Установки погружных центробежных насосов для добычи нефти из скважин

Эксплуатация скважин центробежными погружными насосами. Насосы погружные центробежные модульные типа ЭЦНД. Установка ПЦЭН специального назначения и определение глубины его подвески. Элементы электрооборудования установки и погружной насосный агрегат.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 27.02.2009
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

С учетом кривизны искомое Нд будет равно

(8)

Здесь Нс - глубина скважины, измеренная вдоль ее оси.

Величина Нп - погружение под динамический уровень, при наличии газа определяется сложно. Об этом будет сказано несколько дальше. Как правило, Нп принимается таким, чтобы на приеме ПЦЭН обеспечить за счет давления столба жидкости газосодержание в потока, не превышающее 0,15 - 0,25. В большинстве случаев это соответствует 150 - 300 м.

Величина Py/сg есть устьевое давление, выраженное в метрах столба жидкости плотностью с. Если продукция скважины обводнена и n - доля воды в единице объема продукции скважины, то плотность жидкости определяется как средневзвешенная

(9)

Здесь сн, сн - плотности нефти и воды.

Величина Ру зависит от системы нефтегазосбора, удаленности данной скважины от сепарационных пунктов и в некоторых случаях может составлять значительную величину.

Величина hтр рассчитывается по обычной формуле трубной гидравлики

(10)

где С - линейная скорость потока, м/с,

(11)

Здесь QH и QB - дебит товарной нефти и воды, м3/сут; bН и bВ - объемные коэффициенты нефти и воды для средних термодинамических условий, существующих в НКТ; f - площадь сечения нкт.

Как правило, hтр - малая величина и составляет примерно 20 - 40 м.

Величину Нг можно определить достаточно точно. Однако такой расчет сложный и, как правило, проводится на ЭВМ.

Приведем упрощенный расчет процесса движения ГЖС в НКТ. На выкиде насоса жидкость содержит в себе растворенный газ. При снижении давления газ выделяется и способствует подъему жидкости, снижая тем самым необходимый напор на величину Нг. По этой причине в уравнение Нг входит с отрицательным знаком.

Величину Нг можно приближенно определить по формуле, следующей из термодинамики идеальных газов, подобно тому, как это может быть сделано при учете работы газа в НКТ в скважине, оборудованной ШСН.

Однако, при работе ПЦЭН для учета большей производительности по сравнению с ШСН и меньших потерь скольжения можно рекомендовать более высокие значения коэффициента полезного действия для оценки эффективности работы газа.

- при добыче чистой нефти з = 0,8;

- при обводненной нефти 0,2 < n < 0,5 з = 0,65;

- при сильно обводненной нефти 0,5 < n < 0,9 з = 0,5;

При наличии фактических замеров давления на выкиде ЭЦН величина з может быть уточнена.

Для согласования H(Q) характеристики ЭЦН с условиями скважины строится так называемая напорная характеристика скважины (рисунок 9) в зависимости от ее дебита.

(12)

На рисунке 9 показаны кривые изменения слагаемых в уравнении от дебита скважины и определяющих результирующую напорную характеристику скважины Нскв(2).

Рисунок 9. Напорные характеристики скважины:

1 - глубина (от устья) динамического уровня, 2 - необходимый напор с учетом давления на устье, 3 - необходимый напор с учетом сил трения, 4 - результирующий напор с учетом «газлифтного эффекта»

Линия 1 - зависимость Нд(2), определяемая по формулам, приведённым выше и строится по точкам для различных произвольно выбранных Q. Очевидно, при Q = 0 НД = НСТ, т. е. динамический уровень совпадает со статическим. Прибавляя к Нд величину буферного давления, выраженного в м столба жидкости (Py/сg), получим линию 2 - зависимость этих двух слагаемых от дебита скважины. Вычисляя по формуле для разных Q величину hТР и прибавляя вычисленные hТР к ординатам линии 2 получим линию 3 - зависимость первых трех слагаемых от дебита скважины. Вычисляя по формуле величину Нг и вычитая ее значение от ординат линии 3, получим результирующую линию 4, называемую напорной характеристикой скважины. На напорную характеристику скважины накладывается H(Q) - характеристика насоса для отыскания точки их пересечения, определяющей такой дебит скважины, который будет равен подаче. ПЦЭН при совместной работе насоса и скважины (рисунок 10).

