Сооружение и эксплуатация газонефтепроводов и газонефтехранилищ

Проектирование магистральных газонефтепроводов, выбор трассы магистрального трубопровода. Технологические схемы компрессорных станций с центробежными неполнонапорными нагнетателями. Совместная работа насосных станций и линейной части нефтепровода.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 17.05.2016
Размер файла 261,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Расчеты обычно выполняют в следующем порядке: определяют общую массу перевозимых грузов по основным видам, среднюю дальность перевозки и объем грузоперевозок; назначают виды транспортных средств: автомашины, тракторы, прицепы и т. п.; устанавливают суточную производительность транспортных средств (по действующим нормативам) применительно к конкретным условиям транспорта; уточняют скорость движения транспорта; определяют продолжительность перевозок, время погрузки и выгрузки грузов и число транспортных единиц.

При необходимости себестоимость перевозки отдельных труб или секций труб можно определить по формуле:

, (3)

где РН „ - переменные расходы на одну транспортную машину в час;

Ру - условно-постоянные расходы на одну транспортную машину в час;

vcp - средняя скорость движения транспортной машины;

п - число труб или секций, перевозимых на одной машине;

lс - длина трубы или секции труб.

При разработке проектной документации строительства магистральных трубопроводов в обязательном порядке должны быть использованы действующие нормы продолжительности строительства (табл.3).

Таблица 3. Нормы продолжительности строительства магистральных трубопроводов, мес.

Диаметр трубопровода, ММ

Протяженность трубопровода, км

100

200

360

500

1000

500

7(1)

9(1)

10(1)

15(2)

22(2)

800

8(1)

10(1)

11(1)

16(2)

24(3)

1000

9(1)

11(1)

12(1)

18(2)

28(3)

1200

10(1,5)

13(2)

15(2)

20(3)

30(4)

1400

14(2)

18(3)

20(3)

26(4)

36(5)

Примечание. Цифры в скобках - продолжительность подготовительного периода (в том числе)

Нормативная продолжительность строительства объектов в северных районах страны и местностях, приравненных к ним, устанавливается действующими нормами с применением коэффициентов, изменяющихся в пределах от 1,4 до 1,2.

2. Расчеты по сооружению газонефтепроводов

Нагрузки и воздействия на магистральный трубопровод подразделяют на постоянные и временные (длительные, кратковременные, особые).

К постоянным нагрузкам и воздействиям относят те, которые действуют в течение всего срока строительства и эксплуатации трубопровода.

Собственный вес трубопровода, учитываемый в расчетах как вес единицы длины трубопровода,

qтр = рDсрдгст =0,0247Dсрд, (4)

где: q тp - средний диаметр трубопровода;

д - толщина стенки труб;

гст - удельный вес материала трубы (для стали уст =0,0785 Н/см3).

Вес изоляционного покрытия и различных устройств, которые могут быть на трубопроводе, для ориентировочных расчетов надземных переходов можно принимать равным примерно 10% от собственного веса трубы. Точнее вес изоляционного покрытия определяют по формуле

, (5)

где: qиз - удельный вес изоляционного покрытия на единице длины трубопровода;

из - удельный вес материала изоляции;

Dиз и - Dн - соответственно диаметр изолированного трубопровода и его наружный диаметр.

Воздействие предварительного напряжения создается в основном за счет упругого изгиба при поворотах трубопровода.

Давление грунта на трубопровод с точностью, достаточной для практических расчетов, можно определять по формуле

qгр= nгр ггр h гр (6)

где: qгр - давление грунта на единицу длины трубопровода;

пгр - коэффициент перегрузки для веса грунта, равный 1,2, а при расчетах на продольную устойчивость и устойчивость положения трубопровода--0,8;

угр - удельный вес грунта,

hcp - средняя глубина заложения оси трубопровода.

Гидростатическое давление воды определяют весом столба жидкости

qгс = гв hв (7)

где: qгс - давление воды на единицу длины трубопровода;

ув- удельный вес воды с учетом засоленности и наличия взвешенных

частиц;

hв - высота столба воды над рассматриваемой точкой.

К длительным временным нагрузкам относятся следующие. Внутреннее давление устанавливается проектом. Внутреннее давление создает в стенках трубопровода кольцевые и продольные напряжения, которые определяют по формулам:

; (8)

, (9)

где: укц - кольцевые напряжения;

пр - коэффициент перегрузки для внутреннего давления р;

Dвн - внутренний диаметр трубопровода;

упр - продольные осевые напряжения от воздействия внутреннего давления и температуры для прямолинейных и упругоизогнутых участков подземных и наземных трубопроводов при отсутствии продольных и поперечных перемещений, просадок и пучения грунта;

- коэффициент линейного расширения металла трубы;

Е- модуль Юнга;

- расчетный температурный перепад, принимаемый положительным при нагревании.

Продольные напряжения от внутреннего давления в прямолинейном трубопроводе бесконечной длины определяют по формуле:

, (10)

где: np=1,15 для нефтепроводов диаметром 700-1400 мм с промежуточными перекачивающими станциями без подключения емкостей пр=1,1 в остальных случаях.

Вес перекачиваемого продукта на единицу длины трубопровода, определяют по формулам:

для природного газа

qпр = np pг10-6 ; (11)

для нефти, нефтепродуктов и воды

qн.нn.в= гн.нn.вр/4 (12)

Температурные воздействия при невозможности деформаций вызывают в трубопроводе продольные напряжения qnp=-, где , здесь t0 максимальная (минимальная) возможная температура стенок трубы при эксплуатации;... - наименьшая (наибольшая) температура, при которой фиксируется расчетная схема трубопровода; = 0,0000121/°С (для стали). В расчетах для подземных трубопроводов нормативный температурный перепад; принимают не менее ±40 °С; для надземных - не менее ±50°С.

К кратковременным нагрузкам и воздействиям на трубопровод относят такие, действие которых может длиться от нескольких секунд до нескольких месяцев.

Снеговая нагрузка, приходящаяся на 1 м2 площади горизонтальной проекции трубопровода, qCH = пснрснDн·10-4, где рсн= ро.сн Ссн; псн - коэффициент перегрузки, равный для снеговой нагрузки 1,4; рсн - нормативная снеговая нагрузка; ро.сн - вес снегового покрова на 1 м2 горизонтальной поверхности земли; Ссн - коэффициент перехода от веса снегового покрова земли к снеге вой нагрузке на трубопровод (для однониточного трубопровода Ссн = 0,4).

