Проект реконструкции отделения "белой фильтрации" для ЗАО "Крымский Титан"

Установка непрерывного действия для фильтрации на листовых вакуум-фильтрах. Описание технологической схемы "белой фильтрации". Расчёт площади, производительности фильтра, переливного устройства ванны. Диаметр сливных штуцеров из переливных карманов.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 10.01.2009
Размер файла 4,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

высокая химическая и коррозионная стойкость материалов агрессивных средах при рабочих параметрах;

высокая механическая прочность при заданных рабочих давлениях, температуре и дополнительных нагрузках, возникающих при гидравлических испытании и эксплуатации аппаратов;

хорошая свариваемость материалов с обеспечением высоких механических свойств сварных соединений;

низкая стоимость и недефицитность материалов.

Стали имеют наибольшее применение в химическом машиностроении, так как они лучше других материалов удовлетворяют перечисленным требованиям.

Для изготовления сосудов и аппаратов рекомендуется применять сталь, выплавленную в мартеновских и электрических печах, а в отдельных случаях - сталь кислородно-конверторного про-изводства.

По химическому составу и механическим свойствам материалы должны удовлетворять требованиям ГОСТов, ТУ и ОСТ 26-291-71. Качество и характеристики материалов должны быть подтверждены заводом-поставщиком в соответствующих сертификатах. При проектировании аппаратов необходимо проверить соответствие качества выбранного материала требованиям ОСТ 26-291--71.

Сталь углеродистая обыкновенного качества поставляется по

ГОСТ 380-71 (сортовая, фасонная, листовая, широкополосная, трубы, поковки, ленты, проволока и т. д.) и применяется при изготовлении обечаек, днищ, фланцев, люков, лазов, патрубков и других деталей аппаратов, работающих в интервале температур от -20 до +425°С и давлении до

5 МПа.

В зависимости от назначения и гарантируемых характеристик сталь подразделяется на три группы:

А -поставляемую по механическим свойствам;

Б -поставляемую по химическому составу;

В -поставляемую по механическим свойствам и химическому составу.

Кроме того, по группе А введены три, по группе Б - две и по группе В - шесть категорий стали.

Стали изготовляют следующих марок:

группы А -СтО; Ст1, Ст2,..., Ст6;

группы Б -БСтО, БСт1,..., БСт6;

группы В -ВСт1, ВСт2,..., ВСт5.

Сталь всех групп с номерами марок 1, 2, 3, 4 по степени раскисления изготовляют кипящей (кп), полуспокойной (пс), спокойной (сп), а с номерами 5 и 6 - полуспокойной и спокойной.

В обозначениях марок сталей буквы «Ст» означают «сталь», цифры от 0 до 6 -условный номер марки в зависимости от химического состава и механических свойств; буквы Б и В перед обозначением марки означают группу стали (в обозначении марки стали группы А букву А не указывают). Для обозначения степени раскисления к обозначению марки стали после номера марки добавляют индексы: кп, сп, пс.

Для обозначения категории стали к обозначению марки, добавляют в конце номер соответствующей категории. Например, СтЗсп2, БСтЗкп2, ВСтЗпс2, ВСтЗспб. Первую категорию в обозначении марки не указывают (например, ВСт2сп).

Стали качественные углеродистые конструкционные ГОСТ 1050-74 и 5520-69 применяют для изготовления сварных эмалированных аппаратов, корпусов, днищ, трубных пучков теплообменников, змеевиков и других элементов аппаратов, работающих в интервале температур от -20 до +475°С при давлении до 10 МПа с неагрессивными и малоагрессивными средами.

По ГОСТ 1050-74 изготовляют стали: 05кп; 08кп; 08пс; 08; 10кп; 10пс; 10; 15кп; 15пс; 15; 20кп; 20пс; 20; 25; 30; 35; 40; 45; 50; 55; 58; 60; 65; 70; 75; 80; 85; 60Г; 65Г; 70Г.

Рекомендуется применять стали марок 10, 15, 20

(ГОСТ 1050-74) и 12К, 15К, 16К, 18К, 20К (ГОСТ 5520-69) для изготовления аппаратов и сосудов, работающих под давлением при температуре от -20 до +475° С.

Стали легированные конструкционные (ГОСТ 4543-71) содержат легирующих компонентов от 2,5 до 10% и применяются для изготовления обечаек, днищ, фланцев, трубных решеток, крепежных и других деталей аппаратов, работающих в интервале температур от -40 до +560°С при давлении до 10 МПа, а также для изготовления тяжело нагруженных деталей машин (шестерен, коленчатых валов, осей, штоков, роторов центрифуг, пружин и т. д.).

На заводах используют следующий сортамент:

сталь толстолистовая по ГОСТ 11269-65 (25ХГСА, ЗОХГСА, 30ХГСН2А) и тонколистовая по ГОСТ 1542-71;

поковки из сталей марок 20Х, 15ХМ, 30ХМА, 40Х;

трубы по ГОСТ 550--58 и МРТУ 14-4-21-67 из стали 15ХМ.

В зависимости от химического состава и свойств сталь делится по ГОСТ 4543-71 на три категории: качественная; высококачественная - А; особо высококачественная - Ш.

Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные (ГОСТ 5632-72) применяют для изготовления элементов машин и аппаратов, работающих в интервале температур от -253 до +600°С при повышенных давлениях и агрессивных средах. Сталь поставляется в виде листов (ГОСТ 7350-66).

Двухслойные стали (ГОСТ 10885-64) находят все большее применение, так как позволяют экономить дорогостоящие высоколегированные стали. Они представляют собой листы, состоящие из двух гомогенно соединенных слоев: основного из недифицитной стали и плакирующего (защитного) из высоколегированной стали. Толщину основного слоя определяют по расчетам на прочность, а толщину плакирующего слоя принимают обычно равной 2- 5 мм.

В настоящее время наиболее распространены двухслойные стали, с основным слоем из сталей 10, ВСтЗсп2 -ВСтЗспб, 15К, 20К, 16ГС, 09Г2С, 10ХСНД, а плакирующим - из сталей 08X13, 12Х18Н10Т, 08Х18Н10Т, 10Х14П4Н4Т, 10Х17Н13МЗТ, 08Х17Н13М2Т, 08Х17Н15МЗТ, 06ХН28МДТ.

В соответствии с ГОСТ 10885-64 двухслойные листы поставляют толщиной от 4 до 160 мм.

Конструкционные материалы, используемые в установке:

Рама и опоры фильтра изготавливаются из стали марки Ст3, так как они не вступают в контакт с агрессивной средой.

Ресивер фильтра изготавливается из полипропилена, так как фильтрат, с которым он контактирует, является агрессивной средой.

Листы фильтровальные изготавливаются из полипропилена, так как суспензия гидратированной двуокиси титана является агрессивной.

Трубы Ду 20, предназначенные для соединения фильтровальных листов с ресивером изготавливаются из полипропилена, так как они работают в агрессивной среде.

Все узлы присоединения к вакуумной системе изготавливаются из сплава 06ХН28МДТ.

