Состав, структура, свойства цветных металлов и сплавов, полимерных материалов

Классификация, маркировка, состав, структура, свойства и применение алюминия, меди и их сплавов. Диаграммы состояния конструкционных материалов. Физико-механические свойства и применение пластических масс, сравнение металлических и полимерных материалов.

Рубрика Производство и технологии
Вид учебное пособие
Язык русский
Дата добавления 13.11.2013
Размер файла 4,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Свойства меди

Медь - металл красновато-розового цвета, имеющий кристаллическую ГЦК решетку с периодом а = 0,3608 нм, без полиморфных превращений. Медь менее тугоплавка, чем железо, но имеет большую плотность.

Медь обладает хорошей технологичностью. Она прокатывается в тонкие листы и ленту, из нее получают тонкую проволоку, медь легко полируется, хорошо паяется и сваривается.

Медь характеризуется высокими теплопроводностью и электрической проводимостью, пластичностью и коррозионной стойкостью в атмосферных условиях, пресной и морской воде, едких щелочах, органических кислотах и других агрессивных средах.

Однако она взаимодействует с аммиаком, азотной, соляной, горячей концентрированной серной кислотами.

Примеси кислорода, водорода, свинца и висмута влияют на все свойства меди.

По ГОСТ в зависимости от содержания примесей различают следующие марки меди: М00 (99,99% Сu); М0 (99,97% Сu); M1 (99,9% Сu); М2 (99,7% Сu); М3 (99,5% Сu).

Наиболее часто встречающиеся в меди элементы подразделяют на три группы.

1. Растворимые в меди элементы Al, Fe, Ni, Sn, Zn, Ag повышают ее прочность и твердость (рис. 2.1) и используются для легирования сплавов на медной основе.

Рис. 2.1. Влияние легирующих элементов на твердость меди

2. Нерастворимые элементы Рb и Bi ухудшают механические свойства меди и однофазных сплавов на ее основе. Образуя легкоплавкие эвтектики (соответственно при 326 и 270°С), располагающиеся по границам зерен основной фазы, они вызывают красноломкость.

Вредное влияние висмута обнаруживается при его содержании в тысячных долях процента, поскольку его растворимость ограничивается 0,001%. Висмут, будучи хрупким металлом, охрупчивает медь и ее сплавы.

Вредное влияние свинца также проявляется при малых его концентрациях (<0,04%). Свинец, обладая низкой прочностью, снижает прочность медных сплавов, однако вследствие хорошей пластичности не вызывает их охрупчивания. Кроме того, свинец улучшает антифрикционные свойства и обрабатываемость резанием медных сплавов, поэтому его используют для легирования.

3. Нерастворимые элементы О, S, Se, Те присутствуют в меди и ее сплавах в виде промежуточных фаз (например, Сu2О, Сu2S), которые образуют с медью эвтектики с высокой температурой плавления и не вызывают красноломкости.

Кислород при отжиге меди в водороде вызывает «водородную болезнь», которая может привести к разрушению металла при обработке давлением или эксплуатации готовых деталей.

Механические свойства меди в большей степени зависят от ее состояния (табл. 2.1) и в меньшей - от содержания примесей.

Холодная пластическая деформация (достигающая 90% и более) увеличивает прочность, твердость, предел упругости меди, но снижает пластичность и электрическую проводимость. При пластической деформации возникает текстура, вызывающая анизотропию механических свойств меди.

Таблица 2.1

Механические свойства технической меди M1

Состояние

в,

МПа

0,2, МПа

, %

?,%

НВ

KCU, МДж/м2

Литое

160

35

25

-

40

-

Деформированное*

450

400

3

35

125

-

Отожженное

220

75

50

75

55

1,2-1,8

*Свойства проволоки, продеформированной на 90%.

Отжиг для снятия наклепа проводят при 550-600°С в восстановительной атмосфере, так как медь легко окисляется при нагреве.

По электрической проводимости и теплопроводности медь занимает второе место после серебра. Она применяется для проводников электрического тока и различных теплообменников, водоохлаждаемых изложниц, поддонов, кристаллизаторов.

Недостатки меди: невысокая прочность, плохая обрабатываемость резанием и низкая жидкотекучесть.

Общая характеристика и классификация медных сплавов

Для легирования медных сплавов в основном используют элементы, растворимые в меди, - Zn, Sn, Al, Be, Si, Mn, Ni.

Повышая прочность медных сплавов, легирующие элементы практически не снижают, а некоторые из них (Zn, Sn, A1) увеличивают пластичность.

Высокая пластичность - отличительная особенность медных сплавов. Относительное удлинение некоторых однофазных сплавов достигает 65%.

По прочности медные сплавы уступают сталям. Временное сопротивление большинства сплавов меди лежит в интервале 300-500 МПа, что соответствует свойствам низкоуглеродистых нелегированных сталей в нормализованном состоянии. И только временное сопротивление наиболее прочных бериллиевых бронз после закалки и старения находится на уровне среднеуглеродистых легированных сталей (в = 1100-1200 МПа).

Медные сплавы подразделяют по:

- технологическим свойствам (деформируемые (обрабатываемые давлением) и литейные);

- способности упрочняться с помощью термической обработки (упрочняемые и не упрочняемые термической обработкой);

- химическому составу (латуни и бронзы).

Медные сплавы маркируют по химическому составу, используя буквы для обозначения элементов и числа - для указания их массовых деталей.

В медных сплавах (так же как и в алюминиевых) буквенные обозначения отличаются от обозначений, принятых для сталей. Алюминий в них обозначают буквой А; бериллий - Б; железо - Ж; кремний - К; медь - М; магний - Мг; мышьяк - Мш; никель - Н; олово - О; свинец - С; серебро - Ср; сурьма - Су; фосфор - Ф; цинк - Ц; цирконий - Цр; хром - X; марганец - Мц.

Латуни (сплавы меди с цинком) маркируют буквой Л. В деформируемых латунях, не содержащих кроме меди и цинка других элементов, за буквой Л ставится число, показывающее среднее содержание меди. В многокомпонентных латунях после Л ставятся буквы - символы элементов, а затем числа, указывающие содержание меди и каждого легирующего элемента. Например, латунь Л68 содержит 68% Сu, латунь ЛАН59-3-2 содержит 59% Сu, 3% А1, 2% Ni (остальное Zn). В марках литейных латуней указывается содержание цинка, а количество каждого легирующего элемента ставится непосредственно за буквой, обозначающей его. Например, латунь ЛЦ40МцЗА содержит 40% Zn, 3% Мn и 1% Аl.

Бронзы (сплавы меди со всеми элементами, кроме цинка) обозначают буквами Бр, за которыми ставятся буквы и числа. В марках деформируемых бронз сначала помещают буквы - символы легирующих элементов, а затем числа, указывающие их содержание. Например, БрАЖ9-4 содержит 9% Аl, 4% Fe, остальное - Сu. В марках литейных бронз после каждой буквы указывается содержание этого легирующего элемента. Например, БрО6Ц6СЗ содержит 6% Sn, 6% Zn, 3% Pb, остальное - Сu.