Нормативная нагрузка от обледенения qлед=nлед 1,7·10 -3 Dн , где qлед - коэффициент перегрузки, равный 1,3; b - толщина слоя гололеда.

Нормативная ветровая нагрузка на единицу длины трубопровода (для однониточного трубопровода), перпендикулярная его осевой вертикальной плоскости, qвeт=neem (qc+ +qд.н.)Dн·10-4, где qeem - коэффициент перегрузки, равный 1,2; qc, qд.н - нормативные значения соответственно статистической и динамической составляющих ветровой нагрузки, определяемые для магистрального надземного трубопровода как Для сооружения с равномерно распределенной массой и постоянной жесткостью.

Выталкивающая сила воды, приходящаяся на единицу длины полностью погруженного в воду трубопровода, qe = 0,8...Dнгв (при отсутствии течения воды).

Нагрузки и воздействия, возникающие в результате осадок и пучения грунта, оползней, перемещения опор и других причин, определяют на основании анализа грунтовых условий и их возможного изменения при строительстве и эксплуатации трубопровода. Дополнительно рассчитывают динамическое воздействие на надземный трубопровод и очистные устройства во время очистки полости трубопровода.

Особыми нагрузками и воздействиями на магистральные трубопроводы принято называть те, которые возникают в результате селевых потоков, деформаций земной поверхности в карстовых районах и районах подземных выработок, а также деформаций грунта, сопровождающихся изменением его структуры.

Подземные и наземные (проложенные в насыпи) трубопроводы проверяют по прочности, деформациям, на общую устойчивость в продольном направлении и против всплытия.

Проверку прочности трубопроводов проводят по условию

,

где: упр - определяют по формуле (3);

ш2 - коэффициент, учитывающий

двухосное напряженное состояние металла труб; при растягивающих осевых продольных напряжениях (упр > 0) ш2 = 1, а при сжимающих (упр 0)

(13)

где: у - определяют по формуле (8);

R1 - расчетное сопротивление растяжению (сжатию) металла труб и сварных соединений, R1=, где - нормативное сопротивление; т-коэффициент условий работы трубопровода, равный 0,6 для участков трубопроводов категории В, 0,75, для участков категорий I и II и 0,9 для участков категорий III и IV; k1 - коэффициент безопасности по материалу, равный 1,34-1,55; kн- коэффициент надежности.

Толщину стенки магистрального трубопровода во всех случаях необходимо принимать не менее 1/140 наружного диаметра, но не менее 4 мм. Толщина стенки трубопровода.

(14)

, (15)

где: ш1 - коэффициент, учитывающий двухосное напряженное состояние металла труб,

. (16)

Проверка деформаций подземных и наземных трубопроводов проводится по условиям

; (17)

, (18)

где: - максимальные суммарные продольные напряжения в трубопроводе от нормативных нагрузок и воздействий,

, (19)

где: - минимальный радиус упругого изгиба оси трубопровода;

- кольцевые напряжения от нормативного (рабочего) давления, ;

с - коэффициент, равный 0,65 для категории В, 0,85 для категорий I и II и 1 для категорий III и IV;

- нормативное сопротивление (и принимают соответственно равными минимальным значениям временного сопротивления увр и предела текучести уm по ГОСТ и ТУ на трубы;

шз - коэффициент, учитывающий двухосное напряженное состояние металла труб; при растягивающих продольных напряжениях >0) ш3 =1, а при сжимающих

(20)

3. Нефтеперекачивающие станции магистральных нефтепроводов

3.1 Классификация нефтеперекачивающих станций магистральных нефтепроводов

На магистральных нефтепроводах используется в основном три вида нефтеперекачивающих станций (НПС): головные нефтеперекачивающие станции нефтепроводов (ГНПС), промежуточные нефтеперекачивающие станции (ПНПС) и головные нефтеперекачивающие станции эксплуатационных участков нефтепровода (ГНПС эксплуатационных участков).

ГНПС предназначена главным образом для приёма нефти с промыслов и подачи её в нефтепровод. Они имеют резервуарный парк, играющий роль буферной ёмкости между промыслами и магистралью и роль аварийной ёмкости при аварии на магистрали или промыслах.

ПНПС служат для восполнения потерь энергии жидкости, возникающих при движении потока нефти по магистрали. Данные станции располагаются по трассе через 100150 км.

ГНПС эксплуатационных участков нефтепровода в основном предназначены для гидродинамического разобщения магистралей на относительно небольшие участки (400600 км) с целью облегчения управлением перекачкой и локализации гидродинамических возмущений потока (гидроударов) в пределах данных участков. Эта функция подобных НПС выполняется за счёт размещения на них резервуарных парков. Последние являются средством гидродинамического разобщения магистралей на эксплуатационные участки.

Технологические схемы ГНПС нефтепровода и ГНПС эксплуатационных участков практически аналогичны.

3.2 Технологическая схема ГНПС нефтепровода и ГНПС эксплуатационного участка

Технологическая схема рассматриваемых станций изображена на рис. 3.1. Основной путь прохождения нефти показан сплошными линиями и стрелками.

Нефть с промыслов поступает на ГНПС и проходит последовательно узел предохранительных устройств (УП), защищающий оборудование и трубопроводы от повышенных давлений, узел учёта (УУ), измеряющий количество поступающей с промыслов нефти, и направляется в резервуарный парк (РП).

Из резервуарного парка нефть отбирается насосами подпорной станции (ПНС) и подаётся с требуемым подпором на вход насосов основной насосной станции (НС). Между ПНС и НС нефть проходит второй узел предохранительных устройств и второй узел учета. Второй узел учета используется для измерения количества нефти, поступающей в магистраль.

После НС нефть через узел регулирования давления (УР) и камеру пуска скребка (КП) направляется непосредственно в магистральный нефтепровод.

Узел регулирования давления служит для изменения производительности и давления на выходе ГНПС с помощью дросселирования потока на регулирующих заслонках или в регуляторах давления, установленных на узле.

Точность показания счетчика «Турбоквант» h достаточно высока лишь для определенного диапазона производительности Q (рис. 3.4). Поэтому для обеспечения измерениям высокой точности при любых производительностях трубопровода узлы учета оборудуются несколькими параллельно установленными счетчиками (рис. 3.5) и количество рабочих счетчиков варьируется в зависимости от производительности.

Счетчики размещаются на измерительных линиях. Перед каждым из них на линии находится сетчатый фильтр и струевыпрямитель, обеспечивающие счётчикам благоприятные условия работы.