Точка А - пересечение характеристик скважины (рисунок 11, кривая 1) и ПЦЭН (рисунок 11, кривая 2). Абсцисса точки А дает дебит скважины при совместной работе скважины и насоса, а ордината - напор Н, развиваемый насосом.

Рисунок 10. Согласование напорной характеристики скважины (1) с H(Q), характеристикой ПЦЭН (2), 3 - линия к. п. д.

Рисунок 11. Согласование напорной характеристики скважины и ПЦЭН путем снятия ступеней

В некоторых случаях для согласования характеристики скважины и ПЦЭН повышают противодавление на устье скважины с помощью штуцера или снимают лишние рабочие ступени в насосе и заменяют их направляющими вкладышами (рисунок 12).

Как видим, точка А пересечения характеристик получилась в этом случае за пределами заштрихованной области. Желая обеспечить работу насоса на режиме зmax (точка Д), находим подачу насоса (дебит скважины) QCKB, соответствующую этому режиму. Напор, развиваемый насосом при подаче QCKB на режиме зmax, определяется точкой В. В действительности при этих условиях работы необходимый напор определится точкой С.

Разница ВС = ДН есть избыточный напор. В этом случае можно повысить давление на устье скважины на ДР = ДH · p · g установкой штуцера или снять часть рабочих ступеней насоса и заменить их вкладышами. Число снимаемых ступеней насоса определяется из простого соотношения:

(13)

Здесь Zo - общее число ступеней в насосе; Но - напор, развиваемый насосом при полном числе ступеней.

С энергетической точки зрения штудирование на устье для согласования характеристик невыгодно, так как приводит к пропорциональному снижению к. п. д. установки. Снятие ступеней позволяет сохранить к. п. д. на прежнем уровне или даже несколько повысить его. Однако разобрать насос и заменить рабочие ступени вкладышами можно лишь в специализированных цехах.

При описанном выше согласовании характеристик скважины насоса необходимо, чтобы H(Q) характеристика ПЦЭН соответствовала действительной характеристике при его работе на скважинной жидкости определенной вязкости и при определенном газосодержании на приеме. Паспортная характеристика H(Q) определяется при работе насоса на воде и, как правило, является завышенной. Поэтому важно иметь действительную характеристику ПЦЭН, прежде чем согласовывать её с характеристикой скважины. Наиболее надежный метод получения действительной характеристики насоса - это его стендовые испытания на скважинной жидкости при заданном проценте обводненности.

Определение глубины подвески ПЦЭН с помощью кривых распределения давления.

Глубина подвески насоса и условия работы ЭЦЭН как на приеме, так и на его выкиде довольно просто определяется с помощью кривых распределения давления вдоль ствола скважины и НКТ. Предполагается, что методы построения кривых распределения давления Р(х) уже известны из общей теории движения газожидкостных смесей в НКТ.

Если дебит задан, то из формулы (или по индикаторной линии) определяется забойное давление Рс, соответствующее этому дебиту. От точки Р = Рс строится график распределения давления (по шагам) Р(х) по схеме «снизу вверх». Кривая Р(х) строится для заданного дебита Q, газового фактора Го и прочих данных, таких как плотность жидкости, газа, растворимость газа, температура, вязкость жидкости и др., учитывая при этом, что от забоя газожидкостная смесь движется по всему сечению обсадной колонны.

Рисунок 12. Определение глубины подвески ПЦЭН и условий его работы с помощью построения кривых распределения давления: 1 - Р(х) - построенная от точки Рс; 2 - р(х) - кривая распределения газосодержания; 3 - Р(х), построенная от точки Ру; ДР - перепад давлений, развиваемый ПЦЭН

На рисунке 12 показана линия распределения давления Р(х) (линия 7), построенная снизу вверх от точки с координатами Рс, Н.

В процессе вычисления по шагам значений Р и х в качестве промежуточной величины для каждого шага получаются значения расходной газонасыщенности р. По этим данным, начиная с забоя, можно построить новую кривую р(х) (рисунок 12, кривая 2). При забойном давлении, превышающем давление насыщения Рс > Рнас, линия в(х) будет иметь своим началом точку, лежащую на оси ординат выше забоя, т. е. на той глубине, где давление в стволе скважины будет равно или меньше Рнас.

При Рс < Рнас свободный газ будет присутствовать на забое и поэтому функция в(х) при х = Н уже будет иметь некоторое положительное значение. Абсцисса точки А будет соответствовать начальной газонасыщенности в на забое (х = Н).

