Расчет вращающейся печи для спекания боксита производительностью по спеку

Описание наиболее выгодного способа переработки алюминиевой руды. Термические способы производства глинозема. Сущность способа спекания. Спекание как способ переработки сырья с высоким содержанием кремнезема. Описание реакции, протекающей при спекании.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 01.11.2010
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

СаСОз=СаО+СО2 - 178000 кДж

затраты тепла составят

(4+5,365)?16(100/56)?(178000/100)=476277,1 кДж=476,3 МДж.

Количество Na2CO3 (молекулярная масса - 106) в шихте (в соде и оборотном растворе) через Na2O (молекулярная масса - 62) равно

Тогда в соответствии с уравнением

Na2CO3 =Na2O+СО2 - 322000 кДж

затраты тепла будут равны

=2791220,65 кДж=2791,22 МДж.

При разложении натриевого алюмосиликата количество Na2O?Аl2О3?2SiО2 (молекулярная масса - 284) на 1 тонну шихты рассчитывают по SiO2 (молекулярная масса - 60) в белом шламе:

0,66?284?16/(2?60)=24,9 кг.

Ввиду отсутствия экспериментальных данных по тепловому эффекту разложения этого соединения принимаем, что он равен тепловому эффекту реакции разложения Na2O?Аl2Оз?2SiО2. Тогда принимаем

Na2O?Аl2Оз?2SiО2=Na2O+Аl2О3+2SiO2 - 261000 кДж;

22883 кДж=22,8 МДж.

Теплоту образования алюмината натрия определяем по содержанию Аl2О3 (молекулярная масса 102) в спеке (см. табл. 17) и исходя из уравнения

Na2O+Аl2Оз=Na2O?Аl2О3 + 230000 кДж.

Тогда 1964470,6 кДж=1964,5 МДж.

Теплоту образования ферритов натрия устанавливаем по Fe2O3 (молекулярная масса - 160) в спеке согласно уравнению

Na2O+Fe2O3=Na2O?Fe2О3 + 178000 кДж;

409400 кДж=409,4 МДж.

Теплоту образования титаната натрия устанавливаем по TiO2 (молекулярная масса - 80) в спеке в соответствии с уравнением

Na2O+TiO2=Na2O?TiO2 + 178000 кДж.

Тогда 60520 кДж=60,5 МДж.

Теплоту образования двухкальциевого силиката устанавливаем по СаО (молекулярная масса - 56) в спеке в соответствии с уравнением

2СаО+8SiO2=2CaO?SiО2 + 119000 кДж,

159205 кДж=159,2 МДж

Итого, теплопотребление в зоне кальцинации составляет

453,4+322,2+253,14+476,3+2791,22-0,9?(22,8+1964,5+409,4+60,5+159,2)=1941,5 МДж.

Ширину слоя (хорда lx) и контактную поверхность его с барабаном (1q) определим исходя из соотношений размеров сегмента метариалов в поперечном сечении участка. Из практических данных принимаем центральный угол в зоне кальцинации равным 77,5°. Тогда

lx=Dпsinб/2=5sin(77,5/2)=3,13 м.

lq=рDпб/360=р?5(77,5/360)=3,38 м.

Определяем эффективную длину лучей газового потока

где Sпер - периметр свободного сечения печи, м.

Snep==

По практическим данным для зоны кальцинации можно принять коэффициент заполнения барабана печи ц=4,8...7,0 %. Выбираем ц=5,9 %. Тогда

;

Snep==

Степень черноты для СО2 и Н2О в зоне кальцинации находим из состава газов в ней:

PCO2Sэф=0,1123?7,37?101,325=83,86 кПа?м,

при tГ=1320°С еCO2=0,17;

PH2OSэф=0,1715?7,37?101,325=128,1 кПа?м,

при tГ=1320°С еґH2O=0,28; в=1,08; еH2O=0,28?1,08=0,3024;

Тогда степень черноты газов составит еГ=0,17+0,3024=0,4724. Степень развития кладки в зоне кальцинации составляет

Приведенный коэффициент излучения равен

3,87 Вт/(м24).

