Абсорбционные холодильные машины

История создания и классификация абсорбционных холодильных машин; область применения и использования. Расчёт цикла, генератора, тракта подачи исходной смеси. Патентный обзор машины с мультиступенчатым эжектором и абсорбционно-диффузионного агрегата.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 05.07.2014
Размер файла 3,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Это является важным отличием от известного в этой связи, непосредственно обогреваемого газосборника, в который погружена насосная трубка, поскольку там конденсация газового пузыря не может наступить, пока температура в активной зоне пузырькового насоса выше минимальной температуры выгазовывания. Другое отличие состоит в том, что резервуар для запуска процесса накачивания имеет преимущественно форму лежащей трубы или другую схожую, увеличивающую поверхность форму, по которой раствор хладагента протекает через резервуар в виде тонкого придонного слоя под газовым пузырем и при этом завихряется, в результате чего только и обеспечивается полная реабсорбция пузыря при охлаждении, поскольку при незавихренной жидкости, как в обычном газосборнике, при охлаждении на поверхности образуется тонкий слой удельно более легкого жидкого аммиака, препятствующий дальнейшему процессу растворения. У пузырькового насоса, согласно изобретению, раствор хладагента, таким образом, автоматически удаляется из него, когда температура нагрева понижается в критическую область. С другой стороны, водный раствор аммиака может находиться в активной зоне пузырькового насоса только при температурах выше минимальной температуры выгазовывания, соответствующей данному давлению в системе.

В другом выполнении изобретения предусмотрено, что резервуар для запуска процесса накачивания выполнен в виде горизонтально расположенного полого цилиндра с закрывающими поверхностями, причем впускное и выпускное отверстия расположены в нижней части противоположных закрывающих поверхностей.

Это препятствует выходу через выпускное отверстие газового пузыря, самопроизвольно образующегося при нагревании.

Согласно другой форме выполнения изобретения, может быть предусмотрено, что резервуар для запуска процесса накачивания окружен нагревательной рубашкой, через которую направляют жидкий или газообразный теплоноситель. За счет этого температуру резервуара для запуска процесса накачивания можно установить независимо от температуры в пузырьковом насосе, причем преимущественно выбирают всегда немного более низкую температуру, чем температура в пузырьковом насосе, так что внутри резервуара для запуска процесса накачивания критическая область температур достигается уже предварительно и сжимающий газовый пузырь отводит раствор хладагента из насосной трубки.

Согласно другой форме выполнения изобретения может быть поэтому предусмотрено, что необходимая небольшая разность температур между пузырьковым насосом и резервуаром для запуска процесса накачивания достигается за счет того, что нагревающий теплоноситель протекает сначала через пузырьковый насос, а затем - через резервуар для запуска процесса накачивания.

Согласно другой альтернативной форме выполнения изобретения насосная трубка может быть окружена первой концентрической нагревательной рубашкой для обтекания жидким или газообразным теплоносителем, а между насосной трубкой и первой концентрической нагревательной рубашкой может быть расположена вторая концентрическая нагревательная рубашка для жидкого теплоносителя, уровень которого можно регулировать внутри второй концентрической нагревательной рубашки.

Тем самым, общее тепловое сопротивление образующего пузырьковый насос сосуда можно привести в соответствие с требуемым тепловым потоком. Далее подачу тепла к насосной трубке можно регулировать независимо от температуры теплоносителя, протекающего через первую концентрическую нагревательную рубашку.

У абсорбционной холодильной машины, содержащей генератор, абсорбер и конденсатор, в другом выполнении изобретения на соединительной трубе между генератором и абсорбером или на соединительной трубе между генератором и конденсатором может быть установлен температурный датчик и предусмотрен регулирующий блок, с помощью которого производительность насоса регулируют в зависимости от измеренной датчиком температуры.

Измерения, проведенные на абсорбционных холодильных машинах, а также точные расчеты доказывают, что холодильный кпд оптимален только тогда, когда производительность пузырькового насоса постоянна. При изменяющейся температуре нагрева в случае солнечной энергии производительность насоса сильно колеблется.

Необходимое регулирование производительности насоса может происходить за счет того, что подаваемое к пузырьковому насосу количество тепла можно регулировать независимо от температуры, а это осуществимо как за счет изменяющейся площади контакта между идущим от солнечного агрегата теплоносителем и насосной трубкой пузырькового насоса, так и за счет изменения коэффициента теплопередачи в этом месте.