Всасывающие трубы для отвода фильтрата изготавливаются из хромоникелевой стали марки X 8, так как среда агрессивная.

Корпус ванны изготавливается из углеродистой стали марки Ст. 3,так как он не контактирует с агрессивной средой, а само корыто изнутри гуммируется.

Все задвижки изготавливаются хромоникелевым литьём из стали марки Х12.

4. Конструкторский раздел

4.1. Определение основных параметров фильтра

Зная полную поверхность фильтрации F0=772,7 м2 выбираем по ГОСТ 5748-68 стандартную установку фильтрации на листовых вакуум - фильтрах с площадью фильтрации F=192м2.Фильтрование на них производится в две стадии. Поэтому для заданной производительности необходимо установить по 4 фильтра на каждую стадию.

Техническая характеристика фильтра:

поверхность фильтрации одного листа f=5,7м2

количество листов в пакете n=34шт

объём ресивера V=1.65м3

масса фильтра в сборе m=8160кг

габаритные размеры дЧшЧв-8200Ч1960Ч2800мм

4.2. Расчет переливного устройства ванны

Расход через переливное устройство ванны набора осадка

При вакууме 0,6кг/см2 ч 0,789кг/см2

сопротивление осадка Ь ср.=578,2•103м/кг;

сопротивление фильтрующей перегородки Rф.п. = 517,5•1091/м

масса твердой фазы, отлагающейся при получении единицы объема фильтра gт=214,6кг/м3

объем фильтрата, полученный с единицы поверхности в период опускания пакета в ванну:

V1=0,0057м32

Отношение объема отфильтрованного осадка к объему полученного фильтра:

U=

Где С=16,3 - содержание твердой фазы в суспензии, % к массе

Сж=1800кг/м3 - плотность жидкой фазы суспензии

U=

Толщина осадка, отложившегося на фильтре в период опускания, в среднем на высоте листа:

дос=U•V1=0,5•0,0057=0,0028м

При опускании пакета в ванну из нее через перелив будет вытесняться объем суспензии:

Vпер=;

где др=0,03м - толщина фильтровального листа

Vпер=;

Время опускания пакета:

ф=

где h=1,5м - высота фильтровального листа,

Uкрана=0,3м/мин - скорость опускания крана

Общий расход суспензии, уходящей в перелив из наборной ванны в период опускания

Qпер =,

где Qподачи=72м3/ч=0,02м3/с - производительность насоса

Расход через переливное устройство промывной ванны

Принимаем толщину набранного осадка дос=0,04м

Объем вытесненной из ванны суспензии

Vпер==

Общий расход суспензии, уходящей в перелив:

Qпер==

Ширина переливной кромки

Расчет ведем по формуле:

Q=mo•b•v2g•H3/2,

где Q=0,052н3/с - максимальный расход

Mо=0, 46 - коэффициент расхода

В - ширина водослива

H=0,07м-предельно допустимый напор, определяемый конструкцией и размерами фильтра:

b==

4.3. Диаметр сливных штуцеров из переливных карманов

Принимаем 2 штуцера D=150мм

Расчет ведем по формуле:

Q1= м • щ • v2gH

Где м=0,65-коэффициент расхода

щ=0,785•0,152=0,0176м2-площадь поперечного сечения штуцера

Q1= расход

H - напор над осью штуцера:

H=

4.4. Расчет трубопроводов отвода фильтра

Расход фильтрата при наборе осадка

Мгновенная начальная скорость фильтрования:

Uмгн= ,

Где ДР=0,7•98,1км/мс-перепад давлений

М=0,67•10км • с/м2-коэффициент вязкости:

Uмг=

По исходным данным:

скорость набора осадка 0,1ч0,14м32•ч,

скорость промывки 0,045ч0,050м32•ч,

скорость набора промежуточного фильтровального слоя 36м3/ч, или 0,188м32ч.

Таким образом, Uмгн является максимальной скоростью и последующие расчеты выполняем по ней.

Расход фильтрата через один лист:

q = f•Uмгн,

где f=5,7м2-поверхность фильтрации одного листа:

q=5,7•0,085•10-3=0,48•10-3м3

Расход фильтрата от пакета:

Qф=n•q,

Где n=34шт - количество листов фильтровальных:

Qф=34•0,48•10-3=16,5•10-3м3/с=60м3

Скорость фильтрата в каналах фильтровального листа

Количество каналов в листе - 4

Диаметр канала- d=12мм.:

U= =

Cскорость фильтрата в трубопроводе к вакуум-ресиверу

Диаметр трубопровода D=150мм

U===0.93м/с

4.5.Расчет ресивера

Площадь поперечного сечения очищающей зоны ресивера[(5) стр. ]:

Fоч= ,

где [U1]=1,0м/с - допускаемая скорость воздуха в очищающей зоне

Fоч=

Площадь поперечного сечения ресивера[(5) стр. 41]:

Fр=1, 25•Fоч,

Fр=1, 25•0, 64=0,8м

Диаметр ресивера:

d=,

d=

4.6. Расчёт фланцевого соединения

Расчет фланцевого соединения заключается в определении диаметра болтов их количество и размеров элементов фланцев.

Основной величиной при расчете болтов является расчетное растягивающее усилие в них.

Исходные данные:

Диаметр патрубка D = 150мм

1. При рабочих условиях расчетное растягивающее усилие в болтах определяют по формуле[(6) стр. 76]:

где =0,17м - средний диаметр уплотнения, =0,3МПа - расчетная сила осевого сжатия уплотнительных поверхностей в рабочих условиях, необходимая для обеспечения герметичности, МПа; =0,6МПа - рабочее давление.

Расчетную силу осевого сжатия уплотнительных поверхностей определяем по формуле[(6) стр. ]:

где = 1 см - эффективная ширина прокладки;

= 1 - коэффициент материала прокладки.

,

тогда

Диаметр болтовой окружности приближенно можно определить по формуле[(6) стр. 76]:

где - внутренний диаметр фланца.

Расчетный диаметр болтов определяем по формуле[(6) стр. ]:

.

Принимаем диаметр болтов = 0,018м.

Определим число болтов по формуле[(6) стр.77 ]:

где = 130 МПа - допускаемое напряжение на растяжение в болтах.

Принимаем z = 10 болтов.

Наружный диаметр фланца определим по формуле[(6) стр. 77]:

.

4.7. Механический расчёт

4.7.1. Расчёт толщины стенки ресивера

Исходные данные:

вакуум р = 0,6МПа,

материал обечайки - полипропилен,

проницаемость П ? 0,1мм/год,

запас на коррозию Ск = 0,5мм,

температура среды t = 70єC,

внутренний диаметр обечайки Dв = 1,0м,

сварной шов стыковой двусторонний(цш = 0,95)

Расчёт

Допускаемое напряжение для полипропилена при температуре t = 70єC определим по графику [(6) рис. IV.1. стр. 77]:

уд = 140МН/м2

Толщину стенки определим по формуле [(6) формула IV.5. стр.77]:

д = 1,18 D ,

где Е = 2•10-5 МН/м2 -модуль упругости при температуре t = 70єC,

l = 3м - длина обечайки, м,

D - диаметр, м.