Определяем величину тепловых потоков:

181998,1 Вт/м2.

Средняя скорость движения газов в зоне кальцинации равна

0,89 м/с;

Тогда конвективный тепловой поток

qk=10,467?0,89?(1320-875)=4145,45 Вт/м2.

С учетом температуры кладки 1100 °С получим

54505,21 Вт/м2.

Длина зоны кальцинации составит

6,46 м.

Протяженность зон спекания Lсп и охлаждения Lохл рассчитываем по необходимому времени пребывания шихты и спека в печи. Принимаем для зоны спекания фсп=0,4 ч, для зоны охлаждения фохл=0,25 ч.

Находим скорость движения материалов, принимая угол наклона печи г=2,5 %, а скорость вращения печи п=1,0 об/мин. Пусть синус угла естественного откоса материалов в зоне спекания составит 0,8, а для зоны охлаждения - 0,72. Тогда скорость движения материалов в зоне спекания составит

а в зоне охлаждения

Следовательно, Lсп=29,38?0,4=11,75 м; Lохл=32,63?0,25=8,158 м.

Полная длина печи составит 136,01+35,91+6,46+11,75+8,158=75,3 м. Принимаем полную длину печи 80 м.

7. Тепловой баланс печи

Расчет ведем на 1 т глинозема.

1. Статьи прихода.

1.1. Теплоту от сгорания топлива определяем из расчета горения топлива

Qx=B?Qнр=35028,4 кВт.

1.2. При использовании колосникового холодильника воздух подогревается до температуры 200°С. Тогда физическую теплоту воздуха определяем по формуле

Qв=CвtвLбB=В?1,306?200?10,019=2616,96 В кВт.

1.3. Физическая теплота пульпы с температурой 50°С, принимаемой из данных практики работы вращающихся печей:

Qш=Cшtшmш=3595,5?16?0,96?50=2761344 кВт.

1.3.1. Теплота экзотермических реакций образования алюминатов натрия, феррита натрия, двухкальциевого силиката, титаната натрия, которые протекают в основном в зоне кальцинации (см. раздел 5):

Qэкз=QNa2OAlO3+QNaFeO3+Q2CaO?SiO2+Q2CaO?TiO2

Qэкз =(1964,5+409,4+60,5+159,2)?1000=2593600 кВт.

Общий приход теплоты в печь составит

35028,4 B +2616,96 В+2761344+2593600=

=37645,36 B+5354944 кВт.

2. Статьи расхода

2.1. Физическая теплота спека при температуре 1000 °С

Qcп=CспGспtсп=0,88?1340,5?1000=1179640 кВт.

2.2. Физическая теплота пыли при температуре отходящих газов 250 °С

Qп=GпCпtп=444?0,88?250=97680 кВт.

2.3. Теплота эндотермических реакций испарения влаги, разложения бемита и гидрогематита, каолинита, разложения карбонатов, разложения алюмосиликатов, образования алюмината натрия, ферритов натрия, титаната натрия, двухкальциевого силиката (см. раздел 6):

Qэнд=165,98+147343,8+6743,48+25574,4+

+476277,1+2791220,65+22883+1964470,6+

+409400+60520+159205=6063804,01 кВт.

2.4. Теплота отходящих газов, состоящих из продуктов сгорания топлива (раздел 5) и технологических газов (табл. 15):

Qг=CдtдVбB+CCO2tдVCO2+CH2OtдVH2O

Qг =(B 11,028?0,4+140,8?1,825+2065,5?1,5325)?250=3859,8 B+855584,68 кВт.

2.5. Потери теплоты через стенку теплопроводностью рассчитываем по зонам.

В зоне сушки температура материала на входе составляет 40°С, на выходе 150°С, в среднем °С. Температура газов на входе в зону составляет 750°С, на выходе 250°С, в среднем °С. Тогда общее количество теплоты, теряемое в окружающую среду в зоне сушки, составит

В зоне подогрева температура материала на входе составляет 150°С, на выходе 750°С, в среднем °С. Температура газов на входе в зону составляет 1250°С, на выходе 750°С, в среднем °С. Тогда

В зоне кальцинации температура материала на входе составляет 750°С, на выходе 1000°С, в среднем °С.