При уменьшении х в будет возрастать в результате уменьшения давления.

Построение кривой Р(х) должно быть продолжено до пересечения этой линии 1 с осью ординат (точка б).

Выполнив описанные построения, т. е. построив линии 1 и 2 от забоя скважины, приступают к построению кривой распределения давления Р(х) в НКТ от устья скважины, начиная от точки х = 0 Р = Ру, по схеме «сверху вниз» по шагам по любой методике и в частности по методике, описанной в общей теории движения газожидкостных смесей в трубах (глава 7) Вычисление производится для заданного дебита Q, того же газового фактора Го и других данных, необходимых для расчета.

Однако в этом случае кривая Р(х) рассчитывается для движения ГЖС по НКТ, а не по обсадной колонне, как и предыдущем случае.

На рисунке 12 функция Р(х) для НКТ, построенная сверху вниз, показана линией 3. Линия 3 должна быть продолжена вниз либо до забоя, либо до таких значений х, при которых газонасыщенность в становится достаточно малой (4 - 5%) или даже равной нулю.

Поле, лежащее между линиями 1 и 3 и ограниченное горизонтальными линиями I - I и II - II, определяет область возможных условий работы ПЦЭН и глубины его подвески. Расстояние по горизонтали между линиями 1 и 3 в определенное масштабе определяет перепад давлений ДР, который должен сообщить потоку насос, чтобы скважина работала с заданным дебитом Q, забойным давлением Рс и устьевым давлением Ру.

Кривые на рисунке 12 могут быть дополнены кривыми распределения температур t(x) от забоя до глубины подвески насоса и от устья также до насоса с учетом скачка температуры (расстояние в - е) на глубине подвески ПЦЭН, происходящего от тепловой энергии, выделяемой двигателем и насосом. Этот температурный скачок можно определить, приравнивая потери механической энергии в насосе и электродвигателе к приращению тепловой энергии потока. Полагая, что переход механической энергии в тепловую совершается без потерь в окружающую среду, можно определить приращение температуры жидкости в насосном агрегате.

(14)

Здесь с - удельная массовая теплоемкость жидкости, Дж/кг-°С; зн и зд - к. п .д. насоса и двигателя соответственно. Тогда температура жидкости, покидающей насос, будет равна

t = tпр + ДР (15)

где tпр - температура жидкости на приеме насоса.

При отклонении режима работы ПЦЭН от оптимального к. п. д. будет уменьшаться и нагрев жидкости будет увеличиваться.

Для того чтобы выбрать типоразмер ПЦЭН, необходимо знать дебит и напор.

При построении кривых Р(х) (рисунок ) дебит должен быть задан. Перепад давлений на выкиде и приеме насоса при любой глубине его спуска определяется как расстояние по горизонтали от линии 1 до линии 3. Этот перепад давлений необходимо перевести в напор, зная среднюю плотность жидкости с в насосе. Тогда напор будет

(16)

Плотность жидкости с при обводненной продукции скважины определяется как средневзвешенная с учетом плотностей нефти и воды при термодинамических условиях насоса.

По данным испытаний ПЦЭН при работе на газированной жидкости установлено, что при газосодержании на приеме насоса 0 < впр < 5 - 7% напорная характеристика практически не изменяется. При впр > 5 - 7 % напорные характеристики ухудшаются и в расчетный напор необходимо вносить поправки. При впр , доходящих до 25 - 30%, происходит срыв подачи насоса. Вспомогательная кривая Р(х) (рисунок 12, линия 2) позволяет сразу определять газосодержание на приеме насоса при различной глубине его спуска.

Определенные по графикам подача и необходимый напор должны соответствовать выбранному типоразмеру ПЦЭН при работе его на оптимальном или рекомендованных режимах.

3. Подбор погружного центробежного насоса

Подобрать погружной центробежный насос для форсированного отбора жидкости.

Глубина скважины Нскв = 450 м.

Статический уровень считается от устья hs = 195 м.

Допустимый период давления ДР = 15 атм.

Коэффициент продуктивности К = 80 м2/сут атм.

Жидкость состоит из воды с 27 % нефти гж = 1.

Показатель степени в уравнение притока жидкости n = 1.

Диаметр обводной колонны 300 мм.

Свободного газа в откачиваемой скважине нет, так как он отбирается из межтрубного пространства вакуумом.

Решение:

Определим расстояние от устья скважины до динамического уровня. Перепад давления, выраженный в метрах столба жидкости

ДР = 15 атм = 15 х 10 = 150 м.