д = 1,18•1•

принимаем толщину стенки д = 3мм

Формула справедлива при соблюдении двух условий

[(6) формула IV.6. стр. 78] и [(6) IV.7. стр. 78]:

,

где ут = 250МН/м2

Из этого следует, что оба условия соблюдены и толщина стенки ресивера удовлетворяет требованиям.

4.7.2. Расчёт опор ванны

пределим число и основные размеры лап по следующим данным:

максимальный вес G = 5.9МН (590тыс. кгс)

Принимаем число лап n=6,конструкцию лап - двухрёберную, вылет лапы l=0,2м, высота h=l/0,5=0,4м.

Толщину ребра при k=0,6 определяем по формуле [(6)формула IV.25. стр.80]:

д = ,

где ус.д.=120МН/м2 - допускаемое напряжение,

Ск = 5мм - запас на коррозию.

д = м

Принимаем толщину ребра д =0,045м=45мм.

Длина сварного шва:

Lш = 4•(h+д)=4•(0,4+0,045)=1,78м

Прочность шва определим по формуле[(6)формула IV.26. стр.80]:

G/h ? 0,7•Lш•hш•фш.с.,

где фш.с.= 80МН/м2 - допускаемое напряжение материала шва на срез,

hш = 0,008м - катет шва.

5,9/0,4 ? 0,7•1,78•0,4•80

14,75 ? 39,81

Следовательно, условие выполнено.

4.8. Расчёт привода мостового крана

Исходные данные:

грузоподъёмность Q=32т

максимальная высота подъёма Н=16м

скорость подъёма груза v=0,3м/с

скорость передвижения тележки-0,5м/с

скорость передвижения крана-1,0м/с

группа режима работы механизма-4М

4.8.1. Выбор крюковой подвески

Выбираем крюковую подвеску по ОСТ24.191.08-81,имеющую параметры:

грузоподъёмность Qп=32т,

режим работы - средний,

число блоков zбл.п=4,

диаметр блоков по дну канавок Dбл.0=610мм,

расстояние между осями крайних внутренних блоков Ввн=220мм,

расстояние между осями крайних наружных блоков Внар=432мм,

расстояние между осями крайнего наружного и соседнего

с ним внутреннего блоков bc=106мм,

масса подвески mп=687кг,

передаточное число (кратность) uп - 4

4.8.2. Выбор каната

Вес номинального груза и крюковой подвески равен:

G=(mгр+mп)•g=(32•103+687)•9.81=320660 H

По таблице [(6) табл.2.2, стр24] находим:

зп=0,94 - КПД полиспаста,

Zк.б = 2 - число ветвей каната, навиваемых на барабан.

Максимальное статическое усилие в канате определим по формуле

[(7) формула 2.1, стр24]:

Smax=

Выбираем тип каната ЛК-Р6 Ч 19 (1+6+6+6/6)+1 о.с. по ГОСТ 2688-80.

По таблице [(7) табл.2.3, стр24] находим:

kзап = 5,5

Вычисляем:

Smax• kзап=41752•5,5=229636 Н

Выбираем типоразмер каната. Канат 21,0-Г-В-С-О-Н-1666

ГОСТ 2688-80 имеет параметры:

разрывное усилие - Sразр =236000 Н,

диаметр - dк =21,0мм,

расчётная площадь сечения проволок - Fк =167,03мм2.

4.8.3. Основные размеры установки барабана

Примем диаметр барабана меньше, чем диаметр блока, на 15%.

Вычислим:

Dб= 0,85•dк•e,

Где e = 25 - коэффициент, зависящий от типа машины и режима работы [(7) табл.2.4, стр25].

Dб= 0,85•21,0•25=446,25мм

Примем Dб=450мм.

Определяем рабочую длину каната, соответствующую одному нарезному участку [(7) формула 2.11, стр29]:

Lк.р = Н• uп=16•4=64м

Определяем число рабочих витков [(6) формула 2.10, стр29]:

Zp= Lк.р/(р•Dб)=64/(3,14•0,45)=45

Определяем длину одного нарезного участка [(6) формула 2.9, стр29]:

Lн = t•(zp+zнепр+zкр),

где t-шаг нарезки

t= (1.1ч1.23) dк = (1.1ч1.23)•21=24

zнепр=1.5 - число неприкосновенных витков

zкр=4 - число витков для крепления конца каната

lн = 24•(45+1,5+4)=1212мм

Определим длину гладкого среднего участка [(7) формула 2.12, стр29]:

Внар ? l0 ? Внар+2hmin б•tg[г],

где hmin б=3Dб=1338,75мм - минимальное допускаемое расстояние между осью блоков крюковой подвески и осью барабана.

432 ? l0 ? 432+2•1338,75•(tg 6) или 432 ? l0 ? 713.

Примем l0 = 500мм.

Длина гладкого концевого участка равна: lк = (4ч5) dк=84ч105мм.

Примем lk=90

Длина барабана равна [(7) формула 2.8, стр29]:

Lб=2lн+ l0+ 2lк=2•1212+500+2•105=3134мм

4.8.4. Выбор двигателя

Предварительное значение к.п.д. механизма примем равным зпр = 0,85.

Максимальная статическая мощность, которую должен иметь механизм в период установившегося движения при подъёме груза, равна

[(7) формула 2.13, стр30]:

Nст max = G•v/ зпр= 320.7•0.3/ 0.85=113.19кВт

Выбираем серию МТН, отличающуюся высоким классом нагревостойкости изоляции. Учитывая коэффициент использования мощности k = 0,7ч0,8, найдём необходимую мощность двигателя:

Nдв = k• Nст max=0,7•113,19=79,2кВт

Выбираем двигатель типа МТН 612-10 ГОСТ 185-70, имеющий параметры:

мощность Nдв= 80кВт,

относительная продолжительность включения ПВдв=25%,

число оборотов nдв=560об/мин,

момент инерции ротора jр.дв=5,25кг•м2,

диаметр вала dв.дв=90мм,

масса mдв=1070кг.

4.8.5. Выбор передачи

Определим частоту вращения барабана:

Nб=

Требуемое передаточное число лебёдки:

uл. тр=nдв/nб=560/45.86=12.21

Примем передаточное число открытой зубчатой передачи равным uот=4. Требуемое передаточное число редуктора будет равно:

uр. тр= uл. тр/ uот=12,21/4=3,05

Определим расчётный эквивалентный момент на тихоходном валу редуктора. Принимаем класс нагружения механизма В2. Ему при заданной группе режима работы 4М соответствует класс использования А4

[(7) табл.1.2, стр13].

По таблице [(7) табл.1.4, стр13] находим значение коэффициента нагружения k=0.25.

Значение коэффициента kQ по формуле:

По таблице [(7) табл.1.3, стр13] находим машинное время работы механизма tмаш=12500ч.