2. Латуни

Медь с цинком образует -твердый раствор с предельной концентрацией цинка 39% (рис. 2.2, а).

Практическое значение имеют латуни, содержащие до 45% Zn.

Двойные латуни по структуре подразделяют на две группы:

1) однофазные со структурой -твердого раствора (рис. 2.3, а);

2) двухфазные со структурой + -фаз (рис. 2.3, б).

а б

Рис. 2.3. Микроструктуры латуней:

а - однофазной; б - двухфазной (темная - -фаза, светлая - -фаза)

В связи с высокой пластичностью однофазные латуни хорошо поддаются холодной пластической деформации, которая значительно повышает их прочность и твердость. Рекристаллизационный отжиг проводят при 600-700°С.

Сплавы с большим содержанием цинка отличаются высокой хрупкостью. Химический состав некоторых промышленных латуней и их механические свойства приведены в табл. 2.2, 2.3.

Таблица 2.2

Химический состав и механические свойства деформируемых латуней после отжига

Марка

латуни

Сu

Прочих элементов

в

0,2

?

KCU, МДж/м2

НВ

% (мас.)

MПа

%

Л90

88-91

260

120

45

80

1,76

53

Л68

67-70

320

90

55

70

1,68

55

Л63

62-65

330

110

50

66

1,37

56

Л60

59-62

380

160

25

62

0,78

77

ЛА77-2

76-79

1,75-2,5 Аl

400

140

55

58

60

ЛАН59-3-2

57-60

2,5-3,5 Al

380

300

50

0,5

75

2-3 Ni

ЛН65-5

64-67

5-6,5 Ni

400

170

65

60

ЛЖМц59-1-1

57-60

0,1-0,4 A1

450

170

50

58

1,18

88

0,6-1,2 Fe

s

0,5-0,8 Mn

0,3-0,7 Sn

ЛМц58-2

57-60

1-2 Mn

400

160

40

52,5

85

Л070-1

69-71

1-1,5 Sn

350

100

60

70

0,6

60

ЛК80-3

79-81

2,5-4 Si

Si

200

58

55

0,4

100

Таблица 2.3

Механические свойства и область применения литейных латуней (ГОСТ 17711-93)

Марка латуни

в, МПа

, %

НВ

Область применения

ЛЦ40С

215

12-20

70-80

Арматура, втулки, сепараторы для подшипников качения

ЛЦ40МцЗЖ

390-490

10-18

90-100

Несложные детали ответственного назначения, гребные винты и лопасти, судовая арматура, работающая при температуре до 300°С

ЛЦ38Мц2С2

245-340

10-15

80-85

Антифрикционные втулки, вкладыши, ползуны, судовая арматура

ЛЦЗОАЗ

290-390

12-15

80-90

Коррозионно-стойкие детали

ЛЦ23А6ЖЗМц2

700

7

160-165

Детали ответственного назначения, нажимные винты и гайки прокатных станов, венцы червячных колес

ЛЦ16К4

290-340

15

100-110

Сложные по конфигурации детали, работающие при температуре до 250°С

ЛЦ14КЗСЗ

245-290

7-15

90-100

Подшипники, втулки

Примечание. Максимальные механические свойства обеспечивают литье в кокиль, центробежное литье; минимальные - литье в песчаную форму.

Повышение содержания цинка удешевляет латуни, улучшает их обрабатываемость резанием, способность прирабатываться и противостоять износу. Вместе с тем уменьшаются теплопроводность и электрическая проводимость, которые составляют 20-50% от характеристик меди.

Примеси повышают твердость и снижают пластичность латуней. Особенно неблагоприятно действуют свинец и висмут, которые в однофазных латунях вызывают красноломкость.

Поэтому однофазные латуни в основном выпускают в виде холоднокатаных полуфабрикатов: полос, лент, проволоки, листов, из которых изготовляют детали методом глубокой вытяжки (радиаторные трубки, снарядные гильзы, сильфоны, трубопроводы), а также детали, требующие по условиям эксплуатации низкую твердость (шайбы, втулки, уплотнительные кольца и др.).

В двухфазных латунях вследствие ? превращения легкоплавкие эвтектики находятся не по границам, а внутри зерен твердого раствора и не влияют на их способность к горячей пластической деформации.

Иногда в двухфазные латуни добавляют свинец для улучшения обрабатываемости резанием и повышения антифрикционных свойств. Ввиду невысокой пластичности эти латуни выпускают в виде горячекатаного полуфабриката: листов, прутков, труб, штамповок. Из них изготовляют втулки, гайки, тройники, штуцеры, токопроводящие детали электрооборудования и др.

Легированные латуни применяют как для деформируемых полуфабрикатов, так и в виде фасонных отливок. Литейные латуни, как правило, содержат большее количество легирующих элементов.

Для легирования латуней используют Al, Fe, Ni, Sn, Si. Эти элементы повышают прочность и коррозионную стойкость латуней. Поэтому легированные латуни широко применяют в речном и морском судостроении (конденсаторные и манометрические трубки и другие детали).

Практическое применение находят высокомедистые латуни с добавлением алюминия до 4% (ЛА77-2), которые благодаря однофазной структуре хорошо обрабатываются давлением. Алюминиевые латуни дополнительно легируют никелем, железом, марганцем, кремнием, обладающими переменной растворимостью в -твердом растворе, что позволяет упрочнять эти латуни с помощью закалки и старения. Временное сопротивление после такой обработки достигает 700 МПа. Хорошая пластичность в закаленном состоянии позволяет дополнительно упрочнять сплавы с помощью пластического деформирования (перед старением). Обработка по схеме «закалка + пластическая деформация 4- старение» обеспечивает повышение временного сопротивления до 1000 МПа.

Кремнистые латуни характеризуются высокой прочностью, пластичностью, вязкостью не только при 20-25°С, но и при низких температурах (до - 183°С). При легировании латуней для получения однофазной структуры используют небольшие добавки кремния (ЛК80-3). Такие латуни применяют для изготовления арматуры, деталей приборов, в судо- и машиностроении.

Бронзы. Оловянные бронзы

Из диаграммы состояния Сu - Sn следует, что предельная растворимость олова в меди соответствует 15,8% (рис. 2.4, а).

практическое значение имеют бронзы, содержащие только до 10% Sn.

Двойные оловянные бронзы применяют редко, так как они дороги. Широкий температурный интервал кристаллизации обусловливает у них большую склонность к дендритной ликвации, низкую жидкотекучесть, рассеянную усадочную пористость и поэтому невысокую герметичность отливок.

Оловянные бронзы легируют Zn, Pb, Ni, P.

