Применение принципа кавитации для улучшения процессов разделения фаз в групповых замерных установках

Кавитация как процесс парообразования и последующей конденсации пузырьков воздуха в потоке жидкости. Анализ гидродинамической кавитации в замерных установках, которая возникает в результате местного понижения давления в жидкости при увеличении ее скорости

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 18.04.2015
Размер файла 2,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Узел 13 подогрева жидкости выполнен в виде концентрично расположенных патрубков, внутренний 44 их которых перфорирован по боковой поверхности и имеет соединение с парогенераторной установкой 45, а другой наружный патрубок подсоединен к дренажной системе 46.

Установка имеет также третий уровнемер 47 радарного типа, размещенный в выходной секции 4, а уровнемеры 7 и 8 отстойной секции 3 выполнены один рефлекс-радарного, а другой - буйкового типа.

Измерительная линия газа 10 имеет выход 48 на факел.

Установка имеет сигнализаторы 49, 50, 51 и 52 предельных уровней, размещенные в выходной секции 4 сепаратора 1.

Сепаратор 1 на входе 53 в циклонную секцию 2 имеет подвод 54 для подачи химических реагентов, в частности деэмульгатор.

Сепаратор 1, трубопроводная обвязка, измерительные линии 10, 11 и 12 и аппаратный блок теплоизолированы от окружающей среды.

Циклон 9 выполнен с двумя тангенциальными входами 55 и 56.

В верхней части отстойной секции газ проходит через пеногасящую насадку 57, выполненную из 2-образных пластин.

На входе в измерительную линию газа 10 расположен струйный каплеотбойник 58 с измерителем 59 перепада давления на нем.

Установка работает следующим образом.

Перед проведением измерений необходимо с помощью винтовых домкратов выставить горизонтально площадки транспортных полуприцепов для обеспечения измерения границ раздела эмульсия - пластовая вода и газ - жидкость в сепараторе 1, а также для обеспечения условий запуска в эксплуатацию компрессора 14 и насосного агрегата 15.

После подключения сепаратора 1 к измеряемому нефтеводогазовому потоку включается компрессор 14 и в сепараторе 1 по показаниям датчика давления 39, установленного в линии 10, поддерживается давление, близкое к атмосферному. При этом осуществляется заполнение сепаратора 1 пластовой жидкостью. Происходит накопление пластовой воды и частично обезвоженной водонефтяной эмульсии до заданных уровней. После достижения заданных уровней включается насосный агрегат 15. По показаниям прибора 31 необходимо убедиться, что в линии нефти 11 содержание воды не превышает 10-15%. Если превышает, то, увеличивая расход деэмульгатора и изменяя температуру жидкости в сепараторе 1, необходимо добиться снижения содержания воды в нефти до заданного значения. При этом по показаниям рефлекс-радарного уровнемера 7 необходимо установить подачу деэмульсатора и температуру жидкости так, чтобы размеры межфазного слоя не срывали показаний рефлекс-радарного уровнемера 7, что обеспечивается при минимально возможной толщине промежуточного слоя.

Необходимо также убедиться, что в линии воды содержание нефти не превышает 0,5%.

В случае необходимости одновременно отбирают как ручные пробы, так и пробы автоматическими пробоотборниками. С помощью УОСГ осуществляется контроль наличия свободного газа в линиях нефти и воды, а также растворенного газа в линии нефти.

Время проведения измерений зависит от дебита скважины, стойкости нефтяной эмульсии и температуры нефтеводогазовой смеси и для каждого потока подбирается индивидуально с учетом предыдущего опыта и данных химической лаборатории.

При проведении измерений фиксируются показания расходомеров, датчиков температуры и давления, а также изменения межфазного уровня в отстойной секции и границы газ - жидкости в выходной секции, используя автоматизированное рабочее место (АРМ) оператора и согласованный с заказчиком алгоритм обработки информации.