Температура газов на входе в зону составляет 1400°С, на выходе 1250°С, в среднем °С. Тогда

В зоне спекания температура материала составляет в среднем 1200°С. Температура газов в среднем составляет 1440°С. Тогда

В зоне охлаждения температура материала на входе составляет 1200°С, на выходе 1000°С, в среднем °С.

Температура газов в среднем по зоне составляет 300 °С. Тогда

В итоге потери теплоты за счет теплопроводности составляют

26681,54+228148,8+69739,7+97037,7+38444,4=460052,14 кВт.

Определяем потери тепла излучением через торцы печи

Поскольку последней зоной, где горит факел, является зона спекания, имеющая максимальную температуру газов 1440°С, то Tmax=1440+273=1713 К;

Принимаем в первом приближении

Тогда

С поправкой на Дtлуч, получим

При внутреннем диаметре печи 5 м и длине зоны охлаждения (8,158) м коэффициент диафрагмирования Ф по графику равен 0,38. Тогда

Вт=3239,56 кВт.

Q5=Q5п+Q=460052,14+3239,56=463291,7 кВт.

Расход теплоты равен

Qрасх=855584,68+463291,7+6063804,01+3859,8В+97680+1179640=

=3859,8 В+8660000,4 кДж.

Составляем уравнение теплового баланса:

37645,36 В+5354944=3859,8 В+8660000,4

откуда расход топлива В=97,82 м3/ч.

Часовой расход топлива составит Вф=В?G=97,82?16=1565,12 м3/ч. Итоговый тепловой баланс представлен в табл. 18.

Удельный расход условного топлива определяем по выражению

кг. усл. топлива/т спека.

Определяем коэффициент полезного действия печи спекания

Таблица 18.

Тепловой баланс печи спекания бокситов производительностью 16 т/ч

п/п

Приход теплоты

кВт/ч

%

№ п/п

Расход теплоты

кВт/ч

%

1

2

3

4

Теплота от сгорания

топлива

Физическая теплота

воздуха

Физическая теплота

шихты

Теплота

экзотермических

реакций

Итого

3426478,09

255991,03

2761344

2593600

9037413,12

37,91

2,83

30,55

28,7

100

1

2

3

4

5

Физическая теплота спека

Физическая теплота

пыли

Теплота эндотермических

реакций

Теплота отходящих

газов

Потери теплоты в окр.ср.

Невязка

Итого

1179640

97680

6063804,01

1233150,32

463291,7

152,91

9037413,12

13,05

1,08

67,1

13,65

5,12

-

100

ЗАКЛЮЧЕНИЕ

В мире накоплен значительный опыт конструирования и эксплуатации печей различного назначения. Большое разнообразие конструкций печей, применяемых в промышленности, обусловлен прежде всего чрезвычайно широким спектром технологических процессов, осуществляемых при производстве и дальнейшей тепловой обработки разнообразных материалов. Диапазон рабочих температур может изменяться в широких пределах. Вот почему при выборе конструкции и исходных данных, необходимых для расчета промышленной печи, следует, прежде всего, учитывать особенности технологического процесса, осуществляемого в данном агрегате.

Основное назначение металлургической печи состоит в том, чтобы создать в рабочем пространстве, изолированном от окружающей среды, наиболее благоприятные условия для реализации соответствующего технологического процесса. При этом необходимо учитывать закономерности, характеризующие процесс теплогенерации, механизм движения газов и теплообмен. Необходимо принимать во внимание взаимосвязь между условиями работы данной печи и условиями работы огнеупоров; возможность внутрипечного пылеосаждения или создания надежных систем очистки отходящих газов от пыли и т.д. Надежно работающая печь с экономным и рациональным использованием ее тепловой мощности является той базой, на основе которой можно решить практически любые технологические вопросы.

В технологическом расчете вращающейся печи спекания нами были выполнены:

1. Расчет минерального баланса процесса спекания, исходя из заданного состава шихты.