Согласно другой форме выполнения изобретения дополнительная возможность регулирования коэффициента теплопередачи в пузырьковый насос состоит в том, чтобы изменять скорость течения теплоносителя. Поскольку коэффициент теплопередачи между теплоносителем и твердым телом возрастает со скоростью течения этого теплоносителя, а теплоноситель так и так должен постоянно циркулировать, такое регулирование коэффициента теплопередачи можно предпочтительным образом связать с регулированием скорости течения теплоносителя.

Предпочтительным образом можно в качестве меры производительности насоса привлечь температурную характеристику между генератором и абсорбером или между генератором и конденсатором, поскольку большая производительность насоса смещает область более высоких температур ближе к абсорберу или конденсатору.

Другой признак изобретения состоит в том, что вторая концентрическая нагревательная рубашка соединена с газовым термометром посредством расширяющегося при нагревании газа, который может регулировать уровень жидкости внутри второй концентрической нагревательной рубашки. Расширяющийся при нагревании газ вытесняет жидкость из изменяющейся нагревательной рубашки вокруг трубки пузырькового насоса, представляющей собой переменное тепловое сопротивление.

Предпочтительным образом положение газового термометра представляет собой возможность регулирования производительности насоса. При смещении газового термометра ближе к абсорберу или ближе к конденсатору, где поверхность контакта трубки холоднее, нагревательная рубашка вокруг пузырькового насоса автоматически увеличивается и последний качает сильнее. Если же температура нагрева насоса возрастает, то он качает быстрее и температура в газовом термометре возрастает, в результате чего жидкость из нагревательной рубашки вытесняется и насос дросселируется.

Описанная ниже абсорбционная холодильная машина работает, в основном, как классическая система "Platen-Munters", применяемая, в том числе, в абсорбционном холодильнике "Электролюкс"® и "Сервель"® и многократно задокументированная.

Абсорбционная холодильная машина включает в себя генератор 7 для испарения растворенного в растворителе хладагента с пузырьковым насосом 1, сепаратор 2 растворителя, в котором осуществляют отделение растворителя от хладагента, конденсатор 3 для сжижения хладагента, испаритель 4, в котором хладагент испаряют посредством сухого газа и с охлаждением, первый газовый теплообменник 6 и абсорбер 5, в котором в обедненную смесь из хладагента и испарителя вводят испаренный хладагент, и эту смесь в генераторе 7 повторно испаряют.

Для лучшего понимания изобретение поясняется на примере выполнения, в котором растворитель представляет собой воду, а хладагент - аммиак. В рамках изобретения могут использоваться также и другие подходящие растворители и хладагенты.

Согласно изобретению, предусмотрено, что выход расположенного за испарителем 4 первого газового теплообменника 6 и выход генератора 7 впадают в ведущий в абсорбер 5 байпас 8, причем идущую от испарителя 4 через первый газовый теплообменник 6 смесь из испаренного хладагента и сухого газа направляют к выходу генератора 7 и там через байпас 8, где газовая смесь вступает в контакт с горячим, частично выгазованным, идущим от генератора 7 раствором и отбирает у нее дальнейший хладагент.

За счет этого абсорбционную холодильную машину согласно изобретению можно эксплуатировать с относительно более низкой температурой нагрева генератора, которая может лежать ниже 100°С.

Можно, однако, и отказаться от первого газового теплообменника 6, в этом случае выход испарителя 4 впадает непосредственно в байпас 8.

В пузырьковом насосе 1, образованном в изображенном примере выполнения одной или несколькими параллельными и вертикальными трубками, к концентрированному раствору аммиака, в случае если происходящего из теплообменника 11 тепла недостаточно, подают тепло, в результате чего в пузырьковом насосе 1 образуются пузырьки аммиака, объем которых составляет лишь несколько процентов по сравнению с общим количеством газа, высвобождающимся затем в генераторе 7. Поднимающиеся пузырьки аммиака направляют раствор через тонкие трубки вверх в водный сепаратор 2. Отделенный от воды аммиак течет по подъемной трубе 9 дальше вверх к конденсатору 3, где он сжижается за счет охлаждения.