В бронзы добавляют от 2 до 15% Zn. В таком количестве цинк полностью растворяется в твердом растворе, что способствует повышению механических свойств. Уменьшая интервал кристаллизации оловянных бронз, цинк улучшает их жидкотекучесть, плотность отливок, способность к сварке и пайке.

Свинец повышает антифрикционные свойства и улучшает обрабатываемость резанием оловянных бронз.

а б

Рис. 2.4. Диаграмма состояния системы Сu - Sn (а) и влияние олова на механические свойства бронз (б)

Фосфор, являясь раскислителем оловянных бронз, повышает их жидкотекучесть; износостойкость улучшается благодаря появлению твердых включений фосфида меди Сu3Р. Кроме того, он увеличивает временное сопротивление, предел упругости и выносливость бронз.

Бронзы хорошо обрабатываются резанием, паяются, хуже свариваются.

Среди медных сплавов оловянные бронзы имеют самую низшую линейную усадку (0,8% при литье в песчаную форму и 1,4% при литье в металлическую форму), поэтому их используют для получения сложных фасонных отливок. Двойные и низколегированные литейные бронзы содержат 10% Sn. Для удешевления оловянных бронз содержание олова в некоторых стандартизованных литейных бронзах снижено до 3-6%. Большое количество Zn и РЬ повышает их жидкотекучесть, улучшает плотность отливок, антифрикционные свойства и обрабатываемость резанием.

Структура оловянных бронз (БрОЗЦ12С5, Бр04Ц4С17, Бр010Ц2 и др.) полностью удовлетворяет требованиям, предъявляемым к структуре антифрикционных сплавов. Высокая коррозионная стойкость в атмосферных условиях, пресной и морской воде способствует широкому применению литейных бронз для пароводяной арматуры, работающей под давлением. Рассеянная пористость не мешает этому, поскольку у поверхности отливок имеется зона с мелкозернистой структурой, обладающая высокой плотностью. При усовершенствовании технологии получают отливки, выдерживающие давление до 30 МПа.

Деформируемые бронзы содержат до 6-8% Sn (табл. 2.4). В равновесном состоянии они имеют однофазную структуру (-твердого раствора (см. рис. 2.5, а). В условиях неравновесной кристаллизации наряду с твердым раствором может образоваться небольшое количество -фазы. Для устранения дендритной ликвации и выравнивания химического состава, а также улучшения обрабатываемости давлением применяют диффузионный отжиг, который проводят при 700-750°С. При холодной пластической деформации бронзы подвергают промежуточным отжигам при 550-700°С. Деформируемые бронзы характеризуются хорошей пластичностью и более высокой прочностью, чем литейные.

Деформируемые бронзы обладают высокими упругими свойствами и сопротивлением усталости. Их используют для изготовления круглых и плоских пружин в точной механике, электротехнике, химическом машиностроении и других областях промышленности.

а б

Рис. 2.5. Микроструктуры бронз:

а - деформированной однофазной с 5% Sn после рекристаллизации;

б - литой двухфазной с 10% Sn

Таблица 2.4

Химический состав и механические свойства оловянных бронз

Марка бронзы

Sn

Pb

Zn

Прочих элементов

Е, ГПа

в

0,2

?

KCU,МДж/м2

НВ

% (мас.)

МПа

%

Деформируемые бронзы (ГОСТ5017-74)

БрОФб, 5-0,15

6-7

-

-

0,1-0,25 Р

110

400

250

65

80

0,49*

70

БрОФ6,5-0,4

6-7

-

-

0,26-0,4 Р

112

400

250

65

80

0,59

80

0,10-0,2 Ni

БрОФ4-0,25

3,5-4

-

-

0,2-0,3 Р

100

340

-

50

85

-

63

БрОЦ4-3

3,5-4

-

2,7-3,3

-

85

350

65

40

-

0,39

60

БрОЦС4-4-2,5

3-5

1,5-3,5

3-5

-

75

350

130

40

34

0,36

60

Литейныебронзы (Г0СТ 613-79)

БрОЗЦ7С5Н1

2,5-4

3-6

6-9,5

0,5-2,0 Ni

90

210

170

5

-

-

60

БрОЗЦ12С5

2-3,5

3,6

8-15

-

-

210

-

5

-

-

60

Бр04Ц4С17

3,5-5,5

14-20

2-6

-

-

150

-

6

-

-

60

Бр05Ц5С5

4-6

4-6

4-6

-

92

180

100

4

-

2,05

60

Бр010Ц2

9-11

-

1-3

-

100

250

180

5

-

1,47

80

БрОЮФ!

9-11

-

-

0,4-1,1P

80

270

195

3-10

10

0,88

90

* В литом состоянии.

Алюминиевые бронзы

Алюминиевые бронзы отличаются высокими механическими, антикоррозионными и антифрикционными свойствами. Их преимущества перед оловянными бронзами - меньшая стоимость, более высокие механические и некоторые технологические свойства. Например, небольшой интервал кристаллизации обеспечивает алюминиевым бронзам высокую жидкотекучесть, концентрированную усадку и хорошую герметичность отливок, малую склонность к дендритной ликвации. Вместе с тем из-за большой усадки иногда трудно получить сложную фасонную отливку.

Медь с алюминием образует -твердый раствор, концентрация которого при понижении температуры с 1035 до 565°С увеличивается от 7,4 до 9,4% Аl. При 565°С -фаза претерпевает эвтектоидное превращение: ( ? a + 2, где 2 - промежуточная фаза переменного состава со сложной кубической решеткой.

При реальных скоростях охлаждения, в отличие от равновесного состояния, эвтектоид появляется в структуре сплавов при содержании 6-8% А1. Наличие эвтектоида приводит к резкому снижению пластичности алюминиевых бронз. С увеличением содержания алюминия до 4-5% наряду с прочностью и твердостью повышается пластичность, которая затем резко падает, а прочность продолжает расти при увеличении содержания алюминия до 10-11%.

Однофазные бронзы (БрА5, БрА7), имеющие хорошую пластичность, относятся к деформируемым. Они обладают наилучшим сочетанием прочности (в = 400-450 МПа) и пластичности ( = 60%). Двухфазные бронзы выпускают в виде деформируемого полуфабриката, а также применяют для изготовления фасонных отливок. При наличии большого количества эвтектоида бронзы подвергают не холодной, а горячей обработке давлением. Двухфазные бронзы отличаются высокой прочностью (в = 600 МПа) и твердостью (> 100 НВ). Их можно подвергать упрочняющей термической обработке. При быстром охлаждении (закалке) -фаза претерпевает не эвтектоидное, а мартенситное превращение.

К недостаткам двойных алюминиевых бронз помимо большой усадки относятся: склонность к газонасыщению и окисляемости во время плавки, образование крупнокристаллической столбчатой структуры, трудность пайки. Эти недостатки уменьшаются при легировании алюминиевых бронз железом, никелем, марганцем.