Помимо рабочих измерительных линий в узел учёта входит контрольная измерительная линия для проверки рабочих счётчиков и турбопоршневая установка ТПУ, используемая для этих же целей. Последняя входит в состав коммерческих узлов учёта, каковыми являются узлы ГНПС нефтепровода. Узлы учёта ГНПС эксплуатационных участков используются преимущественно для контроля за процессом перекачки.

3.3 Технологическая схема ПНПС

Технологическая схема ПНПС показана на рис. 3.4. Нефть от узла подключения НПС к магистрали (УМ) движется на вход насосной станции (НС) через площадку фильтров-грязеуловителей (ФГ) и систему сглаживания волн давления (ССВД), затем после НС вновь поступает в магистраль через узел регуляторов давления (УР) и узел подключения (УМ).

По аналогичному принципу осуществляется запуск скребка через камеру Б. Камера пуска скребка ГНПС подобна камере пуска скребка ПНПС.

На площадке фильтров-грязеуловителей находится три параллельно соединённых фильтра, представляющих собой конструкцию типа «труба в трубе». Очистка фильтров производится через люк 1, расположенный на одном из торцов аппарата.

Система сглаживания волн давления (ССВД) применяется на нефтепроводах диаметром 720 мм и выше для защиты линейной части магистралей и оборудования НПС от гидравлического удара - интенсивного нарастания давления при резком прикрытии задвижек, остановках насосов и т.п.

Сглаживание волн давления состоит в уменьшении скорости нарастания давления в трубопроводе путём сброса части нефти из приёмного трубопровода ПНПС в безнапорную ёмкость ЕБ. Сброс происходит через специальные безинерционные клапаны, срабатывающие только при интенсивном нарастании давления и не реагирующие на постепенное его повышение.

Система сглаживания волн давления обычно имеет до шести клапанов, соединённых параллельно.

3.4 Насосы НПС нефтепроводов

На НПС магистральных нефтепроводов используется два вида технологических насосов - подпорные и основные.

Основными насосами оборудуются основные НС ГНПС и ПНПС. Данные насосы предназначены для непосредственного транспорта нефти. Подпорные насосы используются только на ГНПС (на их подпорных станциях) и играют вспомогательную роль. Они служат для отбора нефти из резервуарного парка и подачи ее на вход основным насосам с требуемым давлением (подпором), предотвращающим кавитацию в основных насосных агрегатах.

Современным типом основных насосов являются насосы НМ, которые выпускаются на подачу от 125 до 10000 м3/ч. Данные насосы имеют две конструктивные разновидности.

Конструкция рассматриваемых насосов рассчитана на давление 9,9 МПа. Поэтому они допускают последовательное соединение на более двух насосов на подачу от 125 до 360 м3/ч и не более трех насосов на подачу 500 и 710 м3/ч.

Для повышения экономичности нефтепроводного транспорта при изменении производительности перекачки у спиральных насосов предусмотрено применение сменных роторов с рабочими колёсами на подачу 0,5 и 0,7 от номинальной (насос на подачу 1250 м3/ч имеет один сменный ротор на 0,7 номинальной подачи, а насос на подачу 10000 м3/ч - дополнительный ротор на подачу 1,25 от номинальной).

Полная маркировка насосов типа НМ содержит группу буквенных обозначений, например: НМ 7000 - 210, где НМ обозначает нефтяной магистральный, 7000 - подачу в м3/ч, 210 - напор в метрах столба перекачиваемой жидкости.

Современным типом подпорных насосов являются насосы НПВ (нефтяные подпорные вертикальные). Они выпускаются четырёх типоразмеров: НПВ 1250-60, НПВ 2500-80, НПВ 3600-90, НПВ 5000-120. Цифры в маркировке указывают на производительность (м3/ч) и напор насоса (м).

Помимо насосов НПВ на ГНПС достаточно широко ещё используются подпорные насосы типа НМП (нефтяные магистральные подпорные). Эти насосы горизонтальные, наземной установки. Ротор их аналогичен ротору насоса НПВ, уплотнения торцевые, подшипники качения с кольцевой смазкой. Корпус спиральный с разъёмом в горизонтальной плоскости - подобен корпусу насосов НМ. Маркировка насосов НМП аналогична маркировке насосов НМ.

Основные насосы на НПС соединяются между собой главным образом последовательно. При этом допускается иметь не более трёх рабочих насосов, исходя из прочности агрегатов. В дополнение к трём рабочим насосам на станциях устанавливается по одному резервному агрегату.

В отдельных случаях, например, при прохождении в одном коридоре нескольких нефтепроводов, на НПС параллельно уложенных магистралей помимо последовательного соединения насосов предусматривается возможность перехода к смешанной параллельно-последовательно схеме соединения всех четырёх агрегатов, включая резервный, а также переход к параллельной схеме работы насосов.

Такие возможности предусматриваются на аварийный случай. При выходе из строя какой-либо НПС, соседняя с ней станция на параллельной магистрали переводится на смешанную или параллельную работу насосов.

При этом к станции подключаются сразу два нефтепровода - собственный нефтепровод рассматриваемой станции и нефтепровод аварийной НПС. Отмеченное позволяет не прекращать перекачку по аварийному нефтепроводу и поддерживать его производительность на достаточно удовлетворительном уровне.

Подпорные насосы соединяются между собой только параллельно. В основном на подпорной станции используется один или два рабочих насоса и один резервный.

3.5 Характеристики насосов НПС

нефтепровод насосный станция нагреватель

Характеристикой насоса называется графическая зависимость основных параметров насосов (напора Н, мощности N, К.П.Д. , допустимого кавитационного запаса hд или высоты всасывания НS от подачи Q).

Центробежные насосы, к которым относятся агрегаты НМ, НПВ и НМП, могут иметь два вида характеристик - комплексную и универсальную. Основной характеристикой подобных насосов является комплексная. Рекомендуемая заводом-изготовителем область применения насосов по подаче (рабочая зона) отмечена на H-Q характеристике волнистыми линиями или выделяется в виде обособленного поля 1. Рабочей зоне отвечают наиболее высокие значения К.П.Д. насоса.