Установка обеспечивает работу с потоками нефтеводогазовой смеси в соответствии с техническими требованиями к передвижному трехфазному сепаратору для эксплуатации на различных нефтяных месторождениях, при этом обеспечивая высокую достоверность измерений в различных климатических условиях и для различных нефтегазовых смесей.

4. Патентный поиск кавитационных аппаратов 4.1 Патент № 2372974

4.1 Кавитационный мембранный аппарат

Изобретение относится к области разделения суспензий промышленного назначения и может быть использовано в различных отраслях промышленности.

Рисунок 6 - Кавитационный мембранный аппарат

Кавитационный мембранный аппарат (рис. 6) содержит каркас 1, выполненный в виде последовательно расположенных конфузора 2 и двух диффузоров 3 и 4. Внутри каркаса 1, в его диффузорной части, расположен очистительный элемент 5, выполненный с возможностью совершения возвратно-поступательного движения, представляющий собой ряд последовательно расположенных кавитаторов 6 конусообразной или куполообразной формы, увеличивающихся по мере увеличения диаметра диффузора 4 и соединенных между собой пружинами 7, закрепленный на штоке 8, выполненном с возможностью осевого перемещения посредством винтовой передачи 9, причем большее основание кавитаторов 6 направлено в сторону выхода из мембранного аппарата.

Количество кавитаторов 6 зависит от физико-химических свойств исходных растворов.

Закрепление очистительного элемента 5 на штоке 8 с возможностью перемещения в ту или иную сторону вызвано необходимостью регулировки режима работы устройства в зависимости от исходных свойств продукта (в основном от структурных и реологических его характеристик) в начальный период. А жесткость пружин 7 обеспечивает необходимые расстояния между кавитаторами 6 в зависимости от давления жидкости и вязкостных свойств продукта, изменяющихся по длине мембраны.

Для подачи исходного раствора служит патрубок 10 с фланцем 11, а для вывода концентрата используется патрубок 12 с фланцем 13.

Предложенный кавитационный мембранный аппарат работает следующим образом.

Перед началом работы кавитационного мембранного аппарата с помощью осевого перемещения штока 8 устанавливается в зависимости от исходных свойств продукта положение очистительного элемента 5 в виде блока кавитаторов 6.

Исходный раствор, предназначенный для обработки, через патрубок 10 подается в кавитационный мембранный аппарат и поступает в конфузор 2, в котором происходит увеличение скорости его движения, а затем поступает в два последовательно расположенных диффузора 3 и 4, в которых обеспечивается сглаживание пульсационных давлений и создаются условия для более плавного его течения и обтекания вокруг кавитаторов 6. По мере обтекания раствора вокруг каждого кавитатора 6 происходит турбулизация пограничного слоя у поверхности металлокерамической полупроницаемой мембраны и срыв его в середину потока с возникновением в разделяемом растворе кавитации путем образования и схлопывания пузырьков, обеспечивающих дополнительные импульсные воздействия на примембранный слой продукта и способствующих снижению уровня концентрационной поляризации.

Причем с изменением вязкости продукта происходит изменение скорости потока и, соответственно, расстояния между кавитаторами 6, которое автоматически регулируется жесткостью соединяющих их пружин 7.

По мере движения раствора в аппарате происходит его разделение, часть которого проходит через мембрану и выводится наружу в виде фильтрата. Вывод концентрата осуществляется через патрубок 12.

Предложенный кавитационный мембранный аппарат позволяет:

- повысить эффективность разделения жидкости;

- увеличить силу воздействия на примембранный высококонцентрированный слой продукта;

- увеличить степень турбулизации потока при повышении концентрации сухих веществ в растворе и увеличении его вязкости;

- расширить диапазон использования аппарата с целью его использования для процессов эмульгирования, диспергирования и гомогенизации.

