Расчет схемы очистки пылей, образующихся на свинцовом производстве
Анализ схем очистки пылей, образующихся на свинцовом производстве. Токсичность свинцовой пыли. Характеристика эксплуатационных показателей пылеулавливающего оборудования. Расчет размеров аппаратов, используемых для очистки выбросов от свинцовой пыли.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 19.04.2011 |
Размер файла | 251,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
п - число одиночных циклонов, шт.
Полученное значение Dpacч округляем до ближайшего типового значения Dвн.
Все циклоны конструкции НИИОгаза нормализованы. Согласно ГОСТ 9617-67 для циклонов приняты следующие величины диаметров, мм: 200; 300; 400; 500; 600; 700; 800; 900; 1000; 1200; 1400; 1600; 1800; 2000; 2400; 3000. Вследствие снижения эффективности с увеличением размеров применять циклоны типа ЦН диаметром более 1000 мм не рекомендуется. В этом случае устанавливают группу циклонов, работающих параллельно.
Определяем количество циклонов.
2. Определение действительной скорости движения газа в циклоне, м/с.
,
Если значение действительной скорости отличается от оптимальной не более чем на 15%, то диаметр циклона выбран правильно. При скоростях, выходящих за указанные пределы в большую сторону, возрастает расход энергии, в меньшую сторону - снижается эффективность.
3. Расчет коэффициента гидравлического сопротивления одиночного циклона, Па.
,
где k1 - поправочный коэффициент, принимается интерполяцией в зависимости от диаметра циклона (по табл.2);
k2 - поправочный коэффициент, принимается в зависимости от запыленности газа (по табл.3);
о500 - коэффициент гидравлического сопротивления одиночного циклона диаметром 500 мм. При удалении газа по воздуховоду о500 принимается в зависимости от вида выбранного циклона (по табл.4).
4. Расчет гидравлического сопротивления циклона, Па.
,
где с - плотность газа при заданной температуре, кг/м3.
Используя правило аддитивности, подсчитываем плотность газовой смеси заданного состава в нормальных условиях со, кг/м3:
,
где ri - объемная доля газа, входящего в состав смеси;
со - плотность газа, входящего в состав смеси, в нормальных условиях, кг/м3 (по табл.5).
Вычисляем плотность газовой смеси при заданной температуре:
,
где Т - температура газовой смеси,°С.
5. Определение динамической вязкости газовой смеси при заданной температуре.
По формуле Гернинга и Ципперера:
,
где мТ - вязкость газа при заданной температуре, Па*с;
м0 - вязкость газа при нормальных условиях, Па*с (по табл.5);
k - поправочный коэффициент.
,
где ri - объемная доля газа, входящего в состав смеси;
Тcr i - критическая температура газа, входящего в состав смеси, К (по табл.5).
,
где ri - объемная доля газа, входящего в состав смеси;
ki - поправочный коэффициент для газа, входящего в состав смеси (по табл.5).
6. Определение значения медианного размера частиц, мкм.
,
где Dm - диаметр типового циклона, м (см. примечание табл.1);
рчт - плотность частиц пыли в типовом циклоне, кг/м3 (см. примечание табл.1);
м m - вязкость газа в типовом циклоне, Па*с (см. примечание табл.1);
wm - скорость газа в типовом циклоне, м/с (см. примечание табл.1).
Значения dТ50 и Ig2уз находят по таблице 1 для выбранного типа циклона:
7. Определение значений dm и lg уч.
Значение dm определяется с помощью графика построенного в вероятностно-логарифмической системе координат исходя из гранулометрического состава пыли.
Значение lg уч определяется с помощью соотношения:
,
где dx, dy - абсциссы точек, ординаты которых имеют значения x,% и y,% и определяются по заданному распределению пыли по размерам (x > y).
Построение графика.
Интегральные кривые для частиц с логарифмически нормальным распределением удобно строить в вероятностно-логарифмической системе координат, где они приобретают вид прямых линий. Для построения такой системы координат по оси абсцисс в логарифмическом масштабе откладывают значения d - диаметра частиц, а по оси ординат - значения их процентного содержания в газе. Относительные длины отрезков y, соответствующих различным значениям процентного содержания частиц, которые для построения вероятностно-логарифмической системы координат следует откладывать в выбранном масштабе от начала оси абсцисс, приведены в табл.6.
Поскольку в вероятностно-логарифмической системе координат ось абсцисс начинается от точки на оси ординат, соответствующей значению 50 %, значения y для значений больше 50 % откладываются вверх от начала оси абсцисс, а значения меньше 50 % - вниз.
Построив по результатам дисперсионного анализа интегральную функцию распределения частиц по размерам в вероятностно-логарифмической системе координат, можно (если получившийся график имеет вид прямой линии, свидетельствующий о логарифмически нормальном характере изучаемого распределения) выразить это распределение в виде параметров dm и lg уч.