Область применения насоса может быть расширена обточкой их рабочих колёс. Насосы магистральных нефтепроводов допускается обтачивать не более чем на 10%, т.к. при большем значении обточки рабочих колёс наблюдается заметное снижение К.П.Д. насосов. Предельно допустимому значению обточки рабочего колеса соответствует нижняя кривая H-Q из двух приведённых на характеристике. Верхняя H-Q кривая отвечает необточенному колесу. Допустимый кавитационный запас hд, приводимый на характеристике, есть минимально допустимый избыток удельной энергии перекачиваемой жидкости на входе в насос над удельной энергией насыщенных паров жидкости, при котором не происходит холодного кипения жидкости в насосе или кавитации. С помощью hд рассчитывается минимально допустимое давление на входе в насос Рвхmin

,

где РS - давление насыщенных паров перекачиваемой жидкости при температуре перекачки, Н/м2;

- плотность перекачиваемой жидкости, кг/м3;

g - ускорение свободного падения, м/с2;

hд - допустимый кавитационный запас, принимаемый по комплексной характеристике насоса для соответствующей подачи, м.

При давлениях на входе в насос, больших Рвхmin , кавитации в насосе не наблюдается.

При решении многих инженерных задач H-Q характеристики насосов используются в аналитической форме, которую получают путём аппроксимации графической H-Q зависимости. Аппроксимацию выполняют на основе уравнения 3.1 и осуществляют следующим образом.

H = a - bQ2

На H-Q характеристике в её рабочей зоне берут две любые точки с координатами Q1, H1 и Q2, H2 соответственно. Затем эти координаты подставляют и дважды записывают уравнение (3.1). В результате получают систему двух уравнений с двумя неизвестными - a и b.

Решение данных уравнений даёт зависимости для определения численных значений a и b через известные Q1, H1 и Q2, H2:

; .

Подставив рассчитанные значения a и b в (3.1) можно пользоваться выражением (3.1) для определения напора насоса в зависимости от его подачи.

3.6 Совместная работа насосных станций и линейной части нефтепровода

Насосы НПС и линейная часть нефтепровода составляют единую гидродинамическую систему. Режим работы такой системы определяется её рабочей точкой.

Рабочей точкой системы, состоящей из нескольких насосов и нескольких трубопроводов, называется точка пересечения суммарной Н-Q характеристики всех насосов с суммарной H-Q характеристикой всех трубопроводов системы.

Рабочая точка системы характеризует гидродинамическое единство её элементов (насосов и трубопроводов) и показывает, что насосы развивают только такие напоры и подачи, которые равны гидравлическому сопротивлению и пропускной способности трубопроводов.

Рабочая точка системы определяет рабочие точки отдельных насосов, входящих в систему. Рабочие точки насосов (их Н и Q координаты) показывают напор и подачу, развиваемые насосами при работе их в данной системе.

Рассмотрим конкретные примеры нахождения рабочих точек системы и отдельных насосов при различных схемах соединения насосов на НПС.

На нефтеперекачивающих станциях в общем случае возможны следующие схемы соединения насосов: последовательное соединение, параллельное и смешанное параллельно-последовательное соединение.

Выполним такое сложение графически для нескольких подач и получим точки суммарной Н-Q характеристики насосов (точки 1+2). Соединив данные точки плавной линией, будем иметь искомую суммарную Н-Q характеристику насосов.

Точка пересечения кривых (1+2) и 3 (точка М) является рабочей точкой системы «насосы - трубопровод». Её координаты показывают, что данная система работает с производительностью Q0, при этом гидропотери в ней составляют Н0.

Из схемы следует, что нефтеперекачивающая станция НПС и трубопровод 3 соединены между собой последовательно. Значит количество жидкости, проходящее через НПС, равно производительности трубопровода, т.е. НПС работает с подачей Q0.

НПС состоит из двух насосов. С какой производительностью работает каждый из этих насосов? Очевидно, что с производительностью Q0, т.к. насосы соединены между собой последовательно.

При производительности Q0 насос 1 согласно его характеристике развивает напор Н1, а насос 2 соответственно Н2. Из определения понятия рабочей точки вытекает, что координаты её показывают производительность и напор (развиваемый напор или потери напора) соответствующего элемента системы. Следовательно, рабочими точками насосов 1 и 2 будут точки М1 и М2. По координатам этих точек как отмечалось выше можно определить подачу и напор каждого насоса при работе его в рассматриваемой системе.

Очевидно, что с изменением системы изменяется местоположение рабочей точки системы и отдельных насосов. Например, при отключении насоса 2 в системе останется один насос 1 и трубопровод 3. Рабочей точкой такой системы будет точка М. Она совпадает с новой рабочей точкой насоса 1.

Найдём теперь рабочие точки системы и насосов при параллельном соединении перекачивающих агрегатов на НПС. Суммарная Н-Q характеристика насосов 1 и 2 в данном случае будет находиться также исходя из схемы соединения насосов. При параллельном соединении агрегатов они имеют одинаковый напор, общая их подача равна сумме подач отдельных насосов.

В приведённом утверждении может вызвать сомнение лишь констатация равенства напоров параллельно подключённых насосов.

Допустим, что напоры параллельно работающих насосов не равны. Тогда насос с большим напором «задавит» насос с меньшим напором и будет вести перекачку жидкости не только по трубопроводу, но и через «задавленный» насос. Последний в гидравлическом смысле уже не будет являться перекачивающим агрегатом или насосом, а предстанет неким подобием ещё одного трубопровода. Таким образом, у параллельно работающих насосов напоры всегда равны между собой.

На основе приведённых рассуждений формируется правило получения суммарной Н-Q характеристик параллельно соединённых агрегатов: характеристика находится сложением подач отдельных насосов при одинаковых напорах.

Найдем отдельные точки рабочих насосов, учитывая, что оборудованная ими НПС имеет подачу Q0 и напор Н0.

Так как на НПС насосы соединены параллельно и напоры их равны, то каждый из насосов станции развивает напор, равный напору НПС, т.е. равный Н0. При напоре Н0 насос 1 согласно его Н-Q характеристики имеет подачу Q1, а насос 2 - подачу Q2.

Таким образом, рабочими точками насосов будут точки М1 и М2 соответственно, а режим работы насосов определяется их напором Н0 и подачами Q1 и Q2.

3.7 Методы регулирования режимов работы НПС

Существующие методы регулирования работы НПС подразделяются на методы плавного и ступенчатого регулирования. К теоретически возможным методам плавного регулирования относятся: перепуск, дросселирование, изменение числа оборотов ротора насосов.

К методам ступенчатого регулирования относят: изменение числа работающих насосов НПС, изменение схемы соединения насосов на НПС, изменение числа ступеней у многоступенчатых насосов, замена роторов (рабочих колёс) насосов, изменение диаметра рабочего колеса насосов.