4.2 Патент № 2402375. Способ обработки жидкой среды

Изобретение относится способу обработки жидкой среды и разделению ее на составные компоненты и может быть использовано в нефтеперерабатывающей, химической, медицинской и в других отраслях промышленности.

Целью изобретения является повышение качества процесса разделения жидкой среды на составные компоненты, снижение энергозатрат и упрощение технологического процесса в целом.

На рисунке 7 изображено устройство, в частном случае реализующее предложенный способ для обработки смеси жидких углеводородов (нефти и нефтепродуктов) при выводе из них разделенных тяжелых и легких фракций.

Рисунок 7 - Устройство для обработки жидкости

Устройство содержит сопло 1 с горловиной 2, конфузорной входной 3 и диффузорной выходной 4 камерами.

С конфузорной камерой 3 сопряжен вихревой цилиндр 5 со сквозными тангенциальными каналами 6. В общем случае перед соплом 1 может быть размещен подвижный регулятор соотношения угловой и поступательной скоростей жидкости, однако при обработке какой-либо конкретной жидкости с уже заведомо определенными физико-химическими свойствами более технологично обеспечивать требуемое соотношение скоростей выполнением профиля как самого сопла 1, так и вихревого цилиндра 5 с заданными геометрическими параметрами, а также их пространственной ориентацией друг относительно друга именно под обработку этой жидкости.

По оси упомянутого цилиндра 5 с возможностью осевого перемещения закреплен кавитационный генератор 7, профилированная головная часть 8 которого введена в сопло 1.

В диффузорную выходную камеру 4 встроены осесимметричные внутренняя и наружная обечайки 9 и 10, соответственно, с образованием между ними кольцевого канала 11. Ширина кольцевого канала а также месторасположение торцов обечаек 9 и 10 как друг относительно друга, так и относительно горловины 2 определяется устанавливаемыми геометрическими параметрами рабочего диапазона градиента давления для конкретной обрабатываемой жидкости. Торец внутренней обечайки 9 может быть выполнен профилированным. Отвод образуемых компонентов с внешней стороны кольцевого канала 11 осуществляется через перфорацию 12 наружной обечайки 10 и патрубок 13. Отвод образуемых компонентов с внутренней стороны кольцевого канала 11 осуществляется через перфорацию 14 внутренней обечайки 9 и патрубок 15. Вывод обрабатываемой жидкости из кольцевого канала 11 осуществляется по патрубку 16. В итоге образуются автономные технологические потоки компонентов 17, 18 и 19. Технологический поток 19 из кольцевого канала 11 может быть добавлен к обрабатываемой жидкости и подан на вход в сопло 1 для повторного разделения. В процессе обработки жидкости регулированием скорости подачи самой жидкости и месторасположения кавитационного генератора 7 значение радиального градиента давления в сопле 1 поддерживают постоянным.

Предложенный способ обработки жидкости реализуется следующим образом.

Предварительно перед обработкой жидкости, например смеси жидких углеводородов, в зависимости от их исходного состава и наличия в них тех или иных выводимых компонентов, выбираются сопло 1, вихревой цилиндр 5 и кавитационный генератор 7 с требуемыми профилями и устанавливаются с заданным взаимным расположением, оптимальным именно при обработке конкретной исходной смеси жидких углеводородов. Жидкость подается на вход сопла 1, и при его прохождении через сопло поток закручивается, приобретая форму спирали. Кавитационный генератор 7 обеспечивает непрерывное зарождение одиночных зон кавитации на его срезе, которые выстраиваются по ходу движения обрабатываемого потока в виде осевой цепочки.

В процессе обработки жидкая гомогенная смесь при прохождении через зону кавитации "гетерогенизируется" как за счет воздействия на нее ударных волн, образующихся при схлопывании кавитационных пузырьков, так и за счет процесса формирования пузырька, при котором объем кавитационного пузырька заполняется парами легколетучих компонентов, а по его поверхности концентрируются менее летучие, и возникшая неоднородность сохраняется после его схлопывания. Кроме того, происходит частичный "микрокрекинг" - разрыв химических связей с образованием высокоактивных радикалов и углеводородов с меньшей молекулярной массой. В потоке обрабатываемой жидкости происходит определенное разделение среды на составные жидкие фазы, и образуется композиция не связанных друг с другом компонентов.