Жидкий аммиак стекает по U-образной трубе 19 вниз в испаритель 4, где в виде тонкой пленки смачивает стенку трубы, по которой течет сухой газ, например водород. При этом образующийся аммиачный пар непрерывно отводят, что ведет к охлаждению испарителя 4, в результате чего поддерживается собственно холодильный процесс машины согласно изобретению. Смесь из аммиака и водорода на нижнем конце испарителя 4 удельно более тяжелая, чем обогащаемая газовая смесь, притекающая в испаритель 4, за счет чего поддерживается водородный контур.

В обычной системе газовая смесь текла бы прямо к абсорберу 5. В абсорбционной холодильной машине согласно изобретению она, однако, отклоняется за первым газовым теплообменником 6 в направлении генератора 7, где она в байпасе 8 прямотоком или противотоком отбирает у горячего, наполовину выгазованного раствора, выходящего из генератора 7, дополнительный аммиак на основе обусловленных температурой и концентрацией условий давления пара.

При этом следует обратить внимание на то, что становящийся при этом тяжелее газ не должен подниматься слишком высоко, поскольку это уменьшило бы скорость его течения.

Так, можно достичь в верхней части абсорбера 5 низкой концентрации раствора, являющейся условием низкой температуры охлаждения без необходимости сильного нагрева генератора 7. Эта более низкая температура генератора ограничивает количество испарившейся заодно воды, в результате чего становится ненужной последующая ректификация водно-аммиачной паровой смеси в подъемной трубе 9 и предотвращается возможное последующее снижение кпд за счет воды в испарителе.

Проходящую через испаритель и при необходимости первый газовый теплообменник 6 смесь из аммиака и водорода в изображенном на фиг. 1 примере выполнения дополнительно через первичную сторону второго газового теплообменника 10 к выходу генератора 7 направляют прямотоком или противотоком через байпас 8, а затем для охлаждения через вторичную сторону второго газового теплообменника 10 дальше к абсорберу 5, где она снова отдает свой излишек аммиака идущему от байпаса 8 слабому раствору.

Абсорбер 5 должен иметь в этом случае немного большие размеры, чем у обычной системы. Поскольку попадающая от байпаса 8 в абсорбер 5 газовая смесь имеет более высокое давление аммиачного пара, чем в обычной системе "Platen-Munters", и течет снизу в абсорбер 5, вытекающий из этой части абсорбера раствор имеет более высокую концентрацию, что позднее обеспечивает в генераторе 7 процесс выгазовывания с более низкой температурой. Из абсорбера 5 раствор попадает через жидкостный теплообменник 11 к пузырьковому насосу 1. Там он поднимается, и за водным сепаратором 2 к генератору 7 течет лишь слегка ослабленный за счет образования пузырьков в пузырьковом насосе 1 раствор, где в результате нагрева происходит собственно процесс выгазовывания.

Расположенный между концом 3 конденсатора и водородным контуром резервуар 12 для компенсации давления газа должен предотвращать попадание дополнительного аммиака в водородный контур при слишком высокой температуре генератора. В этом резервуаре 12 для компенсации давления газа более легкий водород накрывает более тяжелый аммиак, за счет чего при колебаниях температуры в аммиачном контуре смещается только граничный слой между обоими газами. Следовательно, этот резервуар 12 для компенсации давления газа предотвращает попадание водорода при низких температурах генератора по U-образной трубе 19 в конденсатор 3 и конденсацию там.

На рис. 2 на диаграмме показан измеренный кпд (ось ординат) абсорбционной холодильной машины согласно изобретению, при отрегулированном по-разному байпасе и разных температурах нагрева (ось абсцисс) для генератора 7. Кривая 14 обозначает кпд при отключенном байпасе, кривая 15 - кпд при установке регулирующего клапана 13 на половинную функцию байпаса, а кривая 16 - кпд при максимальной функции байпаса.

На рис. 3 изображено возможное выполнение для увеличения площади контакта между газовой смесью и раствором в байпасе 8. Холст из стекловолокна или схожий, стойкий к аммиаку материал с большой поверхностью 17 прижимают преимущественно посредством спиральной пружины 18 к стенке байпасной трубы 8.

На рис. 4 в схематичном виде изображен пузырьковый насос согласно изобретению. Раствор хладагента, идущий от генератора 32 через абсорбер 35 абсорбционной холодильной машины, течет к нижнему входу пузырькового насоса 36, снабженного вертикальной насосной трубкой 26, которая обогревается жидким или газообразным теплоносителем и в которой раствор хладагента, например аммиачная вода, движется вверх за счет образования пузырьков. При необходимости, может быть предусмотрен также байпас, соответствующий форме выполнения на фиг. 1-4. Использование пузырькового насоса согласно изобретению дает, однако, преимущества также у обычных абсорбционных холодильных машин.