При перекачке с перепуском производительность нефтепровода всегда только снижается.

Данный метод регулирования является неэкономичным, т.к. при его осуществлении производительность нефтепровода снижается, а производительность НПС, напротив, возрастает. Это вызывает перерасход энергии на единицу транспортируемой нефти.

Регулирование режима работы НПС дросселированием состоит в создании потоку искусственного сопротивления в виде сужения площади поперечного сечения потока в каком-либо его месте (сечении). Реализуется данный метод на узлах регулирования НПС с помощью управляемых со щита станции и автоматикой регуляторов давления или регулирующих заслонок.

При дросселировании производительность нефтепровода всегда только уменьшается. Данный метод регулирования также неэкономичен, т.к. НПС непроизводительно развивает излишний напор, что делает дороже транспорт нефти в связи с перерасходом энергии.

При регулировании режима работы НПС изменением числа оборотов ротора насосов происходит изменение Н-Q характеристик насосов. С увеличением числа оборотов характеристика смещается вправо и вверх в соответствии с зависимостями

; .

При данном методе регулирования насос развивает напор и подачу, строго соответствующие сопротивлению и пропускной способности нефтепровода. Поэтому при данном методе не наблюдается излишний расход энергии. Это самый экономичный метод регулирования.

Методы ступенчатого регулирования имеют в своём большинстве один общий недостаток - режим работы НПС и нефтепровода при их осуществлении изменяется ступенчато, что не всегда отвечает необходимой степени изменения режима работы и часто требует подрегулирования с помощью неэкономичного метода дросселирования. Поэтому экономичные в своей основе методы ступенчатого регулирования не всегда обеспечивают транспорту нефти минимально возможные энергозатраты.

Исключение из рассматриваемых методов составляет метод регулирования изменением диаметра рабочего колеса.

Диаметры рабочих колёс центробежных насосов НМ, НПВ и НМП могут быть изменены обточкой колёс на станке. Обточка в пределах 10% практически не приводит к снижению К.П.Д. насосов, Н-Q характеристика же насоса при этом изменяется подобно тому, как это происходит при изменении числа оборотов ротора насоса.

; ,

Где Н0 и Q0 - напор и подача насоса при диаметре рабочего колеса, равном Д0;

Н и Q - напор и подача насоса при диаметре рабочего колеса, равном Д.

Подставим в (3.3) вместо Н0 и Q0 их значения, полученные из (3.2) и будем иметь:

,

где H и Q - требуемые от насоса напор и подача;

Д - отвечающий им диаметр колеса.

Теперь поделим обе части уравнения (3.4) на и полученное выражение решим относительно

.

Если рассчитанное по (3.5) значение Д будет отличаться от Д0 не более чем на 10%, то обточка колеса обеспечит насосу и НПС необходимый режим работы при минимальных энергозатратах на транспорт нефти.

3.8 Эффективность работы основного оборудования НПС

Эффективность работы основного оборудования НПС определяется главным образом энергозатратами на перекачку нефти, которые находятся в прямой зависимости от режима работы станций и применяемых на них методов регулирования.

Для обеспечения НПС необходимой эффективности работы насосы станций следует эксплуатировать только в их рабочей зоне, а из всех возможных методов регулирования применять наиболее экономичный для конкретных условий эксплуатации НПС.

4. Компрессорные станции МГ

4.1 Технологические схемы компрессорных станций с центробежными нагнетателями

Компрессорные станции с центробежными нагнетателями достаточно разнообразны по своим технологическим схемам. Объясняется это, главным образом, широким перечнем типоразмеров ГПА, используемых на подобных станциях - здесь могут быть агрегаты с полнонапорными или неполнонапорными нагнетателями, с электродвигателями либо с газотурбинными установками различного исполнения.

В сочетании с различными вариантами дополнительных функций, возлагаемых на КС, перечисленное порождает достаточное число разновидностей технологических схем КС с центробежными нагнетателями.

Газ от узла подключения станции к газопроводу УП поступает на вход КС через кран №7 и проходит на установку очистки газа УО, где очищается от механических примесей в пылеуловителях П. Затем основная часть очищенного газа направляется в компрессорный цех КЦ для компримирования, а другая, меньшая, - отбирается на установку подготовки газа (УПГ). УПГ предназначена для подготовки: пускового (ГП) и топливного (ГТ) газа ГТУ, импульсного газа (ГИ), используемого для перестановки кранов КС, а также для редуцирования газа, предназначенного прочим местным потребителям (ГСН).

После сжатия в компрессорном цехе газ подаётся на установку охлаждения УХ, состоящую из параллельно соединённых аппаратов воздушного охлаждения АВО, затем через кран №8 и узел подключения КС к газопроводу возвращается в магистраль.

Из всего перечисленного на технологическую схему КС наибольшее влияние оказывает вид установленных на станции нагнетателей. Это влияние ограничивается преимущественно компрессорным цехом станции.

В значительной меньшей мере технологическая схема КС зависит от типа привода нагнетателей. Тип привода определяет лишь масштабы установки подготовки газа УПГ. При газотурбинном приводе нагнетателей УПГ наиболее весома по своим функциям и размерам. Когда на станции используется электропривод, на УПГ отсутствуют устройства по подготовке топливного и пускового газа, а на схеме КС не предусматриваются соответствующие трубопроводы.

Помимо рассмотренных, наиболее значимых различий технологические схемы компрессорных станций могут иметь достаточно большое количество мелких расхождений друг с другом.

Например, нормами технологического проектирования ОНТП 51-1-85 на всех проектируемых и строящихся КС предусматривается использовать одну общую установку охлаждения газа УХ. На ряде ранее сооружённых станций, возведённых ещё по старым нормам, данная установка выполнена раздельной, состоящей из нескольких автономных друг от друга групп АВО. На некоторых станциях АВО вообще отсутствует.

Одним из отличий технологических схем может быть применение на мощных КС двух ниток трубопроводов вместо одной для соединения компрессорных цехов с магистральным трубопроводом. К двухниточному варианту прибегают для снижения скорости движения газа в трубопроводах и уменьшения сопротивления коммуникаций КС.

Нагнетательные коммуникации компрессорного цеха могут быть многониточными и по другим причинам. Например, при использовании на КС нескольких групп неполнонапорных нагнетателей.

Достаточно большое количество изменений в типовую схему компрессорных станций вносится в результате рационализаторских разработок. Нововведения возникают из-за необходимости учёта особенностей работы конкретных станций, которые трудно учесть в одном варианте схемы.