Расстояние динамического уровня:

hб = hs + ДР = 195 + 150 = 345 м (17)

Найдём требующуюся производительность насоса из давления притока:

Q = КДР = 80 х 15 - 1200 м3/сут (18)

Для лучшей работы насоса будем эксплуатировать его с некоторым периодом подбора насоса на 20 м под динамический уровень жидкости.

Ввиду значительного дебита принимаем диаметр подъёмных труб и выкидной линии равным 100 мм (4'').

Напор насоса в рабочей области характеристики должен обеспечить следующее условие:

НН ? НО + hT + h'Т (19)

где: НН - требующийся напор насоса в м;

НО - расстояние от устья скважины до динамического уровня, т.е. высота подъёма жидкости в м;

hT - потери напора на трение в насосных трубах, в м;

h'Т - напор, требуемый на преодоление сопротивлений в выкидной линии на поверхности, в м.

Вывод диаметра трубопровода считается правильным, если напора по всей его длине от насоса до приёмного резервуара не превышает 6-8 % от общего напора. Общая длина трубопровода

L = H0+1=345 + 55 = 400 м (20)

Потерю напора для трубопровода рассчитывается по формуле:

hT + h'Т = л/d v2/2g (21)

где: л ? 0,035 - коэффициент сопротивления

g = 9,81 м/сек - ускорение силы тяжести

V = Q/F = 1200 х 4/86400 х 3,14 х 0,1052 = 1,61 м/сек скорость движения жидкости

F = р/4 х d2 = 3,14/4 х 0,1052 - площадь сечения 100 мм трубы.

Отсюда:

hT + h'Т = 0,035 х 400/0,105 х 1,61/2 х 9,8 = 17,6 м. (22)

Потребный напор насоса

НН = НО + hT + h'Т = 345 + 17,6 = 363 м (23)

Проверим правильность выбора 100 мм (4'') труб.

hT + h'Т/ НН х 100 = 17,6 х 100/363 = 48 % < 6 % (24)

Условие относительно диаметра трубопровода соблюдается, следовательно, 100 мм трубы выбраны правильно.

По напору и производительности подбираем подходящий насос. Наиболее удовлетворяющим является агрегат под маркой 18-К-10, что означает: насос состоит из 18 ступеней, мотор его имеет мощность 10х20 = 200 л.с. = 135,4 кВт.

При питании током (60 периодов в секунду) ротор мотора на стенде даёт n1 = 3600 об/мин и насос развивает производительность до Q = 1420 м3/сут.

Пересчитываем параметры выбранного агрегата 18-К-10 на нестандартную частоту переменного тока - 50 периодов в минуту: n = 3600 х 50/60 = 300 об/мин.

Для центробежных насосов производительности относятся как числа оборотов Q = n/n1, Q = 3000/3600 х 1420 = 1183 м3/сут.

Далее выбираем номера агрегата 18-К-10, обеспечивающий напор Н = 427 м.

Так как напоры относятся как квадраты чисел оборотов, то при n = 3000 об/мин насос обеспечит напор.

Н'Н = n2/n1 х 427 = 3000/3600 х 427 = 297 м (25)

Чтобы получить требуемый номер НН = 363 м, надо увеличить число ступеней насоса.

Напор, развиваемый одной ступенью насоса равен n = 297/18 = 16,5 м. Чтобы иметь напор НН = 363 м, требуется ступеней х = 363/16,5 = 22 ступеней. С небольшим запасом возьмём 23 ступеней, тогда марка нашего насоса будет 23-К-10.

Напор приспособления насосов к индивидуальным условиям в каждой скважине рекомендуется инструкцией.

Рабочая мочка с производительностью 1200 м3/сутки находится на пересечении наружной кривой и кривой характеристики трубопровода. Продолжив перпендикуляр вверх, найдём значение КПД агрегата з = 0,44 : cosц = 0,83 электромотора. По этим значениям проверим мощность, потребляемую электродвигателем агрегата из сети переменного тока N = Q НН х 1000/86400 х 102 з х cosц = 1200 х 363 х 1000/86400 х 102 х 0,44 х 0,83 = 135,4 кВт. Иначе говоря, электродвигатель агрегата будет мощностью загружен.

4. Охрана труда

На предприятиях составляется и утверждается главным инженером график проведения проверки герметичности фланцевых соединений, арматуры и других источников возможных выделений сероводорода.

