Технология обработки конструкционных материалов

Основы металлургического производства. Производство чугуна и стали. Процессы прямого получения железа из руд. Преимущество плавильных печей. Способы повышения качества стали. Выбор метода и способа получения заготовки. Общие принципы выбора заготовки.

Рубрика Производство и технологии
Вид курс лекций
Язык русский
Дата добавления 20.02.2010
Размер файла 5,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рис.17.4. Схема электрошлаковой сварки

Свариваемые заготовки 1 устанавливают в вертикальном положении. В замкнутое пространство между водоохлаждаемыми медными ползунами 4 и вертикально установленными кромками изделий засыпают флюс и подают электродную проволоку 7 при помощи специального механизма подачи 6.

В начале процесса возбуждают дугу, флюс плавится и образуется электропроводный шлак 5. Шлак шунтирует дугу, она гаснет, выходная цепь источника питания замыкается через шлак. Ток, проходя через шлак, разогревает его, это приводит к раславлению кромок основного металла и электрода. Расплав стекает вниз и образует сварочную ванну 8, выжимая шлак вверх, и затвердевает.

В начальном и конечном участках шва образуются дефекты: в начале шва - непровар кромок, в конце шва - усадочная раковина и неметаллические включения. Поэтому сварку начинают и заканчивают на специальных планках 2 и 3, которые затем удаляют газовой резкой.

Преимущества: возможна сварка металла любой толщины (с 16 мм). Заготовки с толщиной до 150 мм можно сваривать одним электродом, совершающим поперечное колебание в плоскости стыка, при толщине более 150 мм используются нескольких проволок. Есть опыт сварки толщиной до 2 м.

Недостаток способа - образование крупного зерна в шве и околошовной зоне вследствие замедленного нагрева и охлаждения. Необходимо проведение термической обработки: нормализации или отжига для измельчения зерна.

Электрошлаковую сварку широко применяют в тяжелом машиностроении для изготовления ковано-сварных и лито-сварных конструкций; станины и детали мощных прессов и станков, коленчатые валы судовых дизелей, роторы и валы гидротурбин, котлы высокого давления и т.п.

Лучевые способы сварки

Электронно-лучевая сварка.

Сущность процесса состоит в том, что свариваемые детали, собранные без зазора, помещают в вакуумную камеру и подают на них электродный луч - пучок электронов, движущихся с большой скоростью. При соударении с изделием электроны тормозятся, их кинетическая энергия переходит в тепловую энергию и расплавляет металл. Температура в месте соударения достигает 5000…6000 0С. Перемещая электронный луч вдоль стыка, получают сварной шов.

Схема установка для электронно-лучевой сварки представлена на рис.17.5.

Рис.17.5. Схема установки для электронно-дуговой сварки

Электроны, испускаемые катодом 1 электронной пушки, формируются в пучок электродом 2, расположенным непосредственно за катодом, ускоряются под действием разности потенциалов между катодом и анодом 3, составляющей 20…150 кВ и выше, затем фокусируются в виде луча и направляются специальной отклоняющей магнитной системой 5 на обрабатываемое изделие 6. На формирующий электрод 2 подается отрицательный или нулевой по отношению к катоду потенциал. Фокусировкой достигается высокая удельная мощность луча. Ток электронного луча невелик - от нескольких миллиампер до единиц ампер.

Процессу электронно-лучевой сварки присущи две характерные особенности:

сварка протекает в вакууме, обеспечивается получение зеркально чистой поверхности и дегазация расплавленного металла;

интенсивность нагрева очень велика, что обеспечивает быстрое плавление и затвердевание металла. Шов получается мелкозернистый с высокими механическими свойствами, с минимальной шириной, что позволяет сваривать сплавы, чувствительные к нагреву.

Электронно-лучевой сваркой изготовляют детали из тугоплавких, химически активных металлов и их сплавов (вольфрамовых, танталовых, молибденовых, ниобиевых, циркониевых), а также алюминиевых и титановых сплавов и высоколегированных сталей. Металлы и сплавы можно сваривать в однородных и разнородных сочетаниях, со значительной разностью толщин, температур плавления. Минимальная толщина свариваемых заготовок составляет 0,02 мм, максимальная - до 100 мм.

Лазерная сварка.

Лазерная сварка - способ сварки плавлением, при которых металл нагревают излучением лазера.

Лазерный луч представляет собой вынужденное монохроматическое излучение, длина волны которого зависит от природы рабочего тела лазера-излучателя. Оно возникает в результате вынужденных скачкообразных переходов возбужденных атомов рабочих тел на более низкие энергетические уровни.

Основными параметрами режимов лазерной обработки являются мощность излучения, диаметр пятна фокусировки, скорость перемещения обрабатываемого материала относительно луча.

Преимуществом лазерной сварки является быстрый точечный нагрев металла до плавления. Интенсивный сосредоточенный нагрев обуславливает и чрезвычайно большую скорость охлаждения после прекращения воздействия луча. Это позволяет свести к минимуму ширину околошовной зоны, сварочные напряжения и деформации.

Механизм процессов при лазерной сварке схож с электронно-лучевой сваркой, но не обязательно вакуумировать изделие.

Лазером сваривают преимущественно толщины до 1 мм, так как коэффициент полезного действия преобразования энергии в лазерное излучение довольно низкий.

Газовая сварка

При газовой сварке заготовки 1 и присадочный материал 2 в виде прутка или проволоки расплавляют высокотемпературным пламенем 4 газовой горелки 3 (рис.17.6).

Рис.17.6. Схема газовой сварки

Газовое пламя получают при сгорании горючего газа в атмосфере технически чистого кислорода. Мощность пламени регулируют сменой наконечников горелки.

Нагрев заготовки осуществляется более плавно, чем при дуговой сварке, поэтому газовую сварку применяют для сварки металла малой толщины (0,2…3 мм), легкоплавких цветных металлов и сплавов; металлов и сплавов, требующих постепенного нагрева и охлаждения (инструментальные стали, латуни); для подварки дефектов в чугунных и бронзовых отливках. При увеличении толщины металла снижается производительность и увеличивается деформация.

ЛЕКЦИЯ 18

Сварка давлением. Специальные термические процессы в сварочном производстве. Пайка

Сварка давлением

Сущность получения неразъемного сварного соединения двух заготовок в твердом состоянии состоит в сближении идеально чистых соединяемых поверхностей на расстояния (2…4) 10 - 10 см, при которых возникают межатомные силы притяжения.