К общестанционным кранам относятся краны узла подключения станции к магистральному газопроводу (№7, №17, №8, №18, №19, №20, №21) и краны большого или пускового контура компрессорной станции (№36 и №36р).

Краны №19 и №21 узла подключения КС к магистрали являются охранными (входной охранный и выходной охранный соответственно), нормальное положение их открытое. Данные краны предназначены для отключения от магистрали участка газопровода, непосредственно примыкающего к КС, в случае аварии на станции. В частности, при аварии на узле подключения КС. Кран №20 называется секущим, нормальное положение его при работающей станции - закрытое. При отключении всей КС кран №20 открывается (№7 и №8 закрываются), и газ движется по магистрали, минуя станцию. Краны №17 и №18 свечные. Они служат для сброса в атмосферу газа из всех трубопроводов КС при остановках станции и при продувках коммуникаций КС при заполнении их газом.

Краны №7 и №8, служащие для отключения КС от магистрали, имеют обводные линии с дросселями. Обводные линии выполняются диаметром, меньшим диаметра основного трубопровода с кранами №7 и №8, и служат для выравнивания давления по обе стороны основных кранов перед их открытием. Это облегчает открытие данных кранов и предотвращает гидравлический удар, который имел бы место при резком открытии запорной арматуры №7 и №8 с большим проходным сечением. Для сглаживания скачка давления и предотвращения гидроудара при открытии кранов на обводных линиях последние оснащаются дросселями, создающими потоку газа дополнительное гидросопротивление.

Следующие по ходу рассмотрения общестанционные краны №36 и №36р установлены на перемычке между входным и выходным газопроводами КС. Перемычка составляет элемент большого или пускового контура КС, который ещё называется «станционным кольцом»; с помощью перемычки можно часть газа перемещать с выхода станции на её вход.

Большой контур КС, включающий в себя краны №36 и №36р, предназначен для трёх целей:

для осуществления плавной загрузки и разгрузки ГПА при их пусках и остановках;

для регулирования режима работы КС методом перепуска;

для предотвращения у центробежных нагнетателей помпажа и вывода нагнетателей из режима помпажа.

Пуск любой машины сопряжен с преодолением инерции её находящихся в покое подвижных частей и с приложением к машине значительных пусковых усилий. Это влечёт за собой, с одной стороны, повышенный расход энергии на пуск, с другой - дополнительный износ оборудования.

Для облегчения пусков и снижения износа агрегаты пускают в работу постепенно с минимальной загрузкой их по мощности. Минимум загрузки обеспечивается при малых производительностях нагнетателя (см. рис. 4.2.), которые в условиях КС достигаются работой агрегатов на «станционное кольцо» через приоткрытый кран №36р.

Кран №36р - регулирующий. Он в отличие от прочих кранов КС, имеющих всего два положения («открыт» или «закрыт»), может занимать промежуточные позиции и таким образом осуществить пропуск газа через «станционное кольцо» с дросселированием потока в данном кольце.

После пуска ГПА, по мере набора его ротором частоты вращения и мощности, кран №36р постепенно все более открывается и загрузка агрегата по мощности также постепенно возрастает. При наборе ГПА необходимых оборотов и принятии агрегатов полной загрузки по мощности ГПА переводится с «кольца» на работу в магистраль через кран №8.

Кран №36р используется также при остановках ГПА для предотвращения образования в конструктивных элементах агрегатов чрезмерных напряжений от резкой их разгрузки.

Постепенность снятия нагрузки с ГПА осуществляется переводом агрегатов, перед их отключением, из режима работы «на магистраль» в режим работы «на кольцо» в порядке, обратном последовательности действий, производимых при пуске ГПА.

Кран №36р имеет дистанционное управление с главного щита компрессорной станции.

Предотвращение помпажа центробежного нагнетателя и вывод нагнетателя из режима помпажа осуществляется с помощью крана №36. Помпаж, как известно, возникает в том случае, когда происходит уменьшение объёмного расхода газа через нагнетатель и этот расход становится меньше некоторого критического значения Qкр. Для выведения нагнетателя из помпажа необходимо увеличить расход газа через компрессорную машину.

На компрессорных станциях магистральных газопроводов увеличение расхода через нагнетатель осуществляется открытием крана №36 и переводом нагнетателя из режима работы «на магистраль» в режим работы «магистраль плюс станционное кольцо». Суть происходящих при этом процессов и их влияние на вывод нагнетателя из помпажа рассмотрим на примере.

В исходном режиме нагнетатель работал на магистральный газопровод с характеристикой 2 при закрытых кранах №36 и №36р. Согласно рабочей точке Мо рассматриваемой системы производительность нагнетателя составляла Qо , а его степень сжатия - о.

В некоторый момент времени объёмный расход газа через нагнетатель сократился до Q1 < Qкр, что вызвало помпаж. На него среагировали датчики системы автоматики.

По сигналу датчиков происходит автоматическое открытие крана №36, и газ с выхода нагнетателя поступает не только в магистральный трубопровод, но и в «станционное кольцо» с характеристикой 3. Теперь нагнетатель ведёт перекачку газа по двум трубопроводам, соединённым между собой параллельно.

С открытием крана №36 рабочая точка нагнетателя, согласно вышерассмотренному, перемещается из положения М0 в положение М - расход газа через компрессорную машину увеличивается с Q1 до Q > Qкр, и агрегат выходит из помпажа.

Нетрудно заметить, что вывод нагнетателя из помпажа приведённым выше способом сопряжён с повышением производительности ГПА и, следовательно, с увеличением потребляемой агрегатной мощности от (Ni/Pв)0 до (Ni / Pв) > (Ni / Pв)о. При существенном различии между (Ni /Pв) и (Ni / Pв)о может возникнуть перегрузка ГПА по мощности и его автоматическое отключение. Для предотвращения этого на перемычке, содержащей краны №36 и №36р, установлен дроссель «Д», который ограничивает пропускную способность трубопровода с «Д», создавая в нём дополнительное сопротивление.

Дроссель «Д» регулируемый. Необходимая степень его приоткрытия определяется опытным путём в ходе пуско-наладочных работ на КС.

Последний элемент общестанционной арматуры, который следует рассмотреть, - обратный клапан перед краном №8. Данный клапан предотвращает переток газа из магистрали на выход нагнетателей в случае отключения КС при неисправном кране №8, а также при переводе компрессорной станции на «станционное кольцо» при пусках и остановках КС, при регулировании режима работы станции перепуском и при выводе КС из помпажа.