В -фазе алюминиевой бронзы растворяется до 4% железа, при большем содержании образуются включения Al3Fe. Дополнительное легирование сплавов никелем и марганцем способствует появлению этих включений при меньшем содержании железа. Железо оказывает модифицирующее действие на структуру алюминиевых бронз, повышает их прочность, твердость и антифрикционные свойства, уменьшает склонность к охрупчиванию двухфазных бронз из-за замедления эвтектоидного распада -фазы и измельчения 2-фaзы, образующейся в результате этого распада. Наилучшей пластичностью алюминиево-железные бронзы (например, БрАЖ9-4) обладают после термической обработки, частично или полностью подавляющей эвтектоидное превращение -фазы (нормализация при 600-700°С или закалка от 950°С). Отпуск закаленной бронзы при 250-300°С приводит к распаду -фазы с образованием тонкодисперсного эвтектоида ( + 2) и повышению твердости до 175-180 НВ.

Никель улучшает технологичность и механические свойства алюминиево-железных бронз при обычных и повышенных температурах. Кроме того, он способствует резкому сужению области -твердого раствора при понижении температуры. Это вызывает у бронз, легированных железом и никелем (БрАЖН 10-4-4), способность к дополнительному упрочнению после закалки вследствие старения. Например, в отожженном (мягком) состоянии БрАЖН 10-4-4 имеет следующие механические свойства: в = 650 МПа; = 35%; 140-160 НВ. После закалки от 980°С и старения при 400°С в течение 2 ч твердость увеличивается до 400 НВ.

Из алюминиево-железоникелевых бронз изготовляют детали, работающие в тяжелых условиях износа при повышенных температурах (400-500°С): седла клапанов, направляющие втулки выпускных клапанов, части насосов и турбин, шестерни и др. Высокими механическими, антикоррозионными и технологическими свойствами обладают алюминиево-железные бронзы, легированные вместо никеля более дешевым марганцем (БрАЖМцЮ-3-1,5).

Кремнистые бронзы. Кремнистые бронзы характеризуются хорошими механическими, упругими и антифрикционными свойствами.

Кремнистые бронзы содержат до 3% Si и имеют однофазную структуру -твердого раствора. При увеличении содержания кремния более 3% в структуре сплавов появляется твердая и хрупкая -фaзa. Однофазная структура твердого раствора обеспечивает кремнистым бронзам высокую пластичность и хорошую обрабатываемость давлением.

Они хорошо свариваются и паяются, удовлетворительно обрабатываются резанием.

Литейные свойства кремнистых бронз ниже, чем оловянных, алюминиевых бронз и латуней.

Легирование цинком способствует улучшению литейных свойств этих бронз. Добавки марганца и никеля повышают прочность, твердость кремнистых бронз. Никель, обладая переменной растворимостью в -фазе, позволяет упрочнять никель-кремнистые бронзы путем закалки и старения. После закалки от 800°С и старения при 500°С эти бронзы имеют в 700 МПа, 8%.

Кремнистые бронзы выпускают в виде ленты, полос, прутков, проволоки. Для фасонных отливок они применяются редко. Их используют вместо более дорогих оловянных бронз при изготовлении антифрикционных деталей (БрКН1-3), (БрКМцЗ-1), а также для замены бериллиевых бронз при производстве пружин, мембран и других деталей приборов, работающих в пресной и морской воде.

Бериллиевые бронзы. Бериллиевые бронзы характеризуются чрезвычайно высокими пределами упругости, временным сопротивлением, твердостью и коррозионной стойкостью в сочетании с повышенными сопротивлениями усталости, ползучести и износу. Двойные бериллиевые бронзы содержат в среднем 2,0-2,5% Be (БрБ2, БрБ2,5).

Согласно диаграмме состояния системы Сu-Be, они имеют структуру, состоящую из -твердого раствора бериллия в меди и -фазы - электронного соединения СuВе с ОЦК решеткой. Концентрация -твердого раствора значительно уменьшается с понижением температуры (с 2,75% Be при 870°С до 0,2% при 300°С). Это дает возможность подвергать бериллиевые бронзы упрочняющей термической обработке - закалке и искусственному старению.

Изменение механических свойств сплавов меди с бериллием (рис. 2.5, б) показывает, что их временное сопротивление резко увеличивается в интервале 1,5-2,0% Be. При содержании бериллия более 2,0% временное сопротивление повышается незначительно, а пластичность из-за большого количества твердой и хрупкой -фазы становится очень низкой.

Наибольшей пластичностью ( = 30-40%) бериллиевые бронзы обладают после закалки с 770-780°С. В закаленном состоянии они хорошо деформируются. Пластическая деформация на 40% увеличивает временное сопротивление бронзы БрБ2 почти в два раза (с 450 до 850 МПа). Механические свойства бериллиевых бронз достигают очень высоких значений после закалки и старения. Так, БрБ2 после закалки с 780°С и старения при З00-350°С в течение 2 ч имеет следующие механические свойства: в = 1250 МПа, 0,2 = 1000 МПа, = 2,5%, твердость 700 НВ, Е = 133 ГПа. Упрочнение происходит благодаря распаду пересыщенного -твердого раствора с образованием метастабильной '-фазы, близкой по составу к -фазе. Пластическая деформация закаленной бронзы и последующее старение позволяют увеличить временное сопротивление до 1400 МПа.

Бериллиевые бронзы являются теплостойкими материалами, устойчиво работающими при температурах до 310-340°С. При 500°С они имеют приблизительно такое же временное сопротивление, как оловянно-фосфористые и алюминиевые бронзы при комнатной температуре. Бериллиевые бронзы обладают высокой теплопроводностью и электрической проводимостью; при ударах не образуют искр. Они хорошо обрабатываются резанием, свариваются точечной и роликовой сваркой, однако широкий температурный интервал кристаллизации затрудняет их дуговую сварку.

Бериллиевые бронзы выпускают преимущественно в виде полос, лент, проволоки и других деформированных полуфабрикатов. Вместе с тем из них можно получить качественные фасонные отливки. Из бериллиевых бронз изготовляют детали ответственного назначения: упругие элементы точных приборов (плоские пружины, пружинные контакты, мембраны); детали, работающие на износ (кулачки, шестерни, червячные передачи); подшипники, работающие при высоких скоростях, больших давлениях и повышенных температурах.

Основным недостатком бериллиевых бронз является их высокая стоимость.

Задание и методические указания

1. Ознакомиться с микроструктурой и свойствами меди и ее сплавов.

2. Изучить особенности диаграмм состояния меди и ее сплавов.

3. Установить связь между структурой, свойствами и диаграммами состояния.

4. Изучить операции термической обработки меди и ее сплавов.

5. Изучить влияние легирования на свойства и структуру сплавов меди.

6. Просмотреть представленные микрошлифы латуней и бронз.

7. Определить области применения меди и ее сплавов.

8. Составить отчет о проделанной работе.