Необходимым условием получения качественного соединения в твердом состоянии являются хорошая очистка и подготовка поверхностей и наличие сдвиговых пластичных деформаций в зоне соединения в момент сварки.

Контактная сварка

Сварные соединения получаются в результате нагрева деталей проходящим через них током и последующей пластической деформации зоны соединения.

Сварка осуществляется на машинах, состоящих из источника тока, прерывателя тока и механизмов зажатия заготовок и давления.

К деталям с помощью электродов подводят ток небольшого напряжения (3…8 В) и большой силы (до нескольких десятков кА). Большая часть тепла выделяется в зоне контакта деталей.

По виду получаемого соединения контактную сварку подразделяют на точечную, шовную, стыковую. Схемы контактной сварки представлены на рис.18.1.

Рис.18.1. Схемы контактной сварки: а - стыковой; б - точечной; в - шовной

Стыковая контактная сварка (рис.18.1. а) - способ соединения деталей по всей плоскости их касания.

Свариваемые заготовки 1 плотно зажимают в неподвижном 2 и подвижном 3 токоподводах, подключенных к вторичной обмотке сварочного трансформатора 4. Для обеспечения плотного электрического контакта свариваемые поверхности приводят в соприкосновение и сжимают. Затем включается ток. Поверхность контакта заготовок разогревается до требуемой температуры, ток отключается, производится сдавливание заготовок - осадка.

Стыковую сварку с разогревом стыка до пластического состояния и последующей осадкой называют сваркой сопротивлением, а при разогреве торцов до оплавления с последующей осадкой - сваркой оплавлением. В результате пластической деформации и быстрой рекристаллизации в зоне образуются рекристаллизованные зерна из материала обеих деталей.

Сварка применяется для соединения встык деталей типа стержней, толстостенных труб, рельсов и т.п.

Точечная сварка (рис.18.1. б) - способ изготовления листовых или стержневых конструкций, позволяющий получить прочные соединения в отдельных точках.

Свариваемые заготовки 1, собранные внахлест, зажимают между неподвижным 2 и подвижным 3 электродами, подсоединенными к обмотке трансформатора 4.

Электроды изнутри охлаждаются водой, нагрев локализуется на участках соприкосновения деталей между электродами. Получают линзу расплава требуемого размера, ток выключают, расплав затвердевает, образуется сварная точка. Электроды сжимают детали, пластически деформируя их.

Образующееся сварное соединение обладает большой прочностью и его можно применять для изготовления несущих конструкций. Этот способ широко применяют в авто - и вагоностроении, строительстве, а также при сборке электрических схем.

Шовная сварка (рис.18.1. в) - способ соединения деталей швом, состоящим из отдельных сварных точек.

Свариваемые заготовки 1 помещают между двумя роликами-электродами, один из электродов 2 может иметь вращательное движение, а другой 3 - вращательное движение и перемещение в вертикальном направлении. Электроды подключаются к вторичной обмотке трансформатора 4. Электроды-ролики зажимают и передвигают деталь.

Шовная сварка обеспечивает получение прочных и герметичных соединений их листового материала толщиной до 5 мм.

Диффузионная сварка

Диффузионная сварка - способ сварки давлением в вакууме приложением сдавливающих сил при повышенной температуре.

Свариваемые детали тщательно зачищают, сжимают, нагревают в вакууме специальным источником тепла до температуры рекристаллизации (0,4 Тпл), и длительно выдерживают. В начальной стадии процесса создаются условия для образования металлических связей между соединяемыми поверхностями. Низкое давление способствует удалению поверхностных пленок, а высокая температура и давление приводят к уменьшению неровностей поверхностей и сближению их до нужного расстояния. Затем протекают процессы диффузии в металле, образуются промежуточные слои, увеличивающие прочность соединения. Соединения получают при небольшой пластической деформации. Изменение размеров мало.

Сварка может осуществляться в среде инертных и защитных газов: гелий, аргон, водород.

Способ применяется для соединения металлов, металлов и полупроводников, а также других неметаллических материалов.

Диффузионная сварка широко применяется в космической технике, в электротехнической, радиотехнической и других отраслях промышленности.

Сварка трением

Сварка трением - способ сварки давлением при воздействии теплоты, возникающей при трении свариваемых поверхностей.

Свариваемые заготовки устанавливают соосно в зажимах машины, один из которых неподвижен, а другой может совершать вращательное и поступательное движения. Заготовки сжимаются осевым усилием, и включается механизм вращения. При достижении температуры 980…1300 0С вращение заготовок прекращают при продолжении сжатия.

Иногда сварку трением производят через промежуточный вращаемый элемент или заменяют вращательное движение вибрацией.

Сваркой трением можно сваривать заготовки диаметром 0,75…140 мм.

Преимущества способа: простота, высокая производительность, малая энергоемкость, стабильность качества соединения, возможность сварки заготовок из разнородных материалов.

Осуществляется сварка на специальных машинах.

Сварка взрывом

Большинство технологических схем сварки взрывом основано на использовании направленного взрыва.

Соединяемые поверхности заготовок, одна из которых неподвижна и служит основанием, располагают под углом друг к другу на определенном расстоянии. На вторую заготовку укладывают взрывчатое вещество и устанавливают детонатор. Сварку осуществляют на жесткой опоре. При соударении двух деталей под действием ударной волны, движущихся с большой скоростью, между ними образуется кумулятивная струя, которая разрушает и уносит оксидные поверхностные пленки и другие загрязнения. Поверхности сближаются до расстояния действия межатомных сил, и происходит схватывание по всей площади соединения. Продолжительность сварки несколько микросекунд.

Прочность соединений, выполненных сваркой взрывом, выше прочности соединяемых материалов.

Сварку взрывом используют при изготовлении заготовок для проката биметалла, плакировке поверхностей конструкционных сталей металлами и сплавами со специальными свойствами, при сварке заготовок из разнородных материалов. Целесообразно сочетание сварки взрывом со штамповкой и ковкой.

Тип сварного соединения

Основными преимуществами сварных соединений являются: экономия металла; снижение трудоемкости изготовления корпусных деталей; возможность изготовления конструкций сложной формы из отдельных деталей, полученных ковкой, прокаткой, штамповкой.

Сварным конструкциям присущи и некоторые недостатки: появление остаточных напряжений; коробление в процессе сварки; плохое восприятие знакопеременных напряжений, особенно вибраций; сложность и трудоемкость контроля.

Тип сварного соединения определяют взаимным расположением свариваемых элементов и формой подготовки (разделки) их кромок под сварку.