Переток газа из магистрали на выход нагнетателей опасен тем, что он может вызвать обратную раскрутку роторов нагнетателей и ГПА, а это приводит к тяжёлым последствиям.

4.2 Технологические схемы компрессорных цехов КС магистральных газопроводов

4.2.1 Компрессорный цех

Компрессорные цехи КС магистральных газопроводов представляют собой капитальные здания или отдельные металлические блоки (расположенные на общей площадке), в которых размещаются газоперекачивающие агрегаты.

В непосредственной близости от цехов со стороны расположения компрессорных машин, находится обвязка нагнетателей - трубопроводы с крановыми узлами. Трубопроводы и краны обвязки устанавливаются над землёй на железобетонных опорах высотой порядка одного метра.

Капитальные здания КС сооружаются из огнестойких материалов и имеют каркасную конструкцию, состоящую из системы колонн, балок и ферм. На каркасе монтируются облегченные ограждающие панели.

Компрессорные станции с подобными помещениями для ГПА называются станциями в традиционном исполнении. К их числу относится основная масса КС с электроприводом и с приводом от газотурбинных установок стационарного типа.

Более совершенные ГПА последних поколений размещаются в индивидуальных металлических блоках заводского изготовления и заводской комплектации. Блоки транспортируются на место строительства КС практически в полностью готовом виде. Это существенно сокращает трудоёмкость и продолжительность строительства станции. Блочное исполнение имеют, преимущественно, КС с приводом от авиационных и судовых двигателей, станции с импортными ГПА и некоторая часть КС со стационарными ГТУ и электроприводными агрегатами.

Обвязка нагнетателей компрессорного цеха может иметь три варианта. Полнонапорные нагнетатели соединяются между собой только параллельно, неполнонапорные, создающие недостаточно высокое давление, обвязываются по различным схемам - параллельно, последовательно, по смешанной схеме соединения.

Обычно неполнонапорные машины в компрессорном цехе разбивают на группы. Внутри каждой группы нагнетатели соединяются последовательно, а группы между собой - параллельно.

Количество нагнетателей в группе соответствует числу ступеней сжатия газа на КС. Существующее оборудование позволяет иметь на станциях одно, -двух и трехступенчатое сжатие. Потребное количество ступеней сжатия в каждом отдельном случае определяется технико-экономическим расчетом.

Отмеченные особенности КС с неполнонапорными нагнетателями привели к появлению двух вариантов обвязки неполнонапорных машин - по смешанной схеме соединения и по коллекторной схеме.

4.2.2 Обвязка неполнонапорных нагнетателей по типовой смешанной схеме соединения

В качестве примера рассмотрим компрессорный цех с пятью ГПА, которые составляют две группы с двухступенчатым сжатием (один агрегат резервный).

Первую группу образуют агрегаты I и II, вторую - IV и V. Агрегат III - резервный, с помощью кранов №51№56, называемых режимными, он может подключаться к любой группе, с выводом из них в резерв или ремонт любого нагнетателя.

В рассматриваемом варианте обвязки каждая группа нагнетателей оснащается отдельным подводом газа от установки очистки газа и самостоятельным выходом в магистраль через свою часть АВО установки охлаждения газа, имеет автономные крановые узлы с арматурой №8 и №18. Кроме отмеченного, каждая группа нагнетателей располагает отдельными перемычками на «станционном кольце» с собственными кранами №36, №36р и дросселем «Д».

Практически полное обособление групп нагнетателей друг от друга делается для облегчения вывода ГПА на «станционное кольцо» при их пусках и остановках и для повышения управляемости агрегатами в процессе компремирование газа.

Помимо режимных кранов №51№56 к кранам обвязки нагнетателей относится арматура №1, №2, №3, №4, №5 и №3 бис.

Краны №1 и №2 - отсекающие, предназначены для отключения нагнетателя от технологических трубопроводов КС. Кран №3 - проходной, обеспечивает обвод газа через неработающий нагнетатель. Остальные краны используются в основном при пусках и остановках агрегата.

Пуску ГПА предшествуют предпусковые операции. Они проводятся отдельно для привода и нагнетателя.

Для нагнетателя они заключаются в продувке обвязки нагнетателя и в пуске машины в режиме холостого хода.

Продувка обвязки требуется для удаления из трубопроводов и нагнетателя воздуха и предотвращения тем самым попадания в газопровод взрывоопасной газовоздушной смеси. Удаление воздуха осуществляется с помощью кранов №4 и №5.

Кран №5 - свечной. При неработающем агрегате он всегда открыт, открыт и кран №3, краны №1 и №2 закрыты - обвязка нагнетателя сообщается с атмосферой. Для вытеснения из неё воздуха открывается кран №4, расположенный на обводной линии крана №1, - газ из коммуникаций КС поступает в нагнетатель и примыкающие к нему трубы, затем через открытый кран №5 сбрасывается в атмосферу совместно с вытесняемым им воздухом. Продувка длится порядка 30 секунд. Затем краны №4 и №5 закрываются, производится пуск привода ГПА.

Для облегчения пуска привода и ГПА в целом нагнетателю на момент пуска обеспечивается режим холостого хода с малым потреблением мощности. Данный режим осуществляется после закрытия кранов №4 и №5. В это время обвязка нагнетателя и сама компрессорная машина заполнены газом, но отсечены от коммуникаций станции кранами №1 и №2. Единственно открытым краном остаётся кран №3 бис, составляющий совместно с охватывающими нагнетатель трубопроводами малый пусковой контур или «малое кольцо». Кран №3 бис постоянно дублирует положение крана №3.

Пуск привода ГПА при отмеченном положении кранов сопровождается работой нагнетателя на «малое кольцо» с перепуском газа на вход компрессорной машины через кран №3 бис. В таком «холостом» режиме работы нагнетателя потребление мощности ГПА минимально.

После пуска ГПА в работу и «раскручивания» валов агрегата краны №3 бис и №3 закрываются, а краны №1 и №2 открываются - нагнетатель подключается к коммуникациям КС и переводится с малого контура на больший станционный (см. раздел 4.1), затем - на работу в магистраль. Таким образом, обеспечивается постепенная загрузка ГПА и вывод его на рабочий режим.

При остановках агрегатов плавная разгрузка ГПА происходит за счёт повторения рассмотренных операций в обратном порядке - агрегат из магистрали выводится на станционное кольцо, затем на малый контур, после этого привод агрегата отключается, краны №1 и №2 закрываются, а краны №3, №4 и №5 открываются, происходит сброс газа из контура нагнетателя в атмосферу.