При составлении отчета необходимо описать микроструктуру и свойства меди и ее сплавов, привести диаграммы состояния латуней и бронз, определить связь между структурой, свойствами и диаграммами состояния, описать влияние легирования на свойства и структуру сплавов меди. Указать на чем основано получение высоких свойств сплавов меди. Когда возможно проведение термической обработки, зарисовать все просмотренные структуры с указанием названия структурных составляющих и марки сплавов.

Контрольные вопросы

1. Наиболее характерные свойства чистой меди. Механические свойства чистой меди, технической меди M1.

2. В какой решетке кристаллизуется медь.

3. Какова коррозионная стойкость меди?

4. Как различают марки меди в зависимости от содержания примесей?

5. В чем выражается вредное влияние висмута, свинца?

6. Как влияет холодная пластическая деформация на прочностные характеристики меди?

7. Как и почему вызывается «красноломкость» меди?

8. Чем вызывается «водородная болезнь» в меди и к чему она приводит?

9. Области применения чистой меди.

10. Дайте характеристику электрической проводимости и теплопроводности меди.

11. Назовите основные легирующие элементы медных сплавов.

12. Приведите график влияния легирующих элементов на твердость меди.

13. Как подразделяют медные сплавы по технологическим свойствам?

14. Как подразделяют медные сплавы по способности упрочняться с помощью термической обработки?

15. Как подразделяют медные сплавы по химическому составу?

16. Как маркируют медные сплавы, приведите примеры.

17. Приведите диаграмму состояния Сu - Zn (до 50% Zn), равновесный фазовый состав и пределы растворимости Zn в Сu.

18. Влияние цинка на структуру и механические свойства латуней.

19. На чем основана упрочняющая термическая обработка в Сu - Zn и в Сu - Sn сплавах.

20. Приведите диаграмму состояния Сu - Sn (до 15% Sn).

21. Назовите тип диаграммы состояния Сu - Sn (до 15% Sn), фазовый состав и пределы растворимости Sn в Сu.

22. Как упрочняются медные сплавы.

23. На какие две группы подразделяют двойные латуни по структуре?

24. Какие виды старения происходят в Сu сплавах?

25. Опишите структуру Сu - Zn сплава в отожженном состоянии

26. Опишите структуру Сu - Sn сплава в отожженном состоянии.

27. Что такое латунь?

28. Что такое бронза?

29. Как влияют примеси на твердость и пластичность латуней?

30. Какие примеси вызывают красноломкость в однофазных латунях?

31. В каком виде выпускают однофазные латуни?

32. Какие примеси вызывают образование легкоплавких эвтектик и как они влияют на прочность медных сплавов?

33. Как используется хорошая пластичность в закаленном состоянии в алюминиевых латунях?

34. К чему приводит склонность к неравновесной кристаллизации сплавов системы Сu - Sn?

35. Как используют оловянные бронзы, имеющие самую низшую линейную усадку среди медных сплавов?

36. Какими свойствами обладают деформируемые бронзы?

37. Дайте характеристику алюминиевым бронзам.

38. Дайте характеристику кремнистым бронзам.

39. Дайте характеристику бериллиевым бронзам.

Лабораторная работа № 3. Исследование зависимостей «состав-структура-свойства» для полимерных материалов

Цель работы: пластмассы, виды, классификация, исследование некоторых физико-механических свойств пластмасс, приобретение практических навыков определения их твердости, прочности, ударной вязкости. Сравнение свойств металлов и пластмасс.

Материалы и оборудование: коллекция пластмассовых деталей и образцов; металлографический комплекс, включающий оптический микроскоп МИ-1, цифровую камеру Nikon Colorpix-4300 с фотоадаптером.

Задание. 1. Выполнить лабораторные испытания и определить физико-механические свойства полиэтилена (ПЭВД и ПЭНД) с разной степенью кристалличности, или оргстекла, винипласта, фторопласта, текстолита. 2. Сделать выводы и написать отчет по работе в соответствии с заданиями.

1. Общие сведения

Пластические массы (пластики, пластмассы) - важные конструкционные материалы, широко применяемые в машиностроении, электро- и радиотехнике, строительстве и других отраслях народного хозяйства.

Незначительная трудоемкость изготовления пластмассовых деталей (по сравнению с металлическими), их малая себестоимость, технологичность (легко формуются, склеиваются, свариваются, обрабатываются резанием), специфические физико-механические свойства обусловливают эффективность применения и зачастую незаменимость пластмасс в машиностроении.

Основными достоинствами пластмасс являются: малая плотность и возможность ее изменения, хорошие тепло-, электро- и звукоизоляционные характеристики, высокая химическая стойкость в ряде сред и неподверженность коррозии, высокие оптические свойства (бесцветность и прозрачность органических стекол), хорошие фрикционные и антифрикционные свойства, достаточно высокая прочность (прочность некоторых пластиков сопоставима с прочностью стали), хорошие декоративные свойства, бесшумность в работе (применительно к зубчатым передачам) и некоторые другие. Недостатки пластмасс - невысокая теплостойкость, низкие ударная вязкость и модуль упругости, склонность некоторых пластмасс к старению.

Пластмассы - это материалы на основе природных, а чаще всего искусственных (синтетических) полимеров, которые под действием нагревания и давления способны формоваться в изделия заданной формы и затем устойчиво сохранять ее. Кроме основного компонента - связующего вещества, в состав пластмасс могут входить наполнители, пластификаторы, отвердители, красители, стабилизаторы, порообразователи, ингибиторы и некоторые другие добавки. Соотношение названных компонентов в пластмассах может быть, например, таким (массовая доля): связующее вещество - 30-60%, наполнители - 40-65, пластификаторы - около 1, красители - 1-1,5 смазывающие вещества - 1-2%.

Связующие вещества, от которых в наибольшей степени зависят свойства пластмасс - это природные или синтетические полимеры. Под полимерами понимают высокомолекулярные вещества, молекулы которых (макромолекулы) состоят из многочисленных элементарных звеньев (мономеров). Молекулярная масса их может составлять от 5000 до 1 000 000.

Природные полимеры - белки и нуклеиновые кислоты, из которых построены клетки живых организмов, природные смолы (янтарь, копал, шеллак), натуральный каучук, целлюлоза, слюда, асбест, природный графит и др.

Синтетические полимеры - это полиэтилен, полипропилен, полистирол, поливинилхлорид, полиамиды, поликарбонаты, фторопласты, фенопласты, полиметилметакрилат, фенолоформальдегидные смолы, эпоксидные смолы и др.

В отдельных случаях пластмасса, например полиэтилен, может целиком состоять из связующего вещества - полимера. Полимеры, преимущественно синтетические, получаемые химическим синтезом простых органических веществ (мономеров) в макромолекулы методами полимеризации или поликонденсации, являются основой не только пластмасс, но и резины, химических волокон, лаков, красок, клеев и т. д. Так, полиэтилен синтезируют путем полимеризации газа - этилена, получаемого из природного газа или нефтепродуктов. Макромолекулы полимера представляют собой цепочки из звеньев мономера, атомы в которых связаны прочной химической (ковалентной) связью.