Вращающийся поток создает в поперечном сечении сопла 1 соответствующее поле центробежных сил, что приводит к возникновению градиента давления от оси потока к его периферии и к перераспределению в потоке разделенных компонентов, более легких к центру потока, а более тяжелых к его периферии. В результате композиция компонентов в потоке расслаивается в радиальном направлении в соответствии со своим удельным весом, и каждому радиальному значению давления соответствует тот или иной набор компонентов с соответствующими удельными весами из состава обрабатываемой жидкости.

При постоянном отводе каких-либо компонентов с внешней и внутренней поверхностей кольцевого канала 11 подпитка этих поверхностей соответствующими компонентами будет осуществляться по длине кольцевого канала из кольцевого композиционного потока, вращающегося в пределах рабочего диапазона градиента давлений, характеризующего поле центробежных сил в кольцевом канале 11 между рабочими уровнями давлений.

Выбором конструктивных особенностей сопла 1, цилиндра 5 и генератора 7, а также заданием соответствующих радиальной и поступательной скоростей обрабатываемой жидкости обеспечивают определенный объем зон кавитации и их интенсивность и, соответственно, степень воздействия кавитации на состояние жидкости, а также вполне определенное конструктивное радиальное значение рабочих уровней давления и их месторасположение по оси сопла 1 относительно горловины 2, а отсюда и геометрические параметры рабочего диапазона градиента давления в целом.

Размещение перфорированных обечаек 9 и 10, каждой из них на радиальном значении рабочего уровня давления, т.е. на границах рабочего градиента давления, на заданном расстоянии от горловины сопла 1 обеспечивает отвод соответствующих компонент от рабочих уровней через перфорацию 12 и 14. Через соответствующие патрубки 13 и 15 с образованием автономных технологических потоков 17 и 18 выделенные компоненты выводятся по своему назначению. В процессе отвода технологических потоков осуществляется регулировка их расхода и тем самым достигается постоянство значений рабочих уровней давления и оптимизируется сам процесс разделения жидкости на легкие и тяжелые компоненты.

В результате из обрабатываемого потока смеси жидких углеводородов по технологическим потокам выводятся легкие и тяжелые газойли и осуществляется очистка нефтепродуктов от тяжелых фракций.

Выводимый из кольцевого канала 11 технологический поток 19 через патрубок 16 может быть отведен по своему назначению или же добавлен к обрабатываемому потоку жидкости на вход сопла 1 для повторной обработки и более глубокого разделения жидкости на компоненты.

Таким образом, предложенное техническое решение повышает качество процесса разделения жидкой среды на составные компоненты, снижает энергозатраты на проведение процесса разделения и упрощает технологический процесс в целом.

4.3 Патент № 2455056. Способ диспергирования жидкости и устройство для его осуществления

Предлагаемое изобретение относится к технике смешивания потоков жидкофазных сред и может быть использовано, например, в энергетике при разработке и изготовлении диспергаторов (кавитаторов, эмульгаторов).

Конструкция данного устройства изготавливается под конкретные параметры потока и не позволяет изменять минимальное сечение потока и соотношение тангенциальной и осевой составляющей скорости потока в устройстве, поэтому при изменении параметров потока необходимо заменять все устройство или его отдельные части.

Задачей изобретений является снижение энергоемкости процесса и повышение эффективности перемешивания жидкостей, образующих смесь, а также достижение возможности регулирования параметров потоков жидкости без изменения конструкции устройства или его частей.

Предлагаемое изобретение иллюстрируется на рисунке 8.