Для перекачки сероводородсодержащих сред должны использоваться насосы с двойным торцовым уплотнением или с электромагнитными муфтами.

Сточные воды установок подготовки нефти, газа и газоконденсата должны подвергаться очистке, а при содержании сероводорода и других вредных веществ выше ПДК - нейтрализации.

До вскрытия и разгерметизации технологического оборудования необходимо осуществлять мероприятия по дезактивации пирофорных отложений.

Перед осмотром и ремонтом, ёмкости и аппараты должны быть пропарены и промыты водой для предотвращения самовозгорания природных отложений. По дезактивации пирофорных соединений должны осуществляться мероприятия с применением пенных систем на основе ПАВ либо других методов, отмывающих системы аппаратов от этих соединений.

Во избежание самовозгорания природных отложений, при ремонтных работах, все узлы и детали технологического оборудования должны быть смочены техническими моющими составами (ТМС).

При наличии на объектах добычи газо- и продукта с большим геометрическим объёмом, необходимо секционировать их путём автоматических задвижек, обеспечивающих наличие в каждой секции при нормальном рабочем режиме не более 2000 - 4000 м3 сероводорода.

На установках в помещениях и на промплощадках, где возможно выделение сероводорода в воздух рабочей зоны, должен осуществляться постоянный контроль воздушной среды и сигнализации опасных концентраций сероводорода.

Место установки датчиков стационарных автоматических газосигнализаторов определяется проектом обустройства месторождения с учётом плотности газов, параметров изменяемого оборудования, его размещения и рекомендации поставщиков.

Контроль за состоянием воздушной среды на территории промысловых объектов должен быть автоматическим с выводом датчиков на диспетчерский пункт.

Замеры концентрации сероводорода газоанализаторами на объекте должны проводиться по графику предприятия, а в аварийных ситуациях - газоспасательной службой с занесением результатов в журнал.

Заключение

Установки погружных центробежных насосов (УЭЦН) для добычи нефти из скважин нашли широкое применение на скважинах с большим дебитом, так насос и электродвигатель подобрать под любую большую производительность не представляет большего труда.

Промышленность России выпускает насосы с широким диапозоном производительности, тем более что, производительность и высоту подъёма жидкости от забоя на поверхность можно регулировать меняя число секций насоса.

Использование центробежных насосов возможно при различных величинах подач и напоров по причине «гибкости» характеристики, однако практически подача насоса должна находиться внутри «рабочей части» или «рабочей зоны» характеристики насоса. Эти рабочие части характеристики должны обеспечивать наиболее экономичные режимы эксплуатации установок и минимальный износ деталей насосов.

Компания «Борец» производит полнокомплектные установки погружных электроцентробежных насосов различных вариантов комплектации, отвечающие мировым стандартам, предназначенные для эксплуатации в любых условиях, в том числе в осложнённых с повышенным содержанием мехпримесей, газосодержания и температуры перекачиваемой жидкости, рекомендуется для скважин с высоким газовым фактором и нестабильным динамическим уровнем, успешно противостоят отложению солей.

Список литературы

1. Абдулин Ф.С. Добыча нефти и газа: - М.: Недра, 1983. - С.140

2. Актабиев Э.В., Атаев О.А. Сооружения компрессорных и нефтеперекачивающих станций магистральных трубопроводов: - М.: Недра, 1989. - С.290

3. Алиев Б.М. Машины и механизмы для добычи нефти: - М.: Недра, 1989. - С.232

4. Алиева Л. Г., Алдашкин Ф. И. Бухгалтерский учет в нефтяной и газовой промышленности: - М.: Тема, 2003. - С.134

5. Березин В.Л., Бобрицкий Н.В. и др. Сооружение и ремонт газонефтепроводов: - М.: Недра, 1992. - С.321

6. Бородавкин П.П., Зинкевич А.М. Капитальный ремонт магистральных трубопроводов: - М.: Недра, 1998. - С.149

7. Бухаленко Е.И. и др. Монтаж и обслуживание нефтепромыслового оборудования: - М.: Недра, 1994. - С.195

8. Бухаленко Е.И. Нефтепромышленное оборудование: - М.: Недра, 1990. - С.200

9. Бухаленко Е.И. Справочник по нефтепромысловому оборудованию: - М.: Недра, 1990. - С.120

10. Вирнавский А.С. Вопросы эксплуатации нефтяных скважин: - М.: Недра, 1997. - С.248