Различие структур макромолекул (линейные, разветвленные, сетчатые - рис. 3.1) обусловливает неодинаковость свойств полимеров. Так, линейные (полиэтилены, полиамиды и др.) и разветвленные (полиизобутилем и др.) полимеры характеризуются способностью образовывать анизотропные волокна и пленки и находиться в высокоэластичном состоянии; редкосетчатые полимеры (резины) обладают упругостью, густосетчатые (смолы) - хрупкие.

По фазовому состоянию полимеры могут быть аморфными или кристаллическими. В большинстве случаев реальные полимеры содержат аморфную и кристаллическую фазы. Содержание в полимере (в процентах) веществ в кристаллическом состоянии называют степенью кристалличности. На рис. 3.2 приведены примеры расположения макромолекул в линейных полимерах.

Кристаллическую структуру имеют полимеры с макромолекулами строго регулярной линейной или редкосетчатой формы. Кристаллические полимеры имеют более высокие теплостойкость и механические свойства.

По полярности различают неполярные (например, полиэтилен, полипропилен, фторопласт-4) и полярные (например, поливинилхлорид) полимеры.

Неполярные полимеры в отличие от полярных обладают более высокими морозостойкостью и диэлектрическими свойствами.

а б в

Рис. 3.1. Форма строения макромолекул полимеров:

а - линейная; б - разветвленная; в - сетчатая (схемы)

а б в

Рис. 3.2. Состояние макромолекул линейных полимеров:

а - аморфное беспорядочное; б - аморфное ориентированное; в - кристаллическое (схемы)

В зависимости от поведения при нагреве различают термопластичные (термопласты) и термореактивные (реактопласты) полимеры. Соответственно называют и пластмассы на основе этих связующих веществ.

Термопластичными называют полимеры или пластмассы, которые с повышением температуры размягчаются, плавятся, при формовании не претерпевают никаких химических изменений, по мере охлаждения затвердевают и сохраняют способность пластически деформироваться при повторном нагреве. Такие полимеры (полиэтилен, полистирол, капрон и др.) имеют линейную или разветвленную структуру макромолекул.

Термореактивные полимеры и пластмассы при нагреве и формовании претерпевают существенные химические изменения, затвердевают и, теряя способность пластически деформироваться, остаются твердыми. Линейная структура таких полимеров при нагреве преобразуется в пространственную.

Физико-механические свойства полимеров зависят как от их структуры, температуры, так и от физического состояния.

Из-за высокой молекулярной массы полимеры не способны образовывать низковязкие жидкости или переходить в газообразное состояние, они могут находиться в одном из трех физических состояний - стеклообразном, высокоэластическом и вязкотекучем.

Полимеры в стеклообразном состоянии характеризуются пространственной структурой макромолекул, отличаются твердостью и аморфностью. Атомы находятся в равновесном положении, и макромолекулы не перемещаются.

Высокоэластическое состояние макромолекул характерно для высокополимеров и выражается в их способности к большим обратимым изменениям формы при небольших нагрузках. Атомы колеблются, а макромолекулы способны изгибаться. Макромолекулы в целом не перемещаются, но их отдельные сегменты подвижны за счет вращения групп атомов вокруг связи:

в мономерных звеньях цепи.

Полимеры в вязкотекучем состоянии (линейные или разветвленные) отличаются от жидких веществ большей вязкостью. При этом подвижной является вся макромолекула. На рис. 3.3 приведены зависимости степени деформации полимеров с различной структурой от температуры их нагрева (термомеханические кривые).

Рис. 3.3. Термомеханические кривые для полимеров:

а - аморфного; б - кристаллического;

в - редкосетчатого для различных состояний:

I - стеклообразного; II - высокоэластичного; III - вязкотекучего;

IV - химического разложения

По этим кривым можно судить о характере изменения механических и технологических свойств полимеров при различных температурах. Так, полимеры или пластмассы на их основе эксплуатируются при температурах ниже температуры стеклования tc, когда они находятся в твердом состоянии. Формование изделий из полимеров или пластмасс ведут в области их вязкотекучего состояния. Температура tхр (ниже tc) соответствует переходу полимеров в хрупкое состояние (для полистирола tс=100°С и tхр = 90°С, для полиметил-метакрилата tс = 100оС и tхр = 10°С). В кристаллизующихся полимерах при температуре tк их кристаллическая часть плавится и далее, от tк до tт, полимер находится в высокоэластичном состоянии. Свыше температур tт аморфные кристаллизующиеся полимеры переходят в вязкотекучее состояние.

Для редкосетчатых полимеров температура tx - начало химического разложения полимера.

Зависимость степени деформации кристаллических полимеров (полиэтилен, полиамиды, полиэтилентерефталат и др.) от напряжения выражается линией, состоящей из трех участков (рис. 3.4). Первоначально (участок /) удлинение прямо пропорционально усилию. По достижении некоторого усилия (точка А) удлинение полимера увеличивается при неизменном усилии (участок //). Это вызвано резким местным сужением образца, образованием «шейки», распространяющейся на всю его длину. Затем наблюдается растяжение тонкого, но ориентированного образца вплоть до разрыва (участок ///). Деформация полимера зависит также от скорости и температуры нагружения.

На рис. 3.5 приведены диаграммы растяжения термопластов - вязких аморфных и кристаллических, хрупких с ориентированными молекулами.

Недостаток полимеров, а, следовательно, и пластмасс, - склонность к старению, т. е. самопроизвольному необратимому изменению важнейших характеристик при эксплуатации и хранении.

Рис. 3.4. Зависимость удлинения от усилия при деформации кристаллического полимера

Важным компонентом пластмасс являются наполнители. Они повышают механическую прочность пластмасс, уменьшают их усадку при формовании изделий, влияют на вязкость, водостойкость пластмасс, придают им специальные свойства, (фрикционные, антифрикционные и др.).

Наполнители могут быть органическими или минеральными в виде порошков, волокон, листов (сажа, древесная мука, сульфидная целлюлоза, асбест, тальк, очесы хлопка или льна, стекловолокно, бумага, ткани, древесный шпон и др.).

Органические наполнители повышают прочность, снижают хрупкость, но ухудшают термо- и водостойкость пластмасс.

Минеральные наполнители повышают прочность, водостойкость, химическую стойкость, тепло- и электроизоляционные свойства пластмасс, но часто повышают и их хрупкость и плотность.

В зависимости от вида наполнителя различают:

- порошковые (карболиты),

- волокнистые (волокниты),

- слоистые (содержащие листовые наполнители) и некоторые другие пластмассы.