Согласно изобретению предусмотрено, что нижний конец насосной трубки 26 соединен с удлиненным, обогреваемым резервуаром 25 для запуска процесса накачивания, который имеет впускное 21 и выпускное 22 отверстия и по которому протекает текущий в насосную трубку 26 раствор хладагента, в основном, в горизонтальном направлении.

Впускное 21 и выпускное 22 отверстия расположены с возможностью удержания в резервуаре 25 для запуска процесса накачивания образующегося в нем газового пузыря 24, причем уровень жидкости - раствора 23 хладагента - в холодном состоянии лежит ниже активной рабочей зоны насосной трубки 26.

Резервуар для запуска процесса накачивания выполнен в виде горизонтально расположенного полого цилиндра 25 с закрывающими поверхностями, причем впускное 21 и выпускное 22 отверстия расположены в нижней части противоположных закрывающих поверхностей. Возможна любая другая подходящая форма резервуара для запуска процесса накачивания.

Показанный на рис. 4 газовый пузырь 24 вытесняет уровень вверх жидкости в насосную трубку 26. Там раствор теплоносителя в первой концентрической нагревательной рубашке 27 через частично заполненную вторую концентрическую нагревательную рубашку 28 дополнительно нагревается, в результате чего образуются газовые пузырьки, которые гонят жидкость в газовый сепаратор 31, откуда частично выгазованный раствор течет обратно к генератору 32, тогда как газ продолжает течь вверх в направлении конденсатора (не показан). Теплоноситель 30 течет сначала через внешнюю нагревательную рубашку 27 пузырькового насоса, а оттуда через нагревательную рубашку 20 запускателя 25 процесса накачивания - обратно к источнику тепла. Небольшая разность температур между пузырьковым насосом и резервуаром 25 для запуска процесса накачивания достигается за счет того, что обогревающий теплоноситель протекает сначала через пузырьковый насос, а затем - через резервуар 25 для запуска процесса накачивания. Скорость течения жидкости-теплоносителя можно регулировать, с тем чтобы изменять тепловой поток в пузырьковый насос.

Далее на соединительной трубе между генератором. 32 и абсорбером 35 или на соединительной трубе между генератором 32 и конденсатором (не показан) может быть установлен температурный датчик, с помощью которого производительность насоса регулируют в зависимости от измеренной датчиком температуры.

Возможная форма выполнения включает в себя газовый термометр 34. Он нагревается на трубопроводе между генератором 32 и абсорбером 35, и расширяющийся за счет этого газ вытесняет по гибкому трубопроводу 33 жидкость-теплоноситель из внутренней нагревательной рубашки 28 в сосуд 29 для компенсации давления газа, в результате чего нагретая поверхность на насосной трубке 26 уменьшается. Таким образом, можно по необходимости регулировать тепловой поток через насосную трубку 26.

Формула изобретения:

1. Абсорбционная холодильная машина системы "Platen-Munters", содержащая генератор (7) для испарения растворенного в растворителе хладагента, сепаратор (2) растворителя, в котором происходит отделение растворителя от хладагента, конденсатор (3) для сжижения хладагента, испаритель (4), в котором хладагент испаряют посредством сухого газа и с охлаждением, при необходимости первый газовый теплообменник (6) и абсорбер (5), в котором в обедненную смесь из хладагента и растворителя вводят испаренный хладагент, и эту смесь в генераторе (7) повторно испаряют, отличающаяся тем, что выход испарителя (4) или выход расположенного, при необходимости, за испарителем (4) первого газового теплообменника (6) и выход генератора (7) впадают в ведущий в абсорбер (5) байпас (8), причем идущую от испарителя (4) через первый газовый теплообменник (6) смесь из испаренного хладагента и сухого газа направляют к выходу генератора (7) и через байпас (8), где газовая смесь вступает в контакт с горячим, частично выгазованным, идущим от генератора (7) раствором и отбирает у него дальнейший хладагент.