Значению dm отвечает точка пересечения построенного графика с осью абсцисс.
8. Ожидаемая эффективность очистки газа в циклоне з,%:
.
ф (х) - табличная функция от параметра x:
по табл.7 находим ф (х).
Расчет рукавного фильтра.
1. Определение необходимой площади фильтрации.
,
где a - скорость фильтрации, м/мин (определяется в зависимости от типа выбранного рукавного фильтра).
2. Определение требуемого числа фильтров, n.
f - фильтровальная поверхность фильтра, м2.
Фильтровальная поверхность одного рукава, м2:
,
где l - длина, м; H - диаметр рукава, м.
Фильтровальная поверхность секции, м2:
,
где пр - количество рукавов в секции.
Значения l, H, np определяются по техническим характеристикам выбранного рукавного фильтра.
Оценка эффективности многоступенчатой очистки.
Коэффициент очистки является основным показателем, характеризующим работу пылеулавливающих аппаратов, %:
,
где Cвх - концентрация пыли в газе на входе в рукавный фильтр, г/м3;
Свых - концентрация пыли в газе на выходе из рукавного фильтра, г/м3.
,
где С - концентрация пыли в газе на входе в циклон, г/м3;
Свых ц - концентрация пыли в газе на выходе из циклона, г/м3;
зц - эффективность циклона.
Тогда эффективность многоступенчатой очистки:
,
где зсум - суммарный к. п. д. двух последовательно работающих пылеуловителей,
зм и зф - соответственно к. п. д. отдельных пылеуловителей.
Размещено на Allbest.ru
Подобные документы
Характеристика промышленных пылей, их морфология, дисперсный состав и физико-химические свойства. Сухие, мокрые и электрические методы очистки от пыли. Разработка технологической схемы очистки аэропромвыбросов, подбор технологического оборудования.
курсовая работа [2,9 M], добавлен 23.12.2012Организация машинного производства. Методы очистки технологических и вентиляционных выбросов от взвешенных частиц пыли или тумана. Расчет аппаратов очистки газов. Аэродинамический расчет газового тракта. Подбор дымососа и рассеивание холодного выброса.
курсовая работа [1,5 M], добавлен 07.09.2012Основные методы очистки масличных семян от примесей. Технологические схемы, устройство и работа основного оборудования. Бурат для очистки хлопковых семян. Сепаратор с открытым воздушным циклом. Методы очистки воздуха от пыли и пылеуловительные устройства.
контрольная работа [5,0 M], добавлен 07.02.2010Загрязнение окружающей среды при производстве кирпича. Методы очистки газовоздушных потоков. Устройство циклона и схема движения в нем газового потока. Расчет рукавного фильтра. Проектирование сооружения для очистки стоков промывочно-пропарочной станции.
курсовая работа [2,1 M], добавлен 24.11.2011Понятие и назначение гальванического покрытия металлов, этапы проведения данного процесса. Характеристика сточных вод, образующихся в результате гальваники, методы их очистки. Выбор оборудования, описание и критерии выбора технологии очистки сточных вод.
курсовая работа [4,9 M], добавлен 24.11.2010Система термической очистки газовых выбросов при использовании в качестве топлива природного газа. Обоснование и выбор системы очистки с энергосберегающим эффектом. Разработка и расчет традиционной системы каталитической очистки от горючих выбросов.
курсовая работа [852,0 K], добавлен 23.06.2015Разработка технологии очистки сточных вод от гальванического и травильного производств. Расчет технологического оборудования (основных характеристик аппаратов водоочистки) и составление схемы очистки. Проектирование оборудования для обработки осадка.
курсовая работа [255,6 K], добавлен 13.12.2010Методы и технологические схемы очистки пылевоздушных выбросов от каменно-угольной пыли с применением пылеосадительных камер, инерционных и центробежных пылеуловителей, фильтровальных перегородок. Расчет материального баланса калорифера, циклона, фильтра.
курсовая работа [191,1 K], добавлен 01.06.2014Физико-химические, химические, биологические и термические методы очистки сточных вод. Характеристика хлебопекарных дрожжей. Приготовление растворов питательных солей. Схема очистки сточных вод на производстве. Расчет гидроциклона и отстойника.
курсовая работа [592,4 K], добавлен 14.11.2017Характеристика методов очистки воздуха. "Сухие" механические пылеуловители. Аппараты "мокрого" пылеулавливания. Созревание и послеуборочное дозревание зерна. Сушка зерна в зерносушилке. Процесс помола зерна. Техническая характеристика Циклона ЦН-15У.
курсовая работа [35,0 K], добавлен 28.09.2009