В зависимости расположения соединяемых деталей различают четыре основных типа сварных соединений: стыковые, нахлесточные, угловые и тавровые (рис.18.2).

Рис.18.2. Основные типы сварных соединений

а - стыковое; б - нахлесточное; в - тавровое; г - угловое

Кромки разделывают в целях полного провара заготовок по сечению, что является одним из условий равнопрочности сварного соединения с основным металлом.

Формы подготовки кромок под сварку показаны на рис.18.3. различают V, K, X - образные

По характеру выполнения сварные швы могут быть односторонние и двухсторонние.

Рис.18.3. Формы подготовки кромок под сварку:

а - V-образная; б - U - образная; в - X-образная; г - двусторонняя Х-образная

Специальные термические процессы в сварочном производстве

Наплавка - процесс нанесения слоя металла или сплава на поверхность изделия.

Наплавка позволяет получать детали с поверхностью, отличающейся от основного металла, например жаростойкостью и жаропрочностью, высокой износостойкостью при нормальных и повышенных температурах, коррозионной стойкостью и т.п. Наплавка может производиться как при изготовлении новых деталей, так и в ремонтно-восстановительных работах, существенно удлиняя срок эксплуатации деталей и узлов, обеспечивая этим высокий экономический эффект.

Существуют разнообразные способы наплавки.

Ручная дуговая электродами со стержнями и покрытиями специальных составов.

Автоматическая наплавка под флюсом. Электроды могут быть сплошного сечения и порошковые. Состав флюса, металл электрода и состав наполнителя определяют свойства наплавленного слоя.

Наплавка плавящимися и неплавящимися электродами в среде защитных газов. Свойства наплавленного слоя зависят от материала присадки или электрода.

Плазменная наплавка. Дуга может быть как прямого, так и косвенного действия. Можно плазменной струей оплавлять слой легированного порошка, предварительно нанесенный на поверхность детали.

Электрошлаковая, электронно-лучевая, лазерная наплавка, а также наплавка газокислородным пламенем.

Существенным показателем эффективности того или иного способа наплавки является степень перемешивания при наплавке основного металла и присадочного: чем она меньше, тем ближе будут свойства наплавленного слоя к заданным.

Напыление

При напылении расплавленные по всему объему или по поверхности частицы материала будущего покрытия направляются на поверхность нагретой заготовки. При соударении с поверхностью частица деформируется, обеспечивая хороший физический контакт с деталью. Характер взаимодействия частицы с материалом подложки, последующая кристаллизация частиц определяет качество адгезии покрытия с подложкой. Последующие слои формируются уже за счет связей частиц друг с другом, имеют чешуйчатое строение и существенно неоднородны.

По мере повышения стоимости объемного легирования и стремления получить требуемые эксплуатационные свойства более экономичным способом (легированием поверхности) напыление становится все более предпочтительным.

Для напыления используют источники тепла: газовое пламя, плазму, ионный нагрев, нагрев в печах, лазер и др.

Наибольшее распространение получили процессы газопламенного и плазменного напыления. Материал для напыления подается в пламя горелки или плазменную дугу в виде проволоки или порошка, где происходит нагрев и распыление частиц, которые тепловым потоком источника нагрева разгоняются и попадают на поверхность напыляемой детали. Иной способ формирования покрытий при нагреве в печах. В этом случае нагретая деталь контактирует с материалом покрытия, находящимся в виде порошка или газовой фазы. Получаемое таким методом покрытие имеет высокую адгезию к поверхности детали за счет активных диффузионных процессов, происходящих в период длительной выдержки в печи при высокой температуре.

Все большее распространение получают ионно-плазменные методы напыления износостойких и декоративных покрытий.

Пайка

Пайка - процесс получения неразъемного соединения заготовок без их расплавления путем смачивания поверхностей жидким припоем с последующей его кристаллизацией. Расплавленный припой затекает в специально создаваемые зазоры между деталями и диффундирует в металл этих деталей. Протекает процесс взаимного растворения металла деталей и припоя, в результате чего образуется сплав, более прочный, чем припой.

Образование соединения без расплавления основного металла обеспечивает возможность распая соединения.

Качество паяных соединений (прочность, герметичность, надежность и др.) зависят от правильного выбора основного металла, припоя, флюса, способа нагрева, типа соединения.

Припой должен хорошо растворять основной металл, обладать смачивающей способностью, быть дешевым и недефицитным. Припои представляют собой сплавы цветных металлов сложного состава. По температуре плавления припои подразделяют на особо легкоплавкие (температура плавления ниже 145 0С), легкоплавкие (145…450 0С), среднеплавкие (450…1100 0С) и тугоплавкие (выше 1050 0С). К особо легкоплавким и легкоплавким припоям относятся оловянно-свинцовые, на основе висмута, индия, олова, цинка, свинца. К среднеплавким и тугоплавким относятся припои медные, медно-цинковые, медно-никелевые, с благородными металлами (серебром, золотом, платиной). Припои изготавливают в виде прутков, листов, проволок, полос, спиралей, дисков, колец, зерен, которые укладывают в место соединения.

При пайке применяются флюсы для защиты места спая от окисления при нагреве сборочной единицы, обеспечения лучшей смачиваемости места спая расплавленным металлом и растворения металлических окислов. Температура плавления флюса должна быть ниже температуры плавления припоя. Флюсы могут быть твердые, пастообразные и жидкие. Для пайки наиболее применимы флюсы: бура, плавиковый шпат, борная кислота, канифоль, хлористый цинк, фтористый калий.

Пайку точных соединений производят без флюсов в защитной атмосфере или в вакууме.

В зависимости от способа нагрева различают пайку газовую, погружением (в металлическую или соляную ванну), электрическую (дуговая, индукционная, контактная), ультразвуковую.

В единичном и мелкосерийном производстве применяют пайку с местным нагревом посредством паяльника или газовой горелки.

В крупносерийном и массовом производстве применяют нагрев в ваннах и газовых печах, электронагрев, импульсные паяльники, индукционный нагрев, нагрев токами высокой частоты.

Перспективным направлением развития технологии пайки металлических и неметаллических материалов является использование ультразвука. Генератор ультразвуковой частоты и паяльник с ультразвуковым магнитострикционным вибратором применяются для безфлюсовой пайки на воздухе и пайке алюминия. Оксидная пленка разрушается за счет колебаний ультразвуковой частоты.

Процесс пайки включает: подготовку сопрягаемых поверхностей деталей под пайку, сборку, нанесение флюса и припоя, нагрев места спая, промывку и зачистку шва.