2. Расчет горения топлива заданного условием состава, в котором был определен теоретический расход вохдуха на горение, который составил 9,277 м33 и действительный 10,019 м33, теплоту сгорания топлива Qнр=35028,4 кДж/м3, состав и количество продуктов сгорания, определена теоретическая (1890 ?С) и действительная (1512 ?С) температуры горения природного газа.

3. Расчет размеров печи. В результате были получены следующие величины:

Внутренний диаметр рабочего пространства печи равен 5 м.

Наружный диаметр печи - 5,6 м.

Длина зоны сушки -13,01 м.

Длина зоны подогрева - 35,91 м.

Дина зоны кальцинации - 6,46 м.

Длина зоны спекания - 11,75 м.

Дина зоны охлаждения - 8,158 м.

Общая длина печи составит - 80 м.

4. Расчет расхода топлива, на основании которого был составлен тепловой баланс рабочего пространства печи.

5. Расчет удельного расхода топлива в целом на процесс, который равен b=116,905 кг усл. топл/т спека.

6. Расчет значения коэффициента полезного действия вращающейся печи, который равен з=80,15 %.


Подобные документы

  • Технологические особенности и аппаратурно-технологическая схема высокотемпературного процесса производства глинозема. Описание конструкции и тепловой работы вращающейся печи для кальцинации глинозема. Особенности температурного режима процесса.

    курсовая работа [270,9 K], добавлен 13.07.2014

  • Расчет трехкомпонентной сырьевой смеси, а также топлива для установки. Составление материального и теплового баланса цементной вращающейся печи для производства клинкера. Пути рационализации процесса спекания с целью снижения удельного расхода топлива.

    курсовая работа [1,7 M], добавлен 02.07.2014

  • Способы переработки молибденитового концентрата, подбор экономически и технологически выгодного варианта. Расчет процесса обжига молибденитового концентрата, суточного материального баланса. Рациональный состав огарка, количество и состав отходящих газов.

    курсовая работа [733,8 K], добавлен 04.08.2012

  • Технологическая схема производства глинозема из бокситов щелочным методом спекания. Разделение алюминиевого раствора и красного шлама. Обязательные условия сгущения шлама. Основные факторы, влияющие на сгущение. Расчет количества основного оборудования.

    курсовая работа [923,3 K], добавлен 22.01.2012

  • Общая характеристика и ценные свойства алюминия. Применение алюминия и его сплавов в разных отраслях промышленности. Основные современные способы производства алюминия. Производство глинозема: метод Байера и способ спекания. Рафинирование алюминия.

    реферат [35,0 K], добавлен 31.05.2010

  • Промышленные способы получения глинозема. Основы способа Байера. Взаимодействие органических веществ с растворами NaOH. Материальный баланс производства глинозема из бокситов. Расчет состава и количества оборотного раствора. Методы каустификации соды.

    курсовая работа [357,9 K], добавлен 22.11.2013

  • Проект фабрики по переработке сульфидных медно-цинковых вкрапленных руд Гайского месторождения производительностью 1,5 млн. тонн в год флотационным методом. Технология переработки вкрапленной медно-цинковой руды. Схема обезвоживания пиритного концентрата.

    дипломная работа [462,3 K], добавлен 29.06.2012

  • Сущность технологий извлечения металлов из лома карбидов металлов, полученных путем спекания. Анализ достоинств и недостатков твердых металлокерамических сплавов. Описание основных способов извлечения вольфрама из отходов промышленного производства.

    курсовая работа [744,6 K], добавлен 11.10.2010

  • Трудности в получении глинозема надлежащего дисперсного состава. Современная схема производства глинозема по способу Байера. Описание технологии процесса сгущения и промывки красного шлама. Теоретические основы сгущения. Описание технологической схемы.

    курсовая работа [2,6 M], добавлен 14.10.2014

  • Сырьевые материалы для производства керамзитового гравия; процессы, происходящие при сушке и обжиге. Расчет теплового баланса и устройство вращающейся печи, сырье для производства керамзитового гравия. Неисправности в работе печи и способы их устранения.

    курсовая работа [125,5 K], добавлен 18.08.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.