Частота вращения тихоходного вала редуктора должна быть равна:

nт= nб• uот=45.86•4=183.44об/мин

4.9. Расчёт и подбор вспомогательного оборудования

4.9.1. Производительность вакуум-насоса

Объем воздуха во внутренней полости листа фильтровального:

Vвн=0,02м3

Объем ресивера: Vрес=1,65м3

Объем воздуха во внутренней полости фильтровального пакета:

V=Vвн•n+Vрес.,

где п=34- число фильтровальных листов:

V=0.02•34+1.65=2.33м3

Объем воздуха, находящийся во внутренней полости пакета, приведенный к условиям всасывания:

Vв= ,

где Pа=1кг с/см2- барометрическое давление

Pв=0,7кг с/см2- разрежение на вакуум-насосе

Vв=

При времени создания вакуума в полости пакета ф=12с потребная производительность вакуум-насоса:

Qн=

4.9.2. Расчет центробежного насоса

Подбираем насос для перекачивания суспензии из закрытой емкости в аппарат, работающий под избыточным давлением 0.1 МПа. Расход суспензии . Геометрическая высота подъема 12 м. Длина трубопровода на линии всасывания 7 м, на линии нагнетания 25 м. На линии нагнетания имеются 6 отводов под углом с радиусом поворота равным 6 диаметрам трубы, и 2 нормальных вентиля. На всасывающем участке трубопровода установлен 1 прямоточный вентиль, имеются 3 отвода под углом с радиусом поворота равным 6 диаметрам трубы.

1. Выбор трубопровода.

Для всасывающего и нагнетательного трубопровода примем одинаковую скорость течения воды, равную 1,2 м/с. Тогда диаметр найдем по формуле [(6) стр.13]:

где Q - объемный расход;

W - скорость суспензии в трубе.

Из стандартного ряда диаметров трубопроводов принимаем d=76 мм.

Примем, что трубопровод стальной, коррозия незначительна.

2. Определение потерь на трение и местное сопротивление. Находим критерий Рейнольдса [(6) стр. 13]:

Re > 10000 т.е. режим турбулентный. Абсолютную шероховатость трубопровода примем = м. Тогда:

Далее получим:

Re > 560 1/е

Таким образом в трубопроводе имеет место смешанное трение, и расчет л следует проводить по формуле:

Определим сумму коэффициентов местных сопротивлений отдельно для всасывающей и нагнетательной линии.

Для всасывающей линии:

1. вход в трубу ( принимаем с острыми краями ): е = 0,5

2. прямоточный вентиль: для d = 0.076 мм е = 0,6. Умножая на поправочный коэффициент k = 0,925, получаем е= 0,56

3. плавный отвод круглого сечения: е = А*В. Коэффициент А зависит от угла , на который изменяется направление потока в отводе. При угле А=1. Коэффициент В зависит от отношения радиуса поворота трубы к внутреннему диаметру. При радиусе поворота равным 6 диаметрам трубы В = 0,09.

е= 1*0,09=0,09

Сумма коэффициентов местных сопротивлений во всасывающей линии:

Потерянный напор во всасывающей линии находим по формуле [(6) стр.13]:

Для нагнетательной линии:

1. отводы под углом : е= 0,09

2. нормальный вентиль: для d=0.076 м е=3,98

3. выход из трубы: е=1

Сумма коэффициентов местных сопротивлений в нагнетательной линии:

Потерянный напор в нагнетательной линии [(6) стр.13]:

Общие потери напора [(6) стр.14]:

3. Выбор насоса.

Находим напор насоса по формуле:

где - давление в аппарате, из которого перекачивается суспензия; - давление в аппарате, в который подается суспензия; - геометрическая высота подъема суспензии.

Подобный напор при заданной производительности обеспечивается насосами[(6) табл.1.2, стр14] Учитывая, что центробежные насосы широко распространены в промышленности ввиду достаточно высокого к.п.д., компактности и удобства комбинирования с электродвигателями, выбираем для последующего рассмотрения именно эти насосы.

Полезную мощность насоса определим по формуле:

Принимаем и ( для центробежного насоса ) мощность на валу двигателя найдем по формуле:

По табл. [(6) табл.1.2, стр14] устанавливаем, что заданным подаче и напору больше всего соответствует центробежный насос ТХ20/18, для которого в оптимальных условиях работы , , . Насос обеспечен электродвигателем АО2-31-2, номинальной мощностью , , частота вращения вала .

4.10. Изготовление отдельных деталей оборудования

Технологический процесс изготовления блока крана.

Блок натяжения каната изготовляется литьем, из чугуна СЧ-15.

Характеристики и назначение сплава: жидкотекучесть, стойкость против усадочных трещин и герметичность хорошие: жаропрочность удовлетворительная, коррозионная стойкость средняя, коэффициент усадки небольшой, применяется для лития шкивов, поршней, блоков.

Блок при работе со скоростью свыше 5 м/с должен быть сбалансирован.

Около 80% отливок получают литьем в металлические формы. Очищают отливку на гидропескоструйных установках. В зависимости от состава сплава отливки проходят термическую обработку по определенным режимам.

После отливки и извлечения заготовки из формы ее очищают от наплывов.

Заготовку затем зажимают в трех кулачковый патрон токарного станка и сверлят отверстие для посадки на вал. После этого отверстие развертывают под более точный размер разверткой.

Отверстие является базой заготовки.

Изготавливается специальная оправка для посадки заготовки и обработки заготовки на токарном станке. После закрепления оправки с заготовкой на токарном станке производится резка канавки под стальной канат. Обрабатываются торцевые поверхности, подрезаются торцы ступицы шкива.

После всех вышеизложенных операций блок можно устанавливать на вал.

4.11. Ремонт оборудования

В соответствии с особенностями повреждений и износа основных частей оборудования, а также трудоёмкостью ремонтных работ на предприятиях химического комплекса, как правило, осуществляется проведение следующих видов ремонта:

- текущий (Т)

- капитальный (К).

Текущий ремонт (Т) - ремонт, выполняемый с целью обеспечения или восстановления работоспособности оборудования и состоящий в замене и восстановлении его отдельных составных частей.

Ремонты могут быть подразделены на: первый текущий (Т1), второй (Т2), третий (Т3). Перечень работ подлежащих выполнению при текущем ремонте, должен быть определен в ремонтной документации технологического цеха.

Капитальный ремонт (К) - ремонт, выполняемый для обеспечения или восстановления исправности, а так же полного или близкого к полному восстановления ресурса оборудования, при этом осуществляется замена или восстановление любых его частей, включая базовые. Послеремонтный ресурс должен составить не менее 80% ресурса нового оборудования. Близкий ресурс к указываемому уровню, капитальный ремонт оборудования экономически оправдываем.

В содержание ремонтных работ при текущем ремонте входит: частичная разборка агрегата или машины (за исключением базовых деталей), замена поврежденных или предельно изношенных узлов оборудования.

При капитальном ремонте: полная разборка оборудования, всех его агрегатов и узлов на детали, восстановление или замена деталей, требующих ремонта, включая базовые.

Основанием для остановки и передачи оборудования в ремонт служит месячный график планово периодического ремонта.