Детали для пайки тщательно подготавливаются: их зачищают, промывают, обезжиривают.

Зазор между сопрягаемыми поверхностями обеспечивает диффузионный обмен припоя с металлом детали и прочность соединения. Зазор должен быть одинаков по всему сечению.

Припой должен быть зафиксирован относительно места спая. Припой закладывают в месте спая в виде фольговых прокладок, проволочных контуров, лент, дроби, паст вместе с флюсом или наносят в расплавленном виде. При автоматизированной пайке - в виде пасты с помощью шприц-установок.

При возможности предусматриваются средства механизации - полуавтоматы и автоматы для газовой, электрической пайки.

Паяные соединения контролируют по параметрам режимов пайки, внешним осмотром, проверкой на прочность или герметичность, методами дефекто - и рентгеноскопии.

ЛЕКЦИЯ 19

Механическая обработка. Технологические возможности способов резания

Механическая обработка

Общая характеристика размерной обработки

Механическая обработка поверхностей заготовок является одной из основных завершающих стадий изготовления деталей машин.

Одна из актуальных задач машиностроения - дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей машин.

Наряду с обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергии.

Классификация движений в металлорежущих станках

Обработка металлов резанием - процесс срезания режущим инструментом с поверхности заготовки слоя металла в виде стружки для получения необходимой геометрической формы, точности размеров, взаимного расположения и шероховатости поверхностей детали.

Чтобы срезать с заготовки слой металла, необходимо режущему инструменту и заготовке сообщать относительные движения. Инструмент и заготовку устанавливают на рабочих органах станков, обеспечивающих движение.

Движения, которые обеспечивают срезание с заготовки слоя материала или вызывают изменение состояния обработанной поверхности заготовки, называют движениями резания:

Главное движение - определяет скорость деформирования материала и отделения стружки (Дг);

Движение подачи - обеспечивает врезание режущей кромки инструмента в материал заготовки (Дs);

Движения могут быть непрерывными или прерывистыми, а по характеру - вращательными, поступательными, возвратно-поступательными.

Движения подачи: продольное, поперечное, вертикальное, круговое, окружное, тангенциальное.

В процессе резания на заготовке различают поверхности (рис. 19.1. а):

обрабатываемую поверхность (1);

обработанную поверхность (3);

поверхность резания (2).

Установочные движения - движения, обеспечивающие взаимное положение инструмента и заготовки для срезания с нее определенного слоя металла.

Вспомогательные движения - транспортирование заготовки, закрепление заготовки и инструмента, быстрые перемещения рабочих органов.

Рис. 19.1 Схемы обработки заготовок: а - точением; б - шлифованием на круглошлифовальном станке; в - сверлением

Режимы резания, шероховатость поверхности

При назначении режимов резания определяют скорости главного движения резания и подачи, и глубину резания.

Скоростью главного движения - называют расстояние, пройденное точкой режущей кромки инструмента в единицу времени (м/с).

Для вращательного движения:

,

где: - максимальный диаметр заготовки (мм); - частота вращения (мин-1).

Для возвратно-поступательного движения:

,

где: - расчетная длина хода инструмента; - число двойных ходов инструмента в минуту; - коэффициент, показывающий соотношение скоростей рабочего и вспомогательного хода.

Подача - путь точки режущей кромки инструмента относительно заготовки в направлении движения подачи за один ход заготовки или инструмента.

В зависимости от технологического метода обработки подачу измеряют:

мм/об - точение и сверление;

мм/дв. ход - строгание и шлифование.

Глубина резания () - расстояние между обрабатываемой и обработанной поверхностями заготовки, измеренное перпендикулярно к обработанной поверхности (мм).

Шероховатость поверхности - совокупность неровностей с относительно малыми шагами.

Шероховатость является характеристикой качества поверхностного слоя заготовки. Она оценивается несколькими параметрами, в частности критерием .

- среднее арифметическое отклонение профиля (среднее арифметическое абсолютных значений отклонений профиля) в пределах определенной базовой длины обработанной поверхности.

Допустимые значения шероховатости поверхностей деталей указываются на чертежах.

Значение параметра для разных технологических методов обработки лежат в пределах, мкм:

для предварительной черновой обработки - 100…22,5;

для чистовой обработки - 6,3…0,4;

для отделочной и доводочной обработки - 0,2…0,012.

Станки для обработки резанием

Классификация металлорежущих станков

По общности технологического метода обработки различают станки: токарные, фрезерные, сверлильные и др.

По назначению различают станки: широкоуниверсальные, универсальные, широкого назначения, специализированные, специальные.

Универсальные станки обрабатывают разнотипным инструментом различающиеся по размерам, форме и расположению поверхностей заготовки.

Широкоуниверсальные - предназначены для выполнения особо широкого разнообразия работ.

Станки широкого назначения характеризуются однотипностью применяемого инструмента.

Специализированные станки предназначены для обработки однотипных заготовок различных размеров.

Специальные станки предназначены для выполнения определенных видов работ на заготовках одинаковых размеров и конфигурации.

По массе: легкие (до 1т), средние (до 10т), тяжелые (свыше 10т) и уникальные (свыше 100т).

По степени автоматизации: с ручным управлением, полуавтоматы и автоматы.

По компоновке основных рабочих органов: горизонтальные и вертикальные.

В общегосударственной единой системе (ЭНИМС) станки разделяются на 10 групп и 10 типов. В группы объединены станки одинаковые или схожие по технологическому методу обработки. Типы характеризуют их назначение, степень автоматизации, компоновку.

Технологические возможности способов резания

Точение

Точение является основным способом обработки поверхностей тел вращения.

Процесс резания осуществляется на токарных станках при вращении обрабатываемой заготовки (главное движение) и перемещении резца (движение подачи).

Движение подачи осуществляется:

параллельно оси вращения заготовки (продольная);

перпендикулярно оси вращения заготовки (поперечная);

под углом к оси вращения заготовки (наклонная).

Схемы обработки поверхностей заготовки точением представлены на рис. 19.2.

С помощью точения выполняют операции: обтачивание - обработку наружных поверхностей (рис19.2. а); растачивание - обработку внутренних поверхностей (рис. 19.2. б); подрезание - обработку торцевых поверхностей (рис. 19.2. в); резку - разрезание заготовки на части (рис. 19.2. г); резьбонарезание - нарезание резьбы (рис. 19.2. д).

По технологическим возможностям точение условно подразделяют на: черновое, получистовое, чистовое, тонкое.

