в электропечах. Издательство «МЕТАЛЛУРГИЯ» Москва 1969 г. 350 с.

13. И. И. Новиков. Теория термической обработки металлов. Москва «МЕТАЛЛУРГИЯ» 1986 г. 479 с.

Размещено на Allbest.ru


Подобные документы

  • Структура, химический состав и назначение стали марки ЭИ 961. Выплавка металла в мартеновской, электродуговой и индукционных печах. Технология электрошлакового переплава стали и контроль качества слитков. Требования к расходуемым электродам и флюсам.

    дипломная работа [315,7 K], добавлен 07.07.2014

  • Описание технологии производства чугуна и стали: характеристика исходных материалов, обогащение руд, выплавка и способы получения. Медь, медные руды и пути их переработки. Технология производства алюминия, титана, магния и их сплавов. Обработка металлов.

    реферат [101,6 K], добавлен 17.01.2011

  • Вакуумные дуговые печи: параметры и принцип действия. Установки электрошлакового переплава. Особенности применения электронно-лучевых установок. Установки плазменно-дугового переплава в водоохлаждаемый кристаллизатор. Вакуумные индукционные печи.

    реферат [555,1 K], добавлен 04.04.2011

  • Физико-химические свойства титана и технология его производства. Карботермическая и алюмотермическая выплавка ферротитана. Достоинства и недостатки способов ведения плавки. Титан высокой чистоты как конструкционный материал. Применение жидкого алюминия.

    лекция [306,6 K], добавлен 24.11.2013

  • Производство стали в кислородных конвертерах. Легированные стали и сплавы. Структура легированной стали. Классификация и маркировака стали. Влияние легирующих элементов на свойства стали. Термическая и термомеханическая обработка легированной стали.

    реферат [22,8 K], добавлен 24.12.2007

  • Химический состав и назначение стали марки ШХ4. Требования к металлу открытой выплавки. Требования к исходному металлу для электрошлакового переплава. Расчет геометрических размеров электрода и кристаллизатора. Расчет материального баланса плавки.

    курсовая работа [266,8 K], добавлен 07.07.2014

  • Термическая обработка стали – совокупность операций нагрева, выдержки и охлаждения твёрдых металлических сплавов с целью придания им определённых свойств за счёт изменения внутреннего строения и структуры.

    контрольная работа [10,8 K], добавлен 09.02.2004

  • Процесс получения титана из руды. Свойства титана и область его применения. Несовершенства кристаллического строения реальных металлов, как это отражается на их свойствах. Термическая обработка металлов и сплавов - основной упрочняющий вид обработки.

    контрольная работа [2,3 M], добавлен 19.01.2011

  • Особенности легирования коррозионностойких аустенитных сталей. Аустенитные стали с карбидным и интерметаллидным упрочнением. Аустенитные стали, содержащие азот. Разработка и исследование новых безуглеродистых коррозионностойких сталей на Fe-Cr-Ni основе.

    дипломная работа [13,0 M], добавлен 25.04.2012

  • Старые автомобили как один из основных источников получения низкопроцентного стального лома. Механическое уплотнение старых автомобилей перед извлечением из них стали. Виды стали и их термообработка. Закалка и термомеханическая обработка хромистой стали.

    курсовая работа [160,6 K], добавлен 11.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.