В объём работ, при выполнении текущего ремонта фильтровальной установки входит: вскрытие, осмотр корпуса ресивера, осмотр и проверка плотности трубок, протирка и мелкий ремонт арматуры, подтяжка болтов крепления корпуса к опорной конструкции, очистка поверхностей от осаждений, смена и подвальцовка отдельных трубок, подтяжка болтов фильтровальных листов, фильтровальной ткани.

В объём работ, при выполнении капитального ремонта фильтровальной установки входит: полная промывка прочистка и опресовка корпуса ресивера, очистка, промывка, очистка и промывка трубопроводов, переборка всей арматуры, смена арматуры. Ввиду того, что среда коррозионная происходит быстрый коррозионный износ болтов крепления хомутов ресивера, самих хомутов, болтов крепления лажементов. Поэтому часто необходимо заменять эти детали. Их замена производится 1 раз в 3 месяца.

5. Проектный раздел

5.1. Строительная часть

5.1.1. Место строительства

Промплошадка ЗАО «Крымский титан» расположена и северной части степного Крыма в районе Перекопского перешейка на границе АР Крым с Херсонской областью. Административно промплошадка расположена на землях территории Красноперекопского района севернее от города Армянск.

Промплощадка ограничена забором, имеет форму неправильного пря-моугольника вытянутого с Запала на восток площадью 200 га.

С запада площадка ограничивается магистральной автодорогой Симфе-рополь - Каховка, с востока рукавом залива Западный Сиваш, с юго--западной стороны расположен кислотонакопитель--испаритель, с северной стороны рас-положен сбросной канал водохранилища предприятия, с юга ОАО «САКЗ». Предприятие находится стадии завершенного строительства.

Ближайшими населенными пунктами, расположенными вокруг предприятия, являются по АР Крым: село Перекоп - 4,5 км, г.Армянск - 10 км и по Херсонской области: село Первоконстантиновка - 3,5 км и село Червоный Чабан - 5,0 км.

Климат района умеренно - континентальный.

Преобладающее направление ветров восточное (зимний период) и севе-ро-западное (летний период).

Рельеф промплошадки предприятия спокойный, представляет собой низменную равнину, имеющую слабовыражснный уклон поверхности на юго-запад, в сторону Каркинтского залива Черного моря.

5.1.2. Конструктивная часть здания

Наружные проёмы выполняются из легкобетоных панелей, колоны из железо-бетона. Световые проёмы - металлические перекрытия с остеклением. Крыша состоит из слоёв: один слой бронированного рубероида с крупнозернистой посыпкой марки РБ 420 по двум слоям обычного на битумной мастике марки МБК-Г-85, цементная стяжка, сборные железные панели.

Дутьевые подпольные каналы перекрывают сборными железобетонными плитами, а каналы для труб - съёмными бетонными плитами или рифлёной листовой сталью. Внутренние поверхности дутьевых кирпичных каналов штукатурят цементным раствором.

Фундаменты для насосов, вентиляторов и двигателей выполняют со звукопоглощающим основанием. Площадки обслуживания и ступени металлических лестниц изготавливают из рифленой или полосовой стали (на ребро). Высота от пола площадок до центра полоуказательных приборов паровых котлов должна быть не менее 1000 и не более 2000 мм.

Для крупноблочного монтажа оборудования, в стенах и перекрытиях зданий должны предусматриваться монтажные проёмы, для которых, как правило, используются торцевые стены здания со стороны расширения цеха пигментной двуокиси титана.

5.2. Механизация

Расчет электротали.

Таль электрическая.

Таль электрическая передвижная представляет собой подъёмно-транспортный механизм, предназначенный для вертикального подъёма, опускания, а также горизонтального перемещения подвешенного на крюк груза.

Горизонтальное перемещение груза производится вдоль подвесного однорельсового пути, по которому движется таль.

Таль предназначена для работы в закрытом помещении. Допускается работа на открытом воздухе при условии защиты тали от непосредственного воздействия на неё атмосферных осадков.

Исходные данные:

Грузоподъёмность Q = 10т, передвижение W = 20м/мин, высота подъёма h = 16м, скорость подъёма V = 8м/мин, режим работы средний, ПВ 25%, управление кнопочное с пола, ток переменный, U = 380 В, полиспаст двукратный.

Рис. 5.1. Кинематическая схема механизма подъёма.

1 - колодочный тормоз, 2 - грузоупорный тормоз, 3 - зубчатая муфта, 4 - электродвигатель, 5 - кольцевой токосъёмник.

Принят электродвигатель типа АОЭ42-2, N = 11 кВт, n = 1420 об/мин, .

Максимальное напряжение ветви каната, набегающей на барабан:

Н

= 2 - число полиспастов.

Принят канат 17-180-1 ГОСТ 3071-55 имеющий разрывное усилие Рк = 12900 Н.

Фактический запас прочности каната:

Диаметр барабана:

мм.

где:

е - коэффициент работы, табл. 12 [7, с. 403].

Выбираем барабан типа БК 335. Его параметры внесем в таблицу 5.1.

Таблица 5.1.

Тип

барабана

H

R

B

b

L

L1

l

l1

l2

l3

m

БК 335

1420

340

80

190

220

330

260

1452

65

8

60

100

11

293

Фактическое значение коэффициента е:

Число оборотов барабана:

об/мин.

Передаточное число редуктора:

Передаточное число первой ступени:

Передаточное число второй ступени:

Фактическое общее передаточное число:

Фактическая скорость подъёма:

м/мин.

Такое отклонение является допустимым.

Номинальные крутящие моменты на валу барабана:

Н см.

На промежуточном валу:

Н см.

На быстроходном валу:

Н см.

Максимальные крутящие моменты создаваемые максимальным моментом двигателя.

На быстроходном валу:

Н см.

На промежуточном валу:

Н см.

На барабане:

Н см.

Общее машинное время работы электротали за срок t = 5 лет:

Т = t*365*К2*24*Кс*ПВ/100=5*365*0,5*24*0,67*25/100=3700ч.

где:

К2 = 0,5 - коэффициент использования в течении года;

Кс = 0,67 - коэффициент использования в течении суток.

5.2.1. Расчет вала редуктора.

Момент на валу номинальный Н см, момент на валу максимальный Н см.

Усилие в зацеплении:

на колесе

Н.

на шестерне

Н.

Реакции в опорах вала:

Н.

Н.

Изгибающие моменты в опасных сечениях а - а и b - b.

Н см.

Н см.

Для вала принята сталь 12ХН3А со следующими характеристиками: твердость сердцевины по Бринеллю 255; = 3400 кг/смІ, = 1870 кг/смІ.

5.2.2. Расчет электромагнитного колодочного тормоза.

Н см.

Рис. 5.2. Схема электромагнитного колодочного тормоза

Расчетный тормозной момент

Н см.

f = 0,4 - коэффициент трения стали по вальцованной ленте.

Нормальное усилие на колодках

Н.

Усилие замыкания

Н.

Усилие размыкания

Н.