Рис. 19.2. Схемы обработки поверхностей заготовки точением

В качестве режущего инструмента при точении используют резцы.

Главным принципом классификации резцов является их технологическое назначение.

Различают резцы:

проходные - для обтачивания наружных цилиндрических и конических поверхностей;

расточные - проходные и упорные - для растачивания глухих и сквозных отверстий;

отрезные - для отрезания заготовок;

резьбовые - для нарезания наружных и внутренних резьб;

фасонные - для обработки фасонных поверхностей;

прорезные - для протачивания кольцевых канавок;

галтельные - для обтачивания переходных поверхностей между ступенями валов по радиусу.

По характеру обработки - черновые, получистовые, чистовые.

По направлению движения подачи - правые и левые (справа на лево и слева на право).

По конструкции - целые, с приваренной или припаянной пластиной, со сменными пластинами.

Установка к закреплению заготовки зависит от типа станка, вида обрабатываемой поверхности, характеристики заготовки (), точности обработки и других факторов.

Сверление

Сверление является основным способом получения глухих и сквозных цилиндрических отверстий в сплошном материале заготовки.

В качестве инструмента при сверлении используется сверло, имеющее две главные режущие кромки.

Для сверления используются сверлильные и токарные станки.

На сверлильных станках сверло совершает вращательное (главное) движение и продольное (движение подачи) вдоль оси отверстия, заготовка неподвижна (рис. 19.3. а).

При работе на токарных станках вращательное (главное движение) совершает обрабатываемая деталь, а поступательное движение вдоль оси отверстия (движение подачи) совершает сверло (рис. 19.3. б).

Диаметр просверленного отверстия можно увеличить сверлом большего диаметра. Такие операции называются рассверливанием (рис. 19.3. в).

При сверлении обеспечиваются сравнительно невысокая точность и качество поверхности.

Для получения отверстий более высокой точности и чистоты поверхности после сверления на том же станке выполняются зенкерование и развертывание.

Зенкерование - обработка предварительно полученных отверстий для придания им более правильной геометрической формы, повышения точности и снижения шероховатости. Многолезвийный режущим инструментом - зенкером, который имеет более жесткую рабочую част, отсутствует! число зубьев не менее трех (рис. 19.3. г).

Развертывание - окончательная обработка цилиндрического или конического отверстия разверткой в целях получения высокой точности и низкой шероховатости. Развертки - многолезвийный инструмент, срезающий очень тонкие слои с обрабатываемой поверхности (рис. 19.3. д).

Схемы сверления, зенкерования и развертывания представлены на рисунке 19.3.

Рис. 19.3. Схемы сверления, зенкерования и развертывания

Протягивание

Протягивание является высокопроизводительным методом обработки деталей разнообразных форм, обеспечивающим высокую точность формы и размеров обрабатываемой поверхности. Применяется протягивание в крупносерийном производстве.

При протягивании используется сложный дорогостоящий инструмент - протяжка. За каждым формообразующим зубом вдоль протяжки изготавливается ряд зубьев постепенно увеличивающейся высоты.

Процесс резания при протягивании осуществляется на протяжных станках при поступательном главном движении инструмента относительно неподвижной заготовки за один проход.

Движение подачи отсутствует. За величину подачи принимают подъем на зуб, т.е. разность размеров по высоте двух соседних зубьев протяжки; является одновременно и глубиной резания.

Протяжные станки предназначены для обработки внутренних и наружных поверхностей. По направлению главного движения различают станки: вертикальные и горизонтальные.

Схемы обработки заготовок на протяжных станках представлены на рисунке 19.4.

Рис. 19.4. Схемы обработки заготовок на протяжных станках

Отверстия различной геометрической формы протягивают на горизонтально-протяжных станках для внутреннего протягивания. Размеры протягиваемых отверстий составляют 5…250 мм.

Цилиндрические отверстия протягивают крупными протяжками после сверления, растачивания или зенкерования, а также литые или штампованные отверстия. Длина отверстий не превышает трех диаметров. Для установки заготовки с необработанным торцом применяют приспособление со сферической опорной поверхностью (может самоустанавливаться по оси инструмента), либо упор в жесткую поверхность (рис. 19.4. а).

Шпоночные и другие пазы протягивают протяжками, форма зубьев которых в поперечном сечении соответствует профилю протягиваемого паза, с применением специального приспособления - направляющей втулки 3 (рис. 19.4. б).

Наружные поверхности различной геометрической формы протягивают на вертикально-протяжных станках для наружного протягивания.

Схема протягивания вертикальной плоскости показана на рис. 19.4. в.

Наружные поверхности заготовок типа тел вращения можно обрабатывать на специальных протяжных станках рис. 19.4. г.

ЛЕКЦИЯ 20

Технологические возможности способов резания

Фрезерование

Фрезерование - высокопроизводительный и распространенный метод обработки поверхностей заготовок: многолезвийным режущим инструментом - фрезой.

Главным движением при фрезеровании является вращение фрезы, а вспомогательным поступательное перемещение заготовки. Движение подачи может быть и вращательное движение заготовки вокруг оси вращающегося стола или барабана (карусельно - фрезерные, и барабанно-фрезерные станки). Каждый режущий зуб при вращении фрезы врезается в заготовку и осуществляет резание только в пределах определенного угла поворота фрезы, а затем вращается в холостую до следующего врезания. Таким образом, особенностью процесса фрезерования является периодичность и прерывистость процесса резания каждым зубом фрезы, при чем процесс врезания зуба сопровождается ударами.

По исполнению фрезы делятся на цилиндрические, когда зубья располагаются только на цилиндрической поверхности фрезы и торцевые, у которых режущие зубья располагаются на торцевой и цилиндрической поверхности фрезы.

Схемы обработки заготовок на станках фрезерной группы представлены на рис. 20.1.

Рис. 20.1. Схемы обработки заготовок на станках фрезерной группы.

Горизонтальные плоскости фрезеруют на горизонтально-фрезерных станках цилиндрическими фрезами (рис. 20.1. а) и на вертикально - фрезерных станках торцовыми фрезами (рис. 20.1. б).

Вертикальные плоскости фрезеруют на горизонтально-фрезерных станках торцовыми фрезами (рис. 20.1. в) и торцовыми фрезерными головками, а на вертикально - фрезерных станках - концевыми фрезами (рис. 20.1. г).

Комбинированные поверхности фрезеруют набором фрез (рис. 20.1. д) на горизонтально - фрезерных станках.