Пластификаторы способствуют повышению пластичности пластмасс или расширению температурного интервала их вязкотекучего состояния. В качестве пластификаторов широко используют органические вещества с высокой температурой кипения и низкой температурой замерзания (стеарин, дибутилфталат, олеиновую кислоту и др.).

Отвердители (различные амины), или катализаторы (перекисные соединения) вводят в термореактивные пластмассы для ускорения процессов отверждения пластмасс.

Красители органического или минерального происхождения придают пластмассам желаемый цвет.

Стабилизаторы, например сажа, препятствуют старению полимерных материалов.

Порообразователи, переходя при формовании в газообразное состояние, способствуют образованию пор в таких пластмассах, как пенополистирол, пенополивинил-хлорид, поролон, пенополиуретан и др.

Смазывающие вещества вводят для уменыпепия при-липаемости пластмассовых изделий к металлическим частям пресс-формы.

Кроме названных, в пластмассы вводятся с различными целями и другие добавки.

Краткая характеристика свойств и областей применения некоторых пластмасс

К термопластичным пластмассам, основой или связующим веществом в которых являются полимеры с макромолекулами линейной или разветвленной структуры, относятся:

- неполярные: полиолефины (полиэтилен, полипропилен и полиизобутилен), полистирол, фторопласт-4;

- полярные: полиметил-метакрилат, поливинилхлорид, полиамиды и др.

Полиэтилен - кристаллизующийся полимер, который производят полимеризацией этилена (СН2 = СН2). Различают полиэтилен низкой плотности, получаемый при высоком давлении (ПЭВД) и содержащий 35-65% кристаллической фазы, а также полиэтилен высокой плотности, получаемый при низком давлении (ПЭНД) и содержащий 60-95% кристаллической фазы. Полиэтилен химически стоек, нерастворим в воде, ацетоне, спирте, морозостоек до - 70°С (чем выше плотность, тем выше теплостойкость и механическая прочность), но склонен к старению. Из него изготавливают несиловые детали (контейнеры, емкости, вентили, детали химических насосов, трубы для транспортирования агрессивных жидкостей), защитные покрытия на металлах, пленку для различных целей (электроизоляционная, парниковая).

Полипропилен (--СН2--СНСН3--) получают полимеризацией из пропилена в присутствии металлоорганических катализаторов. Он более теплостоек (до 150°С), чем полиэтилен, но менее морозостоек (до -10- -20°С). Из полипропилена изготавливают некоторые конструкционные детали автомобилей, мотоциклов, корпуса насосов, трубы для транспортирования агрессивных сред, пленки, емкости.

Полистирол (--СН2 -- СНС6Н5--) - прозрачный, аморфный полимер, диэлектрик, химически стоек, нерастворим в растворителях, но склонен к старению и имеет низкую (до 80°С) теплостойкость. Применяется он для изготовления деталей машин и приборов (ручки, корпуса и т. д.), емкостей и сосудов для химикатов, пленки и т. д.

Фторопласт-4, или политетрафторэтилен (--CF2-- --CF2)n, - полимер, имеющий макромолекулы в виде спиралей, диэлектрик, химически стоек. Из него изготавливают уплотнительные прокладки, трубы для транспортирования агрессивных сред, сильфоны, антикоррозионные покрытия на металлах. По химической стойкости он превосходит все известные пластмассы.

Полиметилметакрилат (органическое стекло, или плексиглас) - полярный, прозрачный, аморфный полимер на основе сложных эфиров акриловой и метакриловой кислот. В отличие от минерального стекла органическое значительно легче (более чем в два раза), пропускает ультрафиолетовые лучи, технологично (хорошо обрабатывается резанием, склеивается, сваривается, полируется), но обладает меньшими твердостью, прочностью и теплостойкостью. Идет на остекление и изготовление оптики, светотехнических деталей, емкостей. На основе полиметилметакрилата изготавливают самоотверждающиеся пластмассы типа стиракрила, которые применяют в производстве штампов, литейных моделей, абразивного инструмента.

Полиамиды (капрон, нейлон и др.) - полярные пластмассы на основе кристаллизующегося полимера, содержащего группы СО, NH и СН2. Они характеризуются высокими прочностью, теплостойкостью, износостойкостью и низким коэффициентом трения (f < 0,05), способностью погашать вибрации. Недостатки полиамидов - склонность к старению и некоторая гигроскопичность. Введение наполнителей (графит, тальк, дисульфид молибдена) обеспечивает повышение антифрикционных и некоторых других их свойств. Полиамиды применяют в машиностроении, электротехнике, медицине.

Поливинилхлорид - полярный, аморфный полимер состава (--СН2 -- СНС1--). Непластифицированный поливинилхлорид называют винипластом и применяют для изготовления различных деталей химического оборудования, труб, деталей вентиляционных и теплообменных установок, муфт, элементов насосов, вентиляторов, защитных покрытий на металлах, облицовочной плитки. Пластикат (полихлорвинилхлорид с пластификатором) используют для изготовления труб, конвейерных лент, печатных валиков, линолеума и т. д.

Наиболее крупнотоннажный по производству вид реактопластов - фенопласты, т. е. пластмассы, получаемые на основе фенолоформальдегидных смол.

Различают следующие виды фенопластов:

- ненаполненные, порошковые (наполнители - древесная мука, тальк, графит и др.),

- волокнистые (волокниты, асбо- и стекловолокниты),

- слоистые (гетинакс, текстолит и др.).

Волокниты получают пропиткой очесов льна или хлопка фенолоформальдегидным связующим и применяют для изготовления деталей, работающих на изгиб и кручение и устойчивых к ударным нагрузкам (шкивы, фланцы, стойки, направляющие втулки, маховики и т. д.).

Асбоволокниты получают пропиткой асбеста феноло-формальдегидной смолой. Они обладают высокими ударопрочностью, химической стойкостью, фрикционными свойствами и применяются для изготовления элементов тормозов (накладки, колодки, диски подъемно-транспортных устройств, автомобилей и т. д.), кислотоупорных конструкций.

Из слоистых пластмасс значительный интерес представляет текстолит, получаемый из связующего (фенолоформальдегидная смола) и наполнителя (хлопчатобумажные ткани - шифон, миткаль, бязь и др.). Текстолит отличается прочностью, способностью поглощать шумы и гасить вибрации, однако он может работать только при невысоких температурах (до 90°С). Из текстолита изготовляют зубчатые колеса, вкладыши подшипников, шкивы, втулки, прокладки в машиностроении, распределительные щиты и монтажные панели в электротехнике и т. д.

В табл. 3.1 приведены основные физико-механические свойства некоторых названных пластмасс.

Механические свойства пластмасс определяют при проведении:

- лабораторных статических испытаний на растяжение (ГОСТ 11262-80) или сжатие, изгиб,

- динамических испытаний по определению ударной вязкости (ГОСТ 4647-80),

- путем измерения твердости (по Бринеллю ГОСТ 4670-77 с помощью твердомера ТММ-2 или по Роквеллу, Виккерсу, Шору).