2. Машина по п.1, отличающаяся тем, что предусмотрен второй газовый теплообменник (10), первичная сторона которого расположена между выходом испарителя (4) или, при необходимости, выходом первого газового теплообменника (6) и входом байпаса (8), а вторичная сторона - между выходом байпаса (8) и входом абсорбера (5), так что идущая от байпаса (8) газовая смесь охлаждается.

3. Машина по п.1 или 2, отличающаяся тем, что между выходом испарителя (4) и входом абсорбера (5) или между входом и выходом байпаса (8) расположен регулирующий клапан (13), с помощью которого дозируют количество направленного в обход через байпас (8) газа, причем не направленная в обход часть течет прямо к абсорберу (5).

4. Машина по п.3, отличающаяся тем, что регулирующий клапан выполнен в виде закорачивающего байпас (8) проходного клапана (13).

5. Машина по п.3, отличающаяся тем, что регулирующий клапан выполнен в виде трехлинейного распределителя, который распределяет идущую от испарителя (4) газовую смесь на поток к байпасу (8) и поток к абсорберу (5).

6. Машина по любому из предыдущих пунктов, отличающаяся тем, что внутренняя стенка байпасной трубы покрыта стойким к аммиаку волокнистым материалом (17).

7. Машина по п.6, отличающаяся тем, что стойкий к аммиаку волокнистый материал образован стекловолокнистым холстом (17).

8. Машина по п.6 или 7, отличающаяся тем, что внутри байпасной трубы (8) расположена упирающаяся в ее внутреннюю стенку винтовая пружина (18), причем стойкий к аммиаку волокнистый материал (17) зажат между внутренней стенкой и винтовой пружиной (18).

9. Машина по любому из предыдущих пунктов, отличающаяся тем, что хладагент образован аммиаком, а растворитель - водой.

10. Машина по одному из предыдущих пунктов, отличающаяся тем, что байпас (8) выполнен с возможностью обогрева.

11. Пузырьковый насос для абсорбционной холодильной машины, содержащий, по меньшей мере, одну вертикальную насосную трубку (26), которая обогревается жидким или газообразным теплоносителем и в которой раствор хладагента движется вверх за счет образования пузырьков, отличающийся тем, что нижний конец, по меньшей мере, одной насосной трубки (26) соединен с удлиненным, обогреваемым резервуаром (25) для запуска процесса накачивания, который имеет впускное (21) и выпускное (22) отверстия и через который протекает текущий в насосную трубку (26) раствор хладагента, в основном, в горизонтальном направлении, причем впускное (21) и выпускное (22) отверстия расположены с возможностью удержания в резервуаре (25) для запуска процесса накачивания образующегося в нем газового пузыря, причем уровень жидкости - раствора хладагента - в холодном состоянии лежит ниже активной рабочей зоны насосной трубки (26).

12. Насос по п.11, отличающийся тем, что резервуар для запуска процесса накачивания выполнен в виде горизонтально расположенного полого цилиндра (25) с закрывающими поверхностями, причем впускное (21) и выпускное (22) отверстия расположены в нижней части противоположных закрывающих поверхностей.

13. Насос по п.11 или 12, отличающийся тем, что резервуар (25) для запуска процесса накачивания окружен нагревательной рубашкой (20), через которую направляют жидкий или газообразный теплоноситель.

14. Насос по любому из пп.11-13, отличающийся тем, что насосная трубка (26) окружена первой концентрической нагревательной рубашкой (27) для обтекания жидким или газообразным теплоносителем, при этом между насосной трубкой (26) и первой концентрической нагревательной рубашкой (27) расположена вторая концентрическая нагревательная рубашка (28) для жидкого теплоносителя, уровень которого можно регулировать внутри второй концентрической нагревательной рубашки (28).

15. Насос по п.14, отличающийся тем, что скорость течения жидкости-теплоносителя можно регулировать.

16. Насос по любому из предыдущих пп.13-15, отличающийся тем, что необходимая небольшая разность температур между пузырьковым насосом и резервуаром (25) для запуска процесса накачивания достигается за счет того, что нагревающий теплоноситель протекает сначала через пузырьковый насос, а затем через резервуар (25) для запуска процесса накачивания.

17. Насос по любому из предыдущих пп.11-16 для абсорбционной холодильной машины, содержащей генератор, абсорбер и конденсатор, отличающийся тем, что на соединительной трубе между генератором (32) и абсорбером (35) или на соединительной трубе между генератором (32) и конденсатором установлен температурный датчик, при этом предусмотрен регулирующий блок, с помощью которого производительность насоса регулируют в зависимости от измеренной датчиком температуры.