Уступы и прямоугольные пазы фрезеруют концевыми (рис. 20.1. е) и дисковыми (рис. 20.1. ж) фрезами.

Шпоночные пазы фрезеруют концевыми или шпоночными фрезами на вертикально - фрезерных станках (рис. 20.1. з).

Фасонные поверхности незамкнутого контура с криволинейной образующей и прямолинейной направляющей фрезеруют фасонными фрезами соответствующего профиля (рис. 20.1. и).

Пространственно - сложные поверхности обрабатывают на копировально-фрезерных автоматах (рис. 20.1. к). Обработку производят специальной концевой фрезой. Фрезерование ведут по трем координатам: x, y, z (объемное фрезерование).

Шлифование

Шлифование - процесс обработки заготовок резанием с помощью инструментов (кругов), состоящих из абразивного материала.

Абразивные зерна расположены беспорядочно. При вращательном движении в зоне контакта с заготовкой часть зерен срезает материал в виде очень большого числа тонких стружек (до 100000000 в мин).

Процесс резания каждым зерном осуществляется мгновенно. Обработанная поверхность представляет собой совокупность микро-следов абразивных зерен и имеет малую шероховатость.

Шлифование применяют для чистовой и отделочной обработки деталей с высокой точностью.

Главным движением при шлифовании является вращение шлифовального круга, а перемещение круга относительно детали является движением подачи.

Различают следующие основные схемы шлифования: плоское, круглое, внутреннее (рис. 20.2).

При плоском шлифовании (рис. 20.2. а) возвратно-поступательное движение заготовок необходимо для обеспечения продольной подачи . Для обработки поверхности на всю ширину заготовка или круг должны иметь поперечную подачу , которая осуществляется прерывисто при крайних положениях заготовки в конце продольного хода. Периодически осуществляется движение вертикальной подачи , в крайних положениях заготовки в конце поперечного хода.

Плоское шлифование может осуществляться периферией или торцом шлифовального круга.

При круглом шлифовании (рис. 20.2. б) движение продольной подачи осуществляется возвратно-поступательным перемещением заготовки. Подача соответствует осевому перемещению заготовки за один ее оборот. Вращение заготовки является движением круговой подачи. Подача на глубину резания происходит при крайних положениях заготовки.

Движения, осуществляемые при внутреннем шлифовании показаны на рис. 20.2. в.

Рис. 20.2. Основные схемы шлифования.

Для выполнения процесса шлифования наружных поверхностей деталей используются кругло-шлифовальные, плоско-шлифовальные и бесцентрово-шлифовальные станки. Для обработки сложных фасонных поверхностей используются специальные ленто - шлифовальные станки.

В ленто-шлифовальных станках применяется инструмент в виде бесконечной абразивной ленты. Лента в процессе шлифования поверхности сложной формы (например: лопатки турбин) огибает сложную поверхность и перемещается в осевом и продольном направлениях.

Абразивный слой наносят на бумажную или тканевую основу ленты.

Шлифованием обрабатываются только жесткие детали, не формирующиеся в процессе обработки. Данный способ не допускает обработки малых отверстий.

Технологические методы отделочной (финишной) обработки

поверхностей деталей машин

Дальнейшее развитие машиностроения связано с увеличением нагрузок на детали машин, увеличением скоростей движения, уменьшением массы конструкции.

Выполнить эти требования можно при достижении особых качеств поверхностных слоев деталей.

Влияние качества поверхностных слоев на эксплуатационные свойства огромно, изменяются:

износостойкость;

коррозионная стойкость;

контактная жесткость;

прочность соединений и другие свойства.

С этой целью широко применяются отделочные методы обработки, для которых характерны малые силы резания, незначительное тепловыделение, малая толщина срезаемого слоя.

Хонингование

Хонингование применяют для получения поверхностей высокой точности и малой шероховатости, а также для создания специфического микро-профиля обработанной поверхности в виде сетки (для удержания смазочного материала на поверхности деталей).

Поверхность неподвижной заготовки обрабатывается мелко-зернистыми абразивными брусками, закрепленными в хонинговальной головке (хоне). Бруски вращаются и одновременно перемещаются возвратно - поступательно вдоль оси обрабатываемого отверстия (рис. 20.3. а). Соотношение скоростей движений составляет 1,5…10, и определяет условия резания.

Рис. 20.3. Схема хонингования.

При сочетании движений на обрабатываемой поверхности появляется сетка микроскопических винтовых царапин - следов перемещения абразивных зерен. Угол пересечения этих следов зависит от соотношения скоростей (рис. 20.3. б).

Абразивные бруски всегда контактируют с обрабатываемой поверхностью, так как могут раздвигаться в радиальном направлении. Давление бруска контролируется.

Хонингованием исправляют погрешности формы от предыдущей обработки, а чистовое - для повышения качества поверхности.

Этот процесс осуществляется на специальных хонинговальных установках.

Суперфиниширование

Суперфиниширование уменьшает шероховатость поверхности, оставшуюся от предыдущей обработки. Получают очень гладкую поверхность, сетчатый рельеф, благоприятные условия для взаимодействия поверхностей.

Поверхности обрабатывают абразивными брусками, установленными в специальной головке. Для суперфиниширования характерно колебательное движение брусков наряду с движением заготовки (рис. 20.4).

Рис. 20.4. Схема суперфиниширования

Процесс резания происходит при давлении брусков (0,5…3) 105 Па в присутствии смазочного материала малой вязкости.

Амплитуда колебаний 1,5…6 мм. Частота колебаний 400…1200 мин - 1. Бруски подпружинены и самоустанавливаются по обрабатываемой поверхности. Соотношение скоростей DSкр к в начале обработки составляет 2…4, а в конце - 8…16.

Полирование

Полированием уменьшают шероховатость поверхности.

Этим способом получают зеркальный блеск на ответственных частях деталей (дорожки качения подшипников) либо на декоративных элементах (облицовочные части автомобилей). Используют полировальные пасты или абразивные зерна, смешанные со смазочным материалом. Эти материалы наносят на быстро - вращающиеся эластичные круги (фетровые) или на колеблющиеся щетки.

Хорошие результаты дает полирование быстродвижущимися абразивными лентами (шкурками).

При этом одновременно протекают следующие процессы:

тонкое резание;

пластическое деформирование поверхностного слоя;

химические реакции (воздействие на металл химически активных веществ).

Схема полирования представлена на рис. 20.5.

Рис. 20.5. Схема полирования.