Таблица 3.1

Некоторые физико-механические свойства пластмасс

Характеристика

Полиэтилен

Полипропилен

Полистирол

Фторопласт

Полиметил метакрилат

Полиамиды

Поливинилхлорид

Текстолит

ПЭВД

ПЭНД

Плотность, кг/м3

918-930

949-955

500-910

1050-1080

2150-2350

1200

1100-1160

1400

1300-1400

Разрушающее напряжение при растяжении, МПа

10-17

22-30

25-40

37-45

14-35

65-70

50-100

40-60

65-100

Относительное удлинение при разрыве, %

500-600

300-800

200-800

1,5-3

250-350

2,5-4

50-150

10-50

1

Твердость по Бринеллю, НВ

1,4-2,5

4,5-5,8

6,0-6,5

14-15

3-4

20

-

10-16

-

Ударная вязкость, МДж/м2

не

ломается

не

ломается

3,3-8

1-2,2

10

1,2-1,3

8-13

до 15

3,5

Рабочая температура, °С

- максимальная

105-108

120-125

150

80

250

60

60-110

65-80

125

- минимальная

-40- -70

и ниже

-70

и ниже

-15

-20

-269

-60

-20- -60

-40

-50

Диэлектрическая проницаемость при частоте тока 106 Гц

2,2-2,3

2,1-2,4

2,2

2,5-2,7

1,9-2,2

3*

3-4

3-5-4*

7*

* При частоте тока 50 Гц.

Задание

1. Выполнить лабораторные испытания и определить следующие характеристики полиэтилена (ПЭВД и ПЭНД) с разной степенью кристалличности, или оргстекла, винипласта, фторопласта, текстолита:

а) провести испытание на растяжение и определить пц, т, в;

б) определить твердость по Бринеллю;

в) определить ударную вязкость;

г) оценить на примере полиэтилена влияние степени кристалличности на свойства термопластов;

д) сравнить изученные физико-механические свойства пластмасс со свойствами металлов, приведенными в справочнике.

2. Сделать выводы и написать отчет по работе в соответствии с заданиями.

Для определения названных свойств пластмасс необходимы специальные твердомеры с нагрузкой 250, 750 и 2550 Н, разрывная машина с усилием не более 50 кН, маятниковый копер.

Контрольные вопросы

1. Положительные качества и области применения пластических масс.

2. Основные достоинства и недостатки пластмасс.

3. Основные компоненты пластмасс, их соотношение.

4. Связующие вещества - природные и синтетические полимеры.

5. Форма строения структур макромолекул полимеров.

6. Аморфные и кристаллические полимеры, аморфность и кристалличность реальных полимеров.

7. Фазовое состояние полимеров. Что такое степень кристалличности полимеров?

8. Какие полимеры имеют более высокие теплостойкость и механические свойства?

9. Термопластичные полимеры или пластмассы.

10. Термореактивные полимеры и пластмассы.

11. От каких факторов зависят физико-механические свойства полимеров.

12. Стеклообразное состояние полимеров и свойства.

13. Высокоэластическое состояние полимеров и свойства.

14. Полимеры в вязкотекучем состоянии и свойства.

15. Термомеханические кривые для полимеров.

16. Зависимость степени деформации кристаллических полимеров от напряжения.

17. Главный недостаток полимеров - склонность к старению.

18. Важный компонент пластмасс - наполнители, виды наполнителей.

19. Диаграммы растяжения пластмасс.

20. Краткая характеристика свойств и областей применения некоторых пластмасс.

21. Виды испытаний физико-механических свойств пластмасс.

Учебное издание

Вершина Алексей Константинович,

Свидунович Николай Александрович,

Куис Дмитрий Валерьевич,


Подобные документы

  • Эксплуатационные свойства металлов. Классификация металлических материалов. Черные и цветные металлы, их сплавы. Стали для режущих и измерительных инструментов. Стали и сплавы со специальными свойствами. Сплавы алюминия и меди. Сплавы с "эффектом памяти".

    курсовая работа [1,6 M], добавлен 19.03.2013

  • Краткий обзор и характеристики твердых материалов. Группы металлических и неметаллических твердых материалов. Сущность, формирования строения и механические свойства твердых сплавов. Производство и применение непокрытых и покрытых твердых сплавов.

    реферат [42,3 K], добавлен 19.07.2010

  • Многослойные и комбинированные пленочные материалы. Адгезионная прочность композиционного материала. Характеристика и общее описание полимеров, их свойства и отличительные признаки от большинства материалов. Методы и этапы испытаний полимерных пленок.

    дипломная работа [1,7 M], добавлен 21.11.2010

  • Классификация металлов: технические, редкие. Физико-химические свойства: магнитные, редкоземельные, благородные и др. Свойства конструкционных материалов. Строение и свойства сталей, сплавов. Классификация конструкционных сталей. Углеродистые стали.

    реферат [24,1 K], добавлен 19.11.2007

  • Механические свойства, обработка и примеси алюминия. Классификация и цифровая маркировка деформируемых алюминиевых сплавов. Характеристика литейных алюминиевых сплавов системы Al–Si, Al–Cu, Al–Mg. Технологические свойства новых сверхлегких сплавов.

    презентация [40,6 K], добавлен 29.09.2013

  • Горение полимеров и полимерных материалов, методы снижения горючести в них. Применение, механизм действия и рынок антипиренов. Наполнители, их применение, распределение по группам. Классификация веществ, замедляющих горение полимерных материалов.

    реферат [951,6 K], добавлен 17.05.2011

  • Обзор состава простых конструкционных сталей. Получение чугуна и легированных сталей. Характерные особенности медно-никелевых сплавов. Применение алюминиевых бронз, нейзильбера, мельхиора в народном хозяйстве. Механические свойства сплавов меди с цинком.

    презентация [3,3 M], добавлен 06.04.2014

  • Классификация композиционных материалов, их геометрические признаки и свойства. Использование металлов и их сплавов, полимеров, керамических материалов в качестве матриц. Особенности порошковой металлургии, свойства и применение магнитодиэлектриков.

    презентация [29,9 K], добавлен 14.10.2013

  • Примеры, свойства, состав, структура и область применения материалов: пеностекло, хромоникельмолибденовая сталь и железоуглеродистый сплав. Режимы термообработки для конкретной детали из этих сплавов. Построение кривой охлаждения и степеней свободы.

    контрольная работа [180,9 K], добавлен 19.09.2010

  • Диаграмма состояния сплава. Смолы, их группы и применение. Прямой и обратный пьезоэффект. Свойства, особенности, составы, применение пьзоэлектриков. Классификация и использование контактных материалов. Расшифровка марок сплавов МНМц 40-1,5 и МНМц 3-12.

    контрольная работа [1,3 M], добавлен 21.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.