Рисунок 8 - Устройство для осуществления способа диспергирования

Устройство для реализации способа содержит корпус 1 с внутренней поверхностью в виде тела вращения. Внутри корпуса 1 установлены пакеты тонких пластин 2 и 3, стянутые между собой фигурными шайбами 4 и 5 с помощью центрального обтекателя 6 и болта 7. Непосредственно к корпусу 1 пакеты пластин крепятся с помощью резьбовой втулки 8. Корпус 1 диспергатора имеет фланцы 9 и 10, с помощью которых он устанавливается в разрыв трубопровода и крепится к фланцам подводящей трубы 11 и отводящей трубы 12.

Устройство работает следующим образом.

Подвергаемую диспергированию смесь жидкостей через подводящую трубу 11 под давлением подают внутрь корпуса 1, где жидкости при движении внутри корпуса плавно ускоряются из-за сужения потока с помощью центрального обтекателя 6 и фигурной шайбы 4. Далее поток разделяется на два концентрических потока. Наружный концентрический поток дополнительно ускоряется и получает вращение относительно оси устройства при прохождении жидкостей по струеформирующим каналам, образованным пакетом тонких пластин 2, а внутренний концентрический поток также дополнительно ускоряется и получает вращение относительно оси устройства при прохождении жидкостей по струеформирующим каналам, образованным пакетом тонких пластин 3, при этом наружный и внутренний концентрический поток получают противоположное направление закрутки. После прохождения струеформирующих каналов происходит слияние наружного и внутреннего концентрического потока, а так как эти потоки закручены в разные стороны, то на их границе образуется зона больших касательных напряжений, в центрах вихрей появляются каверны и образуется зона вихревой кавитации. Вихреобразование и кавитация возникает также на острых краях кромок пластин.

Предложенная конструкция устройства для диспергирования жидкостей позволяет без изменения конструкции изменять конфигурацию струеформирующих каналов и, соответственно, основные параметры устройства, а именно минимальное сечение потока и соотношение тангенциальной и осевой составляющей скорости потока в устройстве. Это позволяет перенастраивать диспергатор на оптимальный режим работы при изменении параметров потока жидкости и уменьшить энергозатраты на диспергирование.

4.4 Патент № 2483213. Устьевой турбулизатор скважинной продукции

Изобретение относится к горному делу и может быть использовано для перемешивания газожидкостной продукции в трубопроводе. Техническим результатом является повышение объективности в оценке добывающих возможностей скважин и состава транспортируемой по трубам промысловой жидкости. Устройство устанавливается внутри горизонтальной части выкидной линии добывающей скважины на фиксированном расстоянии перед точкой отбора периодических проб жидкости.

Устьевой турбулизатор скважинной продукции является внутритрубным смешивающим устройством, служит для приведения газожидкостного потока в однородное состояние. Устройство может быть использовано в нефтедобывающей промышленности для комплектации выкидных линий добывающих скважин.

Технической задачей заявляемого изобретения является создание внутритрубного смешивающего устройства, удобного для монтажа внутри выкидной линии скважины перед штатным пробоотборником и обеспечивающего в зоне отбора проб гомогенность скважинной продукции. Согласно ГОСТа 2517-85 устройство должно постоянно находиться в трубопроводе, быть устойчивым к агрессивным составляющим скважинной продукции и не снижать пропускную способность трубопровода за счет создания местного сопротивления.

Задача решается тем, что в устьевом турбулизаторе скважинной продукции, содержащем вертикальные пластины для частичного перекрытия сечения горизонтального трубопровода, турбулизатор полностью выполнен монолитным, содержит три пары функционально сдвоенных пластин в форме сегментов и пластину в форме круга с отверстиями, все пластины имеют диаметр, соответствующий внутреннему диаметру трубопровода, каждая пара пластин в форме сегментов относительно друг друга повернута по оси трубопровода на 120 градусов, а сегменты в каждой паре размещены так, что скважинная продукция меняет свое направление на 180 градусов, пластина в форме круга находится в крайнем положении турбулизатора и имеет по периферии несколько равномерно расположенных отверстий, причем площадь отверстий равна площади проходного сечения между пластиной в форме сегмента и поверхностью трубопровода. Оси отверстий в пластине в форме круга сфокусированы на оси трубопровода в точке, где находится вход в устьевой пробоотборник скважины.