Для процесса характерны высокие скорости, до 50м/сек. Заготовка поджимается к кругу силой Р и совершает движения подачи DSкр и DSпр в соответствии с профилем обрабатываемой поверхности.

В процессе полирования не исправляются погрешности формы.

Абразивно - жидкостная отделка

Данный вид обработки применяется для отделки объемно - криволинейных, фасонных поверхностей.

На обрабатываемую поверхность, имеющую следы предшествующей обработки, подают струи антикоррозионной жидкости со взвешенными частицами абразивного порошка.

Водно-абразивная суспензия перемещается под давлением с большой скоростью. Частицы абразива ударяются о поверхность заготовки и сглаживают микро - неровности.

Интенсивность съема материала регулируется зернистостью порошка, давлением струи и углом под которым подают жидкость.

Жидкостная пленка играет важную роль в данном процессе. Зерна, попадающие на выступы, легко преодолевают ее, а зерна, попадающие во впадины - встречают сопротивление, съем материала затрудняется, шероховатость сглаживается.

Метод жидкостного полирования успешно применяется при обработки фасонных внутренних поверхностей. Сопло вводится в полость заготовки, которая совершает вращательное и поступательное перемещения в зависимости от профиля обрабатываемой поверхности.

ЛЕКЦИЯ 21

Электрофизические и электрохимические методы обработки (ЭФЭХ)

Характеристика электрофизических и электрохимических методов обработки

Эти методы предназначены в основном для обработки заготовок из очень прочных, весьма вязких, хрупких и неметаллических материалов.

Эти методы имеют следующие преимущества:

отсутствует силовое воздействие инструмента на заготовку (или очень мало и не влияет на суммарную погрешность обработки);

позволяют менять форму поверхности заготовки и влияют на состояние поверхностного слоя: наклеп обработанной поверхности не образуется, дефектный слой незначителен; повышаются коррозионные, прочностные и другие эксплуатационные характеристики поверхности;

можно обрабатывать очень сложные наружные и внутренние поверхности заготовок.

ЭФЭХ методы обработки являются универсальными и обеспечивают непрерывность процессов при одновременном формообразовании всей обрабатываемой поверхности. Эти методы внедряются в различных отраслях промышленности.

Электроэрозионные методы обработки

Эти методы основаны на явлении эрозии электродов из токопроводящих материалов при пропускании между ними импульсного электрического тока.

Разряд между электродами происходит в газовой среде или при заполнении межэлектродного пространства диэлектрической жидкостью - керосин, минеральное масло.

При наличии разности потенциалов на электродах происходит ионизация межэлектродного пространства. При определенном значении разности потенциалов - образуется канал проводимости, по которому устремляется электроэнергия в виде импульсного искрового или дугового разряда.

На поверхности заготовки температура возрастает до 10000…12000 0C. Происходит мгновенное оплавление и испарение элементарного объема металла и на обрабатываемой поверхности образуется лунка.

Удаленный металл застывает в диэлектрической жидкости в виде гранул диаметром 0,01…0,005 мм.

При непрерывном подведении к электродам импульсного тока процесс эрозии продолжается до тех пор, пока не будет удален весь металл, находящийся между электродами на расстоянии, при котором возможен электрический пробой (0,01…0,05 мм) при заданном напряжении.

Для продолжения процесса необходимо сблизить электроды до указанного расстояния. Электроды сближаются автоматически с помощью следящих систем.

Электроискровая обработка

Схема электроискровой обработки представлена на рис.21.1

Рис.21.1 Схема электроискрового станка: 1 - электрод-инструмент; 2 - ванна; 3 - заготовка-электрод; 4 - диэлектрическая жидкость; 5 - изолятор

При электроискровой обработке - используют импульсные искровые разряды между

электродами (обрабатываемая заготовка (анод) - инструмент (катод)).

Конденсатор заряжается через резистор от источника постоянного тока напряжением 100…200 В. Когда напряжение на электродах 1 и 3 достигает пробойного образуется канал, через который осуществляется искровой разряд энергии, накопленной конденсатором.

Продолжительность импульса 20…200 мкс.

Точность обработки до 0,002 мм, 0,63…0,16 мкм.

Для обеспечения непрерывности процесса (зазор =const) станки снабжаются следящей системой и системой автоматической подачи инструмента.

Получают сквозные отверстия любой формы поперечного сечения, глухие отверстия и полости, отверстия с криволинейными осями, вырезают заготовки из листа, выполняют плоское, круглое и внутреннее шлифование.

Изготовляют штампы и пресс-формы, фильеры, режущий инструмент.

Схемы электроискровой обработки представлены на рис.21.2

Рис.21.2 Схемы электроискровой обработки:

а - прошивание отверстия с криволинейной осью; б - шлифование внутренней поверхности фильеры

Электроискровую обработку применяют для упрочнения поверхностного слоя металла. На поверхность изделия наносят тонкий слой металла или композиционного материала. Подобные покрытия повышают твердость, износостойкость, жаростойкость, эрозионную стойкость и так далее.

Электроимпульсная обработка

При электроимпульсной обработке используют электрические импульсы большой длительности (5…10 мс), в результате чего происходит дуговой разряд.

Большие мощности импульсов от электронных генераторов обеспечивают высокую производительность обработки.

Электроимпульсную обработку целесообразно применять при предварительной обработке штампов, турбинных лопаток, фасонных отверстий в детали из коррозионно-стойких и жаропрочных сплавов.

Схема обработки показана на рис.21.3

Рис.21.3 Схема электроимпульсной обработки:

1 - электродвигатель; 2 - импульсный генератор постоянного тока; 3 - инструмент-электрод; 4 - заготовка-электрод; 5 - ванна.

Электроконтактная обработка.

Электроконтактная обработка основана на локальном нагреве заготовки в месте контакта с электродом-инструментом и удалении размягченного или расплавленного металла из зоны обработки механическим способом: относительным движением заготовки или инструмента.

Источником теплоты служат импульсные дуговые разряды.

Этот вид обработки рекомендуется для крупных деталей из углеродистых и легированных сталей, чугуна, цветных сплавов, тугоплавких и специальных сплавов (рис.21.4).

Рис.21.4 Схема электроконтактной обработки плоской поверхности:

1 - обрабатываемая заготовка; 2 - инструмент-электрод; 3 - трансформатор

Этот метод применяют для зачистки отливок от заливов, отрезки литниковых систем, зачистки проката, шлифования коррозионных деталей из труднообрабатываемых сплавов.