Вес рычага соединяющего ротор электромагнита с размыкающим кулачком, Рр = 0,2 кг. Требуемое усилие электромагнита

кг.

Требуемый ход электромагнита при отходе колодок = 0,1 мм и допускаемом износе обкладок между регулировками = 0,5 мм

мм.

Принят электромагнит, который имеет Рм = 1,5 Н, h = 20 мм. Наибольшее давление на обкладках

МПа.

где:

l = 55 мм - длина обкладки;

В = 26 мм - ширина обкладки.

5.2.3. Расчет грузоопорного тормоза.

Исходные данные:

= 982 Н см - крутящий момент на валу, где установлен тормоз.

f = 0,12 - коэффициент трение вальцевой ленты по стали в масле.

f0 = 0,1 - коэффициент трения стали по стали в масле

= 5є40ґ - угол трения.

Резьба винта тормоза прямоугольная двухзаходная:

= 40 мм - наружный диаметр резьбы;

= 30 мм - внутренний диаметр резьбы;

t = 24 мм - шаг резьы.

Рис. 5.3. Схема грузоупорного тормоза.

Угол наклона нитки резьбы

12є50ґ

Усилие работоспособности тормоза

Средний радиус дисков трения

мм.

Осевое усилие в тормозе

кг.

Линейная скорость на диске тормоза, отнесенная к среднему диаметру дисков трения

м/с.

Давление на диске:

МПа.

где = 1 МПа при работе в масле.

5.2.4. Расчет приводной тележки.

Исходные данные:

Q = 10000 кг - вес груза;

G1 = 40 кг - вес приводной тележки;

G2 = 115 кг - вес подъёмного механизма;

G3 = 10 кг - вес холостой тележки;

G4 = 35 кг - вес остальных элементов тали, приведенных к оси приводной тележки.

Рис. 5.4. Кинематическая схема приводной тележки.

Суммарное усилие воспринимаемое катками

Q0 = Q + G1 + G2 + G3 + G4 = 10000+190 = 10190 Н.

Определяем давление на катки:

Электроталь с грузом, Н

Н.

2. Электроталь без груза

Н.

кг.

Сопротивление передвижению тали принято равным 0,03 от суммарного веса электротали. При движении тали с грузом Q = 10 т.

кг.

Потребная мощность электродвигателя:

КВт.

Где:

VТ - скорость передвижения;

= 0,9 - КПД механизма передвижения.

Принят электродвигатель: N = 1.5 КВт, n = 1400 об/мин, .

Число оборотов ходовых колес, при диаметре колеса DК.Х, = 170 мм.

об/мин.

Передаточное число редуктора:

Произведем проверку запаса сцепления ходовых колес с двутавровым рельсом в процессе пуска при работе без груза.

Время разгона

Номинальный момент двигателя:

Н м.

Пусковой момент двигателя:

Н м.

Маховой момент двигателя:

Н м.

Усилие сопротивления при работе без груза

кг.

Момент сопротивления при работе без груза:

кг.

сек.

Среднее ускорение при пуске:

м/сІ

Фактический запас сцепления

где:

- общий вес тали, Н;

- суммарное давление ведущих ходовых, Н;

- полное сопротивление передвижного крана без груза;

- общее число колес;

- число холостых колес;

- коэффициент ходового колеса, [6,с.75];

- коэффициент трения в подшипниках ходовых колес, табл. 17 [6, с. 74].

ПРИМЕЧАНИЕ: Размеры указанные на рисунках, приведенных в расчете электротали, не соответствуют размерам приведенного расчета, т. к. рисунки изображены схематически.

5..3. Расстановка оборудования

Расстановкой промышленного оборудования, называют взаимное расположение основного и вспомогательного оборудования в помещении цеха «Аммофос».

Расстановка оборудования должна обеспечивать удобство работы и безопасность эксплуатационного и ремонтного персонала, минимальную протяженность трубопроводов, газоходов и воздуховодов, минимальные затраты на сооружение цеха, механизацию ремонтных работ, возможность расширения котельной при установке нового оборудования.

В соответствии со СНИП I I-35-76 размеры пролетов зданий и сооружений следует принимать кратными 6 м. При специальном обосновании допускаются пролеты с размерами, кратными 3 м. Шаг колон принимаем равным 12 м.

Принимаем расстояния установки в помещении :

проход перед фронтом гранулятора принимаем равным 3000-4000 мм;

боковой проход между крупногабаритным оборудованием и стеной здания принимаем равным 2000 мм;

проход при обслуживании гранулятора сбоку 2000мм;

проход между отдельными выступающими частями гранулятора и конструкциями здания 800 мм;

Для наибольшего удобства и безопасности обслуживания ширину всех проходов между оборудованием принимаем не менее 700 мм.

2 Расчет системы вентиляции

Исходя из опыта эксплуатации котельных принимаем расход воздуха V = 700 мі; диаметры участков: d1 = 300 мм, d2 = 250 мм, d3 = 195 мм; длины участков: L1 = 3550 мм, L2 = 10250 мм, L3 = 3200 мм.

Стандартные параметры воздуха: t = 20єС, Рб = 760 мм рт. ст., 50%, = 1,2 кг/ мі, = 0,000015 мІ/с.

Сопротивление канала крупного сечения определяется:

; (5,1) [9 стр. 187]

где: - коэффициент сопротивления трения.

- длина трубопровода,

- диаметр трубопровода,

- скорость потока воздуха,

- плотность воздуха,

- коэффициент местного сопротивления.

Найдем скорости участков по формуле:

; (5,2) [9 стр.186]

где: F - площадь поперечного сечения, мІ:

для первого участка

мІ.

Для второго

мІ.

Для третьего

мІ.

Тогда скорости будут равны:

Для нахождения коэффициента сопротивления на трение используем метод Блазиуса:

(5,3) [9 стр.187]

Находим критерий Рейнольдса:

; (5,4) [9 стр.188]

Критерий Рейнольдса для каждого участка равен:

Тогда равна:

Коэффициент местного сопротивления находим по табл. 7 [9 с. 324];

Исходя из ранее рассчитанных данных, получим

Потеря давления на трение во всем канале составит:

кг/мІ.

Давление на выходе:

кг/мІ.

Определяем мощность на валу электродвигателя:

КВт.

где:

= 0,72 - КПД вентилятора;

= 1 - КПД передачи. Равно 1, т.к. посадка осуществляется на вал вентилятора.

Установочная мощность двигателя:

КВт.

где:

= 1,5 - коэффициент запаса мощности, табл. 3 [9 стр.172].

Принимаем по диаграмме [9 стр.170] характеристик центробежных вентиляторов, вентилятор центробежный марки Ц4-70 № 2,5, подбираем к нему электродвигатель N = 0,4 КВт, n = 2800 об/мин.

6. Экономическая часть

6.1. Организация производства

Установка для фильтрации на листовых вакуум-фильтрах производительностью 1,7т/ч для фильтрации двуокиси титана (ТiO2) .

Установка непрерывного действия. Для обеспечения непрерывного процесса установка должна обслуживаться 24 часа в сутки, поэтому обслуживающий персонал должен работать посменно:

24/8=3-рабочие смены в сутки.