Общий вид турбулизатора в представлен на рисунке 9.

Рисунок 9 - Устьевой турбулизатор

Устьевой турбулизатор скважинной продукции является монолитным изделием, изготавливается из стального или иного устойчивого к износу материала цилиндрической формы с помощью токарных и фрезерных обработок. На единой горизонтальной оси 1 расположены шесть вертикальных пластин 2 в форме сегментов и одна вертикальная пластина 3 (последняя в ряду) в форме круга с отверстиями 4, равномерно расположенными по периферии. Пластины в форме сегментов образуют три пары пластин с функцией поворота скважинной продукции на 180° от направления начально-горизонтального движения. Такой поворот скважинного потока в трубопроводе происходит 3 раза, а между такими поворотами дважды поток поворачивается еще на 120°. Процесс смешения слоев газожидкостной смеси (ГЖС) должен протекать одинаково успешно при любом положении сегментов относительно горизонта. При установке турбулизатора в трубопровод проход в первый сегмент может оказаться в любой точке трубопровода: внизу, наверху или в промежуточном - боковом положении. Несмотря на это слои с различным содержанием газа, нефти и воды должны смешиваться до однородного состава благодаря вертикальному перемещению в пределах турбулизатора. С тем чтобы при любом положении турбулизатора в трубопроводе имелось вертикальное перемещение скважинного потока, согласно изобретению три пары сдвоенных пластин в форме сегментов размещены на оси турбулизатора равномерно по сечению трубопровода, т.е. через 120°. Благодаря этому в трубопроводе турбулизатор может находиться в любом положении под действием силы тяжести и без определенной фиксации.

Благодаря применению турбулизаторов на скважинах и промысловых трубопроводах повысится объективность в оценке добывающих возможностей скважин и состава транспортируемой по трубам промысловой жидкости.

5. Техническое предложение

Техническим предложением является:

С целью расширения функциональных возможностей АГЗУ "Мера" предлагается установить на входе в сепаратор АГЗУ проточно-кавитационный реактор. Это позволит производить разделение газо - жидкостной смеси на этапе измерения и, таким образом, совместить функции замера сепаратора АГЗУ и функции разделения газо - жидкостной смеси сепаратора первой ступени системы подготовки нефти. Использование проточно-кавитационных реакторов для процесса сепарации является довольно перспективным, но, вместе с тем, мало изученным. Таким образом, в случае успеха полевых испытаний, возможен отказ от сепаратора первой ступени системы подготовки нефти.

А так же модернизировать уплотнительный узел на штоке, включив туда пакет, состоящий из шести сальниковых колец из терморасширенного графита (ТРГ) исполнения Н с рабочим давлением до 6,4 МПа и плотностью не менее 1,3 .

6. Расчетная часть

6.1 Расчет средней скорости потока

Рассчитаем скорость жидкости в патрубках системы АГЗУ "Мера"

, (1)

где V - скорость жидкости, м/с;

Q - производительность, х3/с;

d - внутренний диаметр, м.

Так как производительность скважин нам не известна, возьмем ее из справочных данных одного из самых крупных месторождений Красноярского края - Ванкорского месторождения.

Среднедебитная скважина Ванкорского месторождения имеет производительность 380 куб. метров в сутки.

Диаметр условного прохода трубопровода составляет 150 мм.

Таким образом:

,

6.2 Расчет фланцевого соединения

Рассчитаем шпильки во фланцевом соединении корпуса кавитатора на прочность.