Электрохимическая обработка

Электрохимическая обработка основана на законах анодного растворения металлов при электролизе.

При прохождении электрического тока через электролит на поверхности заготовки происходят химические реакции, и поверхностный слой металла превращается в химическое соединение.

Продукты электролиза переходят в раствор или удаляются механическим способом.

Производительность этого способа зависит от электрохимических свойств электролита, обрабатываемого материала и плотности тока.

Электрохимическое полирование.

Электрохимическое полирование осуществляется в ванне, заполненной электролитом (растворы кислот и щелочей).

Обрабатываемую заготовку подключают к катоду (рис.21.5). Катодом служит металлическая пластинка из свинца, меди, стали (иногда электролит подогревают).

Рис.21.5 Схема электрохимического полирования:

1 - ванна; 2 - обрабатываемая заготовка; 3 - пластина-электрод; 4 - электролит; 5 - микровыступ; 6 - продукты анодного растворения

При подаче напряжения начинается процесс растворения металла заготовки (в основном на выступах микронеровностей). В результате избирательного растворения, микронеровности сглаживаются, и обрабатываемая поверхность приобретает металлический блеск.

Улучшаются электрофизические характеристики деталей: уменьшается глубина микротрещин, поверхностный слой не деформируется, исключаются упрочнения и термические изменения структуры, повышается коррозионная стойкость.

Этим методом получают поверхности под гальванические покрытия, доводят рабочие поверхности режущего инструмента, изготовляют тонкие ленты и фольгу, очищают и декоративно отделывают детали.

Электрохимическая размерная обработка

Электрохимическая размерная обработка выполняется в струе электролита, прокачиваемого под давлением через межэлектродный промежуток.

Электролит растворяет образующиеся на поверхности заготовки - анода соли и удаляет их из зоны обработки. Высокая производительность процесса заключается в том, что одновременно обрабатывается вся поверхность заготовки.

Участки, не требующие обработки, изолируют. Инструменту придают форму, обратную форме обрабатываемой поверхности. Формообразование происходит по методу копирования (рис.21.6).

Рис.21.6 Схема электрохимической размерной обработки:

1 - инструмент - катод; 2 - заготовка - анод

Точность обработки повышается при уменьшении рабочего зазора. Для его контроля используют высокочувствительные элементы, которые встраивают в следящую систему.

Этот способ рекомендуют для обработки заготовок из высокопрочных сталей, карбидных и труднообрабатываемых материалов. Также можно обрабатывать тонкостенные детали с высокой точностью и качеством обработанной поверхности (отсутствует давление инструмента на заготовку).

Комбинированные методы обработки

Электроабразивная и электроалмазная обработка.

При таких видах обработки инструментом служит шлифовальный круг из абразивного материала на электропроводящей связке (бакелитовая связка с графитовым наполнителем).

Между анодом - заготовкой и катодом - шлифовальным кругом имеется зазор, куда подается электролит. Продукты анодного растворения удаляются абразивными зернами; шлифовальный круг имеет вращательное движение, а заготовка - движение подачи, которые соответствуют процессу механического шлифования (рис.21.7).

Рис.21.7 схема электроабразивного шлифования:

1 - заготовка; 2 - абразивные зерна; 3 - связка шлифовального круга.

Введение в зону резания ультразвуковых колебаний повышает производительность в 2…2,5 раза при улучшении качества поверхности. Эти методы применяются для отделочной обработки заготовок из труднообрабатываемых материалов, а также нежестких заготовок, так как силы резания незначительны.

Анодно-механическая обработка

Анодно-механическая обработка основана на сочетании электротермических и электромеханических процессов и занимает промежуточное место между электроэрозионным и электрохимическим методами.


Подобные документы

  • Выбор марки материала (сравнение серого чугуна СЧ20 и стали 20Л). Общая схема технологического процесса получения детали. Оценка технологичности детали и выбор способа получения заготовки. Разработка чертежа отливки, термическая обработка заготовки.

    курсовая работа [437,5 K], добавлен 08.12.2009

  • Выбор материала и способа получения заготовки, технология ее обработки. Технологические операции получения заготовки методом литья в металлические формы (кокили). Технологический процесс термической и механической обработки материала, виды резания.

    курсовая работа [1,7 M], добавлен 23.07.2013

  • Разработка техпроцесса изготовления детали "вал-шестерня". Получение материала заготовки: производство чугуна в доменной и стали в электродуговой печах. Выбор способа получения заготовки давлением. Механическая обработка и контроль качества детали.

    курсовая работа [3,2 M], добавлен 27.07.2010

  • Производство чугуна и стали. Конверторные и мартеновские способы получения стали, сущность доменной плавки. Получение стали в электрических печах. Технико-экономические показатели и сравнительная характеристика современных способов получения стали.

    реферат [2,7 M], добавлен 22.02.2009

  • Категория осевой заготовки и традиционно используемые марки стали. Конструкции прокатных станов применяемых для производства осевой заготовки, способ выплавки и розливки. Технологический процесс получения стали, внепечной продувки инертным газом.

    курсовая работа [959,0 K], добавлен 15.05.2015

  • Назначение и тенденция развития заготовительного производства. Примерная структура производства заготовок в машиностроении. Заготовки и их характеристика. Припуски, напуски и размеры, выбор способа получения. Норма расхода металла и масса заготовки.

    реферат [312,4 K], добавлен 21.03.2009

  • Технологический процесс производства проката из стали 20 на стане 2850. Контроль качества продукции. Возможные способы нарушения технологического режима и способы борьбы с нарушениями. Возможные направления модернизации технологии получения из стали 20.

    дипломная работа [2,5 M], добавлен 15.05.2019

  • Процессы, протекающие в стали 45 во время нагрева и охлаждения. Применение стали 55ПП, свойства после термообработки. Выбор марки стали для роликовых подшипников. Обоснование выбора легкого сплава для сложных отливок. Способы упрочнения листового стекла.

    контрольная работа [71,5 K], добавлен 01.04.2012

  • Особенности технологии выплавки стали. Разработка способов получения стали из чугуна. Кислородно-конвертерный процесс выплавки стали. Технологические операции кислородно-конверторной плавки. Производство стали в мартеновских и электрических печах.

    лекция [605,2 K], добавлен 06.12.2008

  • Использование стали в качестве материала заготовки для детали типа "вал". Выбор заготовки и расчет размеров. Методы и технологическая последовательность получения заготовки. Технологическое оборудование, приспособления, режущий и измерительный инструмент.

    курсовая работа [1,2 M], добавлен 03.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.