Обводная линия у крана №1 предназначена не только для продувки обвязки нагнетателя и заполнения её газом, но и для выполнения функций, подобных функциям обводных линий у кранов №7 и №8. Сглаживание гидроудара при открытии крана №4 достигается установкой за этим краном дроссельной шайбы.

Краны обвязки нагнетателей имеют автоматическое управление. Кроме того, они могут приводиться в действие и от команд, подаваемых с местного щита или узла управления, установленного в непосредственной близости от крана.

Из технологической схемы КС и компрессорного цеха следует, что отдельный агрегат нельзя самостоятельно вывести на большой пусковой контур. Возможен только вывод ГПА совместно со всей содержащей его группой машин. Поэтому перед пуском агрегата вся группа переводится в режим работы «на станционное кольцо». Лишь после этого производится пуск рассматриваемой машины на малый контур и последующее подключение её к группе на большом контуре. После этого вся группа вместе с пущенным агрегатом выводится на режим работы «в магистраль».

Люки предназначены для помещения в трубопроводы шаров-разделителей с целью достижения герметичного отсечения ГПА от коммуникаций КС при ремонтах агрегатов. Люки-лазы представляют собой трубы диаметром 0,5 м и длиной 0,50,6 м приваренные перпендикулярно к нагнетательному и всасывающему трубопроводам агрегатов.

На трубопроводе входа газа в компрессорную машину после люка-лаза ставится защитная решетка для улавливания случайно попавших в трубопровод предметов. Решетка используется главным образом в первый период эксплуатации КС по завершении её строительства. Кроме отмеченного, между кранами №1 и №2 и нагнетателем располагаются вентили с условным диаметром 25 мм (Ду 25), которые служат для слива конденсата из нагнетателя и его обвязки перед вскрытием компрессорной машины при её ремонтах.

4.2.3 Обвязка неполнонапорных нагнетателей по коллекторной схеме соединения

Коллекторная схема обвязки нагнетателей показана на рис. 4.5. Особенность данной схемы - использование для обвязки ГПА трёх коллекторов: всасывающего 1, промежуточного 2 и нагнетательного 3.

Промежуточный коллектор является нагнетательным для первой ступени сжатия (машины I , II , IV , VI и VIII) и, одновременно, всасывающим - для второй ступени (агрегаты I, III , V , VII и VIII).

При коллекторной схеме соединения агрегатов нагнетатели в цехе разбиваются не на группы, как при смешанной схеме обвязки, а по ступеням сжатия, которые, как и группы относительно обособлены друг от друга. Такая организация компрессорного цеха придаёт ему ряд особенностей, которые приведены ниже.

С помощью коллекторной схемы создаётся возможность подключать нагнетатели, расположенные по концам цеха или в его середине, к любой ступени сжатия. Это обеспечивает повышенную гибкость резервирования агрегатов. На рис. 4.5 агрегатами, допускающими их присоединение к любой ступени сжатия, являются машины I и VIII, которые оснащаются более сложной обвязкой.

При коллекторной схеме соединения ГПА аварийное отключение одного или нескольких агрегатов в какой-либо из ступеней сжатия приводит к снижению производительности компрессорного цеха, в том числе и ступени сжатия с полным количеством работающих нагнетателей. Объём газа, проходящий через нагнетатели данной ступени, уменьшается, что создаёт возможность помпажа.


Подобные документы

  • Проектирование газонефтепроводов: гидравлический расчет и выбор оптимального диаметра трубопровода, механические и теплотехнические расчеты. Защита нефтепровода от коррозии. Сооружение фундамента и разворачивание РВС-5000. Особенности перекачки газа.

    курсовая работа [5,4 M], добавлен 30.01.2015

  • Исходные данные для технологического расчета нефтепровода. Механические характеристики трубных сталей. Технологический расчет нефтепровода. Характеристика трубопровода без лупинга и насосных станций. Расстановка насосных станций на профиле трассы.

    курсовая работа [859,1 K], добавлен 04.03.2014

  • Назначение компрессорных станций магистральных газопроводов. Основное технологическое оборудование КС и его размещение. Порядок эксплуатации средств контроля и автоматики. Характерные неисправности и способы их устранения. Описание основных систем защиты.

    курсовая работа [237,1 K], добавлен 27.10.2015

  • Технико-экономическое обоснование годовой производительности и пропускной способности магистрального трубопровода. Определение расчетной вязкости и плотности перекачиваемой нефти. Гидравлический расчет нефтепровода. Определение числа насосных станций.

    курсовая работа [2,5 M], добавлен 30.05.2016

  • Характеристика магистральных нефтепроводов. Определение диаметра и толщины стенки трубопровода. Расчет потерь напора по длине нефтепровода. Подбор насосного оборудования. Построение гидравлического уклона, профиля и расстановка нефтяных станций.

    курсовая работа [146,7 K], добавлен 12.12.2013

  • Особенности формирования системы магистральных нефтепроводов на территории бывшего СССР. Анализ трассы проектируемого нефтепровода "Пурпе-Самотлор", оценка его годовой производительности. Принципы расстановки перекачивающих станций по трассе нефтепровода.

    курсовая работа [934,0 K], добавлен 26.12.2010

  • Анализ современного состояния нефтепроводного транспорта России. Общая характеристика трассы нефтепровода "Куйбышев-Лисичанск". Проведение комплексной диагностики линейной части магистрального нефтепровода. Принципиальные схемы электрических дренажей.

    дипломная работа [2,3 M], добавлен 23.01.2012

  • Структура управления ОАО "Сибнефтепровод". Ведущие виды деятельности компании. Основные объекты и сооружения магистрального нефтепровода. Техническое обслуживание линейной части МН. Наладка оборудования линейной части магистрального нефтепровода.

    отчет по практике [2,9 M], добавлен 19.03.2015

  • Роль сварочных работ в строительстве объектов нефтегазового комплекса. Токарные станки и работа на них: классификация и типы. Специфика работы фрезерных станков, устройство и функциональные особенности. Сверлильное, строгальное и долбежное оборудование.

    курсовая работа [524,7 K], добавлен 04.09.2014

  • Понятие и классификация газоперекачивающих агрегатов. Технологическая схема компрессорных станций с центробежными нагнетателями. Подготовка к пуску и пуск ГПА, их обслуживание во время работы. Надежность и диагностика газоперекачивающих агрегатов.

    курсовая работа [466,2 K], добавлен 17.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.