24·365=8760-колличество рабочих часов в год.

Из этой суммы вычитаем 300 часов в год на ремонт оборудования:

8760-300=8460 часов.

Учитывая существенную структуру управления, принимаю:

Мастер цеха

Аппаратчик(2 чел.) электрик(1 чел.)

Слесарь ремонтник(2 чел.)

Распределены рабочие часы между рабочими единицами.

Аппаратчик круглосуточно осуществляет контроль над установкой, за показанием контрольно - измерительной аппаратуры, за параметрами исходной смеси, за процессом фильтрации суспензии.

В случае неисправности установки, аппаратчик, учитывает их характер, вызывает сменного слесаря или электрика.

Слесарь-ремонтник устраняет неполадки, вызываемые в работе установки.

Электрик следит за освещением цеха и всей технологической установки.

Мастер составляет график планово- предупредительного ремонта, исходя из требований к данному виду оборудования. Технический осмотр(ТО)- самый частый вид обслуживания, проводится каждую смену, слесарем или электриком. Текущий ремонт (ТР)- производит слесарь, через месяц, по необходимости. Данные записываются в сменный журнал и ремонтный. Капитальный ремонт (КП)- проводят один раз в год.

Общее количество часов приходящее на ремонт оборудования- 300час/год.

ТО-25час/год; ТР-75час/год; КР-200час/год.

Распределение рабочих часов за сутки

Мастер-3час/сут.

Слесарь-ремонтник-5час/сут.

Электрик-2час/сут.

Аппаратчик- 14час/сут.

Распределение рабочих часов на год

Мастер- 3·365=1095час/год.

Слесарь-ремонтник-5·365=1825час/год.

Электрик-2·365=730час/год.

Аппаратчик- 14·365=5110час/год.

6.2. Экономический расчет

6.2.1. Сырье и материалы, используемые в установке

Установка для фильтрации на листовых вакуум-фильтрах состоит из:

1) Рама; 2) Опора (2шт); 3) Ресивер; 4) Листы фильтровальные (34шт); 5) Кран Ду 50; 6) Клапан Ду 150; 7) Трубы присоединения фильтровальных листов к ресиверу Ду 20 (68шт); 8) Ванна гуммированная (5шт).

Раму изготавливают из стали марки Ст3. Для изготовления необходимо 21м уголка 70х70мм и 8м уголка 50х50. Стоимость 1м уголка 70х70-27грн., значит необходимо 21·27 = 567грн. Стоимость 1м уголка 50х50-19грн., значит необходимо 8·19 = 152грн.

Итого на материал рамы затрачено:

567+152=719грн.

Опора изготавливается из стали марки Ст3. Для изготовления необходимо 4м швеллера 75х75.Стоимость 1м швеллера 75х75 - 54грн, следовательно, необходимо 4 · 54 = 216грн.

Учитывая, что опор 2шт, получим:

216 · 2 = 432грн.

Фильтровальный лист изготавливается из пилипропилена. Необходимо 5,7 м2 листового полипропилена толщиной 30мм. Стоимость 1 м.2 листа 430грн. значит необходимо 430·5,7= 2451грн. Учитывая, что количество листов 34 получим:

2451·34= 83334грн.

Кран устанавливаем на фильтр покупной. Стоимость крана Ду 50 - 37грн.

Клапан устанавливаем на фильтр покупной. Стоимость крана Ду 150 - 86грн.

Трубки присоединения фильтровальных листов к ресиверу изготавливаем из полипропилена. Для изготовления одной трубки необходимо 1,2м/п трубы диаметром 20мм. Стоимость 1м/п трубы - 17грн, значит необходимо 17•1,2 = 20,4грн.

Учитывая, что трубок 68шт., получим:

20,4•68 = 1378грн.

Ресивер изготавливается из полипропилена. Необходимо 3м/п трубы диаметром 1м. Стоимость 1м/п трубы диаметром 1м - 78грн, значит необходимо 78•3 = 234грн.

Ванна изготавливается из стали марки СтЗ и внутри гуммируется. Необходимо 80м2 листового металла толщиной 15мм и 80м2 гуммировки толщиной 10мм. Стоимость 1м2 листового металла 280грн., а 1м2 гуммировки- 250грн., значит необходимо:

80•280 + 80•250=42400грн.

Для крепления всех частей и деталей установки необходимо 5кг болтов М12х35; 18кг болтов М16х45. Следовательно, гаек и шайб, соответствующих диаметром-52кг. 1кг. Болтов М12х35=14кг.;1кг - М16х45=28грн., 1кг. Гаек и шайб, соответствующих диаметров от15-30грн.

Значит 5кг-М12х35=5•14=70грн.

18кг-М16х45=18•28=508грн.

Гаек и шайб, по 15грн. За гр. 15•52=780грн.

Итого: 70+508+780=1358грн.

Суммарные затраты на материалы состовляют:

719+432+234+83334+86+37+1387+212000+1358=299587грн.

6.2.2. Топливо и энергетика используется для изготовления сушилки

Электроэнергия:

- сварочные работы (сварка рамы, опор, ванн.)- 2500кВт.

- сверлильные работы- 300кВт

- монтажные работы (электроталь)- 150кВт.

- освещение цеха -130кВт.

- прокатные работы (прокатный стан) 320кВт.

Суммарный расход электроэнергии составит:

2500+300+150+130+320=3400кВт.

Зная, что 1 кВт промышленного электричества стоит 30 коп, то стоимость электроэнергии будет равна: 3400·0,3=1020грн.

6.2.3. Основная заработная плата рабочего персонала.

Изготовление фильтровальной установки занимает 830 рабочих часов.

а) Сварочные работы выполняются в течении 480 рабочих часов, двумя сварщиками 4 и 5 разрядов. Сварщик 4 разряда имеет тарифную ставку 4,2грн. в час, следовательно, ему заплатят 480•4,2=2016грн.

Сварщик 5 разряда имеет тарифную ставку 4,8грн/час, следовательно, ему заплатят 480·4,8=2304грн.

б) Слесарные работы занимают 230 рабочих часов, выполняются 3-мя слесарями: 3,4,5- разрядов. Тарифная ставка слесаря 3 разряда 3,0грн. в час, следовательно, ему нужно заплатить 3,0·230=690грн. Тарифная ставка слесаря 4 разряда 3,5грн. в час, ему заплатят 3,5·230=805грн.

Слесарь 5 разряд, тарифная ставка 3,8грн. в час, ему заплатят 3,8·230=874грн.

в) Станочнику сверлильного станка для изготовления отверстий в корыте, раме, фильтре, листах и др. 170 рабочих часов. Тарифная ставка станочника 4,5грн. в час. значит его заработок составит :4,5·170=765грн.

г) Станочнику прокатного стана для изготовления частей ванн, фильтра и др. необходимо 150 рабочих часов. Его тарифная ставка 4,5грн в час. Его зарплата будет:4,5·150=675грн.