Определим площадь фланца.

, (2)

где S - площадь фланца, м2;

D - внутренний диаметр, м.

.

Определим силу, действующую на площадь фланца.

, (3)

где F - сила, действующая на площадь фланца, Н/м2;

P - рабочее давление, Па;

S - площадь фланца, Н/м2;

Рассчитаем силу, действующую на каждую шпильку крепления во фланце.

, (4)

где - сила, действующая на каждую шпильку крепления во фланце, Н/м2;

F - сила, действующая на площадь фланца, Н/м2;

z - количество шпилек;

k - коэффициент неравномерности.

.

Материал шпильки 40Х, = 6500 Н/см 2

Запас прочности по нормальным напряжениям

, (5)

где - запас прочности по нормальным напряжениям;

- предел текучести, Н/м2;

- нормальные напряжения в теле шпильки, Н/м2.

.

6.3 Расчет потерь давления в напорной и сливной гидролиниях кавитатора

Путевые и местные потери давления определяем по формулам. Путевые потери находим следующим образом:

Pп = Pп. н. + Pп. с., (6)

Pп = н · · lнdн • Vн2/2 + с • • lс/dс • Vc2/2, Па, (7)

где н с - коэффициенты трения жидкости в напорной и сливной гидролиниях;

- плотность жидкости (гудронной нефтяной фракции), Н•с24;

lн и lс - длины напорной и сливной гидролиний, м;

dн и dс - диаметры напорной и сливной гидролиний, м;

Vн и Vc - скорости потока жидкости в напорном и сливном трубопроводах, м/с.

Составим таблицу, в которую заносим все переменные параметры, определенные из графиков или расчетным путем.

Число Рейнольдса для ламинарного потока рабочей жидкости определим по формуле:

Reн = Vн• dн / , (8)

Число Рейнольдса для турбулентного потока рабочей жидкости определим по формуле:

= 0,316? Re-0,25 (9)

Затем вычислим коэффициенты трения жидкости для напорного и сливного трубопроводов. Результаты занесем в таблицу 4.

Таблица 4 - Зависимость потерь давления в гидросистеме от температуры

Параметры

Температура рабочей жидкости, ?C

-20

0

20

40

60

80

v, м2/с · 10-6

2000

260

65

26

13

8

p, Н·с24

910

895

875

865

850

838

Reн

40

307,69

1230,77

3076,92

6153,85

10000

??с

1,88

0,24

0,06

0,042

0,035

0,03164

Reс

28

215,38

861,54

2153,85

4307,69

7000

??н

2,68

0,35

0,09

0,0348

0,039

0,034

Bн

18

2,5

1,4

1

1

1

Bc

24

3,8

1,5

1,05

1

1

? ?Pп, Па

6693960

843985

207375

131307

111775

99091,82

? ?Pм, Па

1790880

256328

124950

87711

85000

83800

??P

8,4848

1,1003

0,3323

0,219

0, 1968

0,1829

Местные потери давления находим с помощью следующих формул:

Pм = Pм. н. + Pм. с., (10)

Pм = н •bн ••vн2/2 + с•bс••vс2/2, (11)

где н и с - коэффициенты местных сопротивлений в напорном и сливном трубопроводах;

bн и bс - поправочные коэффициенты, учитывающие влияние вязкости жидкости на местные потери давления в напорном и сливном трубопроводах;

vн и vс - скорости потока жидкости в напорном и сливном трубопроводах, м/с;

- плотность жидкости.

6.4 Геометрический расчет протяжённости кавитатора

При экспериментальных исследованиях проточных кавитаторов предлагаемой нами конструкции была получена эмпирическая зависимость вида.

(12)

Sк - площадь миделя каверны 0,001м2

Sт - площадь кавитатора 0,00785 м2

ч - число кавитации потока 0,57

Lк - общая длина кавитатора (м)

dт - диаметр входного трубопровода в кавитатор.