11. Марицкий Е.Е., Миталев И.А. Нефтяное оборудование. Т. 2: - М.: Гипронефтемаш, 1990. - С.103

12. Марков А.А. Справочник по добыче нефти и газа: - М.: Недра, 1989. - С.119

13. Махмудов С.А. Монтаж, эксплуатация и ремонт скважных насосных установок: - М.: Недра, 1987. - С.126

14. Михайлов К.Ф. Справочник механика нефтепромыслов: - М.: Гостехиздание, 1995. - С.178

15. Мищенко Р.И. Нефтепромысловые машины и механизмы: - М.: Гостехиздание, 1984. - С.254

16. Молчанов А.Г. Нефтепромысловые машины и механизмы: - М.: Недра, 1985. - С.184

17. Муравьёв В.М. Эксплуатация нефтяных и газовых скважин: - М.: Недра, 1989. - С. 260

18. Овчинников В.А. Нефтяное оборудование, т.II: - М.: ВННи нефтемашин, 1993. - С.213

19. Раабен А.А. Ремонт и монтаж нефтепромыслового оборудования: - М.: Недра, 1987. - С.180

20. Руденко М.Ф. Разработка и эксплуатация нефтяных месторождений: - М.: Труды МИНХ и ГТ, 1995. - С.136


Подобные документы

  • Назначение погружных центробежных электронасосов, анализ конструкции и установки. Сущность отечественных и зарубежных погружных центробежных насосов. Анализ насосов фирм ODI и Centrilift. Электроцентробежные насосы ЭЦНА 5 - 45 "Анаконда", расчет мощности.

    курсовая работа [513,1 K], добавлен 30.04.2012

  • Фонтанный способ добычи нефти. Оборудование при фонтанном способе добычи нефти. Эксплуатация скважин газлифтным методом, применяемое оборудование. Установки погружных насосов с электроприводом. Вспомогательное скважинное оборудование, классификация ВШНУ.

    курсовая работа [4,0 M], добавлен 29.06.2010

  • Производство и использование для добычи нефти установок электроцентробежных погружных насосов. Состояние нефтяной промышленности РФ. Разработки по повышению показателей работы насоса и увеличение наработки на отказ. Межремонтный период работы скважин.

    реферат [262,7 K], добавлен 11.12.2012

  • Использование штанговых скважинных насосов для подъема нефти на поверхность. Техническая схема станка-качалки. Установки погружных электроцентробежных, винтовых, диафрагменных электронасосов. Система периодической и непрерывной газолифтной добычи.

    курсовая работа [2,9 M], добавлен 11.05.2011

  • Понятие, структура и основные элементы, технологическое назначение насосов для молока. Работа насосов для молока и молочных продуктов, их разновидности, оценка преимуществ и недостатков каждого их них. Методика и этапы расчета насосной установки.

    курсовая работа [1,5 M], добавлен 20.05.2011

  • Общие сведения и нефтегазоносность Бахметьевского месторождения . Устройство фонтанной арматуры. Преимущества и недостатки газлифта. Эксплуатация скважин глубинными насосами. Методы увеличения нефтеотдачи пластов. Бурение, ремонт и исследование скважин.

    отчет по практике [2,0 M], добавлен 28.10.2011

  • Насосы - гидравлические машины, предназначенные для перемещения жидкостей. Принцип действия насосов. Центробежные насосы. Объемные насосы. Монтаж вертикальных насосов. Испытания насосов. Применение насосов различных конструкций. Лопастные насосы.

    реферат [305,4 K], добавлен 15.09.2008

  • Варианты крепления вставных насосов. Основные узлы станка-качалки типа СКД. Правила безопасности при эксплуатации скважин штанговыми насосами. Использование устьевого оборудования для герметизации затрубного пространства и отвода продукции скважины.

    реферат [822,1 K], добавлен 21.05.2009

  • Центробежные насосы и их применение. Основные элементы центробежного насоса. Назначение, устройство и техническая характеристика насосов. Капитальный ремонт центробежных насосов типа "НМ". Указания по дефектации деталей. Обточка рабочего колеса.

    курсовая работа [51,3 K], добавлен 26.06.2011

  • Характеристика погружного насоса, погружаемого ниже уровня перекачиваемой жидкости. Анализ штанговых погружных и бесштанговых погружных насосов. Коэффициент совершенства декомпозиции системы. Знакомство с основными видами насосов погружного типа.

    курсовая работа [1,0 M], добавлен 18.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.