д) Монтажные работы электроталью (ее управление) может выполнять слесарь-монтажник 4 разряда, у которого тарифная ставка составляет 3грн./час. Время, затраченное на управление электроталью, на монтаж оборудования примем 50 ч. Следовательно, он получит: 3·50=150грн.

е) За правильностью и последовательностью следит мастер. Также он выписывает наряд-допуск на работы, следит за выполнением норм пожарной безопасностью, выполнением норм охраны труда. Его работа занимает 130час. Тарифная ставка 5,5грн в час, следовательно он заработает : 5,5·130=715грн.

Суммарные затраты на оплату рабочих составит:

2016+2304+650+805+874+765+675+150+715=8994грн.

6.2.5. Дополнительная заработная плата.

В случае выполнения всех норм указанных выше (временные рамки, норма расхода электроэнергии и металла) предусматривают начисление премии в размере 30%, тогда:

Сварщик 4 разряда - 2016+30%=2620,80грн.

Сварщик 5 разряда- 2304+30%=2995,2грн.

Слесарь 3 разряда- 650·+30%=897грн.

Слесарь 4 разряда- 805+30%=1046,5грн.

Слесарь 5 разряда- 874·30%=1136,2грн.

Станочник сверлильного станка - 765 ·30%=994,5грн.

Станочник прокатного стана - 675·30%=877,5грн.

Слесарь монтажник, управляющий талью- 150·30%=195грн.

Мастер -715·30%=929,5грн.

Общая сумма на дополнительную заработную плату составит: 2620

2620,8+2995,2+897+8046,5+1136,2+994,5+877,5+195+929,5=11692,2грн.

6.2.7Отчисления на социальное страхование.

Отчисление на социальное страхование производят из фонда заработной платы в размере 37%. Значит, оно составит: 11692,2-63%=4326грн.

6. Расходы на подготовку производства. Эти расходы включают в себя подготовку цеха, рабочего места каждого работника к определенному виду работы. Эта статья также учитывает время на переодевания рабочих, уборку рабочего места, подготовку инструмента к работе. Эти затраты в среднем составят 900грн.

6.2.8. Амортизационные отчисления.

В процессе изготовления барабанной сушилки используют оборудование:

- сверлильный станок, стоимостью 8 тыс. грн.

- прокатный стан, стоимостью 6 тыс. грн.

- электроталь, стоимостью 5 тыс. грн.

Так как амортизационное отчисление составляет 10% от стоимости станков в год, то они составят:

- для сверлильного станка за 170 рабочих часов - 680грн.

-для прокатного стана за 150 рабочих часов-450грн.

-для электротали за 50 рабочих часов - 125грн.

Расчеты составлены с учетом 2000 рабочих часов в год.

Суммарное амортизационное отчисление составит:

680+450+125=1255грн.

Накладные цеховые расходы включают в себя: содержание складских помещений, выплата заработной платы кладовщику, содержание инструментальных помещений, стирку рабочей одежды, уборку основных и вспомогательных помещений. На все эти расходы принимаем 450грн.

6.2.9. Цеховая себестоимость.

Цеховая себестоимость включает в себя сумму всех статей расходов:

1. Материал, используемый для изготовления фильтровые установки 299587.

2. Электроэнергия, используемая в изготовлении - 1020грн.

3. Заработная плата рабочих - 11652,2грн.

4. Отчисления на социальное страхование - 4326грн.

5. Расходы на подготовку производства - 300грн.

6. Амортизационные отчисления - 1255грн.

7. Накладные цеховые расходы - 450грн.

Итого: 299587+1020+11692,2+4326+900+1255+450=319230,2

6.2.10. Заводские расходы.

Заводские расходы включают в себя: расходы на содержание складских помещений, служащих отдела сбыта, бухгалтерия, автомобильного транспорта, подача в цех электроэнергии, воды, отвод канализационных стоков, услуги электросвязи. Они составили 850 грн.

6.2.11. Внепроизводственные расходы.

К ним относят: заработную плату зеленстрою, расходы на подачу воды для полива газонов, содержание фонтанов. Они составят - 400грн.

6.2.12. Полная себестоимость.

Учитывая все выше перечисленные статьи расходов можно составить полную себестоимость: 319230,2+850+400=320480,2грн.

Отпускная цена формируется с учетом 20% накрутки на полную себестоимость и составляет 384576,24грн.

Итог

Статьи затрат

Сумма (грн.)

1

Материал, используемый для изготовления фильтровальной установки

299587

2

Электроэнергия используемая в изготовлении

1020

3

Заработная плата рабочих

11692,2

4

Отчисления на социальное страхование

900

5

Расходы на подготовку производства

500

6

Амортизационные отчисления

1255

7

Накладные цеховые расходы

450

8

Заводские расходы

850

9

Внепроизводственные расходы

400

10

Полная себестоимость

320480,2

11

Отпускная цена

384576,42

Всего

384576,42

7. ОХРАНА ТРУДА

Основная задача охраны труда на предприятии установление профилактической работы по созданию в каждом структурном подразделении и на каждом рабочем месте условий труда, соответствующих требованиям нормативных документов, создание предпосылок для неуклонного снижения показателей производственного травматизма, профессиональных заболеваний, безаварийной работы.

Эксплуатация технологического оборудования ведется согласно инструкциям, утвержденным руководством завода и вывешенным на рабочих местах. В инструкциях указаны права, обязанности и ответственность обслуживающего персонала, порядок обслуживания оборудования при нормальном режиме и аварийных ситуациях, порядок осмотра и ремонта оборудования, мероприятия по технической и противопожарной безопасности

7.1 ХАРАКТЕРИСТИКА ПРОЕКТИРУЕМОГО ОБЪЕКТА

7.1.1 Краткая характеристика применяемых полуфабрикатов, готовой продукции и отходов

Отделение «белой» фильтрации является невзрыво и непожароопасным. Все работники этого участка должны быть обеспечены по установленным нормам спецодеждой, индивидуальными средствами защиты; рукавицами, респираторами, противогазами,

Полиакриламид - пожаровзрывобезопасен, малотоксичен. При хранении может выделятся небольшое количество аммиака, пары которого вызывают раздражение верхних дыхательных путей, слизистых оболочек глаз и носа. При попадании на кожу необходимо смыть его водой.

Натрия полифосфат - не токсичен пожаровзрывобезопасен. Вдыхание пыли полифосфата натрия может вызывать раздражение слизистых оболочек и дыхательных путей.

Едкий натр - представляет собой едкую жидкость, не горюч, не взрывоопасен, относится ко второму классу опасности (высокоопасен). ПДК - 5 мг?м3. При попадании на кожу вызывает химические ожоги, а при длительном воздействии может вызвать язвы и экземы, сильно действует на слизистые оболочки. При попадании в глаза необходимо промыть глаза большим количеством воды.

7.1.2 Характеристика условий труда в отделении белой фильтрации

Основными производственными вредными факторами в отделении «белой» фильтрации являються тепловыделения. Для борьбы с выше указанными вредностями проектируется приточно-вытяжная вентиляция с механическим и естественным побуждением.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.