(13)

Следовательно рекомендуемая длина кавитатора определится из зависимости:

=0,392м.

7. Заключение

В результате модернизации замерной установки "Мера - ММ2" было достигнуто:

улучшение выделения газа из нефти, в результате постановки в трубопроводную систему "проточно - кавитационного реактора", перед поступлением газо-жидкостной смеси в сепаратор замерной установки;

в результате установки проточно - кавитационнго реактора происходит интенсификация процесса разделения фракций, что в свою очередь позволяет нам отказаться от установки сепаратора в первой ступени в системе подготовки нефти, что приводит к экономическому эффекту.

Размещено на Allbest.ru


Подобные документы

  • Единицы измерения давления, основное уравнение гидростатики, параметры сжимаемости жидкости, уравнение Бернулли. Расход жидкости при истечении через отверстие или насадку, режимы движения жидкости. Гидравлические цилиндры, насосы, распределители, баки.

    тест [525,3 K], добавлен 20.11.2009

  • Эксплуатация газовых скважин, методы и средства диагностики проблем, возникающих из-за скопления жидкости. Образование конуса обводнения; источник жидкости; измерение давления по стволу скважины как способ определения уровня жидкости в лифтовой колонне.

    реферат [424,9 K], добавлен 17.05.2013

  • Характеристика оборудования для добычи и замера дебита нефти, газа, воды и капитального ремонта скважин. Конструкции установок штангового глубинного насоса. Схема и принцип работы автоматических групповых замерных установок. Дожимная насосная станция.

    реферат [852,0 K], добавлен 11.11.2015

  • Нахождение давлений в "характерных" точках и построение эпюры давления жидкости на стенку в выбранном масштабе. Определение силы давления жидкости на плоскую стенку и глубины ее приложения. Расчет необходимого количества болтов для крепления крышки лаза.

    курсовая работа [641,4 K], добавлен 17.04.2016

  • Выбор номинального давления, расчет и выбор гидроцилиндров и гидромоторов. Определение расхода жидкости, потребляемого гидродвигателями, подбор гидронасоса. Выбор рабочей жидкости, расчет диаметров труб и рукавов. Расчет потерь давления в гидросистеме.

    курсовая работа [171,8 K], добавлен 17.12.2013

  • Причины движения жидкости, его виды. Свойства потока при плавно изменяющемся движении. Гидротрансформаторы: устройство и применение. Устройство и рабочий процесс гидротрансформатора. Вальные насосы: виды потерь, снижение неравномерности подачи жидкости.

    контрольная работа [2,3 M], добавлен 03.01.2013

  • Сила давления жидкости на плоскую стенку и цилиндрические поверхности. Виды и режимы движения жидкости в гидроприводе. Элементы и принцип работы роторных гидромашин. Назначение и дросельное регулирование гидрораспределителей, виды гидроусилителей.

    шпаргалка [24,5 K], добавлен 17.12.2010

  • Порядок разработки и практическая апробация измерителя скорости потока жидкости, предназначенного для контроля ее расхода в закрытых и открытых системах циркуляции. Проектирование структурной схемы и выбор элементной базы устройства, оценка погрешности.

    курсовая работа [223,2 K], добавлен 15.05.2009

  • Изучение ректификации как процесса многократного частичного испарения жидкости и конденсации паров. Определение параметров и разработка проекта ректификационной тарельчатой колонны с ситчатыми тарелками для разделения смеси бензол - уксусная кислота.

    курсовая работа [235,2 K], добавлен 20.08.2011

  • Разбиение трубопровода на линейные участки. Определение режима движения жидкости в трубопроводе. Значения коэффициентов гидравлического трения и местного сопротивления. Скорость истечения жидкости из трубопровода. Скоростные напоры на линейных участках.

    курсовая работа [224,9 K], добавлен 06.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.