18. Насос по п.17, отличающийся тем, что вторая концентрическая нагревательная рубашка (28) соединена с газовым термометром (34), посредством расширяющегося при нагревании газа которого можно регулировать уровень жидкости внутри второй концентрической нагревательной рубашки (28).

3.2 Абсорбционная холодильная машина с мультиступенчатым эжектором (патент РФ №2460020)

Рисунок 14 - Общий вид предлагаемой абсорбционной холодильной машины с мультиступенчатым эжектором (АХММСЭ)

Рисунок 15 - Узел компоновки мультиступенчатого эжектора

Рисунок 16 - Процесс поглощения паров легколетучего компонента слабым раствором рабочей жидкости в мультиступенчатом эжекторе, изображенный на диаграмме У-Х

Предлагаемое изобретение относится к холодильной технике, а именно к абсорбционно-эжекторным холодильным установкам. Абсорбционная холодильная машина с мультиступенчатым эжектором содержит замкнутый циркуляционный контур, в котором последовательно установлены генератор, мультиступенчатый эжектор, конденсатор, дроссель, испаритель, насос и теплообменник. Корпус мультиступенчатого эжектора покрыт кожухом с образованием полости, являющейся рубашкой охлаждения и состоит из последовательно размещенных по ходу пара и соединенных между собой n ступеней, каждая из которых содержит приемную камеру, сопло и диффузор. Приемная камера и сопло I-й ступени соединены трубопроводами с испарителем и генератором соответственно. Генератор соединен с теплообменником и насосом. Приемные камеры II-й и последующих ступеней соединены с диффузорами предыдущих ступеней, внутри их устроены направляющие лопатки, теплообменник, сопла II-й и последующих ступеней соединены с нагнетательным патрубком насоса параллельно. Кожух примыкает к корпусу конденсатора и снабжен входным патрубком, рубашка охлаждения и диффузор последней ступени соединены с конденсатором через отверстия в стенке его корпуса и крышке соответственно. Техническим результатом предлагаемого изобретения является повышение эффективности абсорбционной холодильной машины с мультиступенчатым эжектором.

Изобретение относится к холодильной технике, а именно к абсорбционно-эжекторным холодильным установкам.

Известна абсобционная холодильная установка, содержащая циркуляционный контур, в котором последовательно установлены абсорбер, насос, теплообменник растворов, генератор, конденсатор, переохладитель, испаритель и компрессор [А.с. СССР №1537984, МКл. F25B 15/02, 1990].

К недостаткам известного устройства относятся необходимость использования компрессора, что усложняет конструкцию и снижает эффективность устройства.

Более близким к предлагаемому изобретению является абсорбционно-эжекторная холодильная машина, содержащая замкнутый циркуляционный контур, в котором последовательно установлены генератор, конденсатор, эжектор с приемной камерой, теплообменники, насос, абсорбер, выполненный в виде струйного аппарата, испарители, регулирующие вентили (дроссели) [А.с. СССР №840618, МКл. F25B 15/02, 1981].

Недостатками известной абсорбционно-эжекторной холодильной машины являются повышенный расход тепловой энергии в генераторе, выработка низкопотенциальной тепловой энергии (в виде нагретой воды или воздуха), которой трудно найти потребителя, использование струйного абсорбера, конструкция которого не позволяет увеличить степень поглощения легколетучего компонента, что снижает эффективность известного устройства.

Техническим результатом предлагаемого изобретения является повышение эффективности абсорбционной холодильной машины с мультиступенчатым эжектором.

Технический результат достигается в абсорбционной холодильной машине с мультиступенчатым эжектором, содержащей замкнутый циркуляционный контур, в котором последовательно установлены генератор, мультиступенчатый эжектор, конденсатор, дроссель, испаритель, насос и теплообменник, причем корпус мультиступенчатого эжектора покрыт кожухом с образованием полости, являющейся рубашкой охлаждения, и состоит из последовательно размещенных по ходу пара и соединенных между собой n ступеней, каждая из которых содержит приемную камеру, сопло и диффузор, при этом приемная камера и сопло I-й ступени соединены трубопроводами с испарителем и генератором соответственно, генератор, в свою очередь, соединен с теплообменником и насосом, приемные камеры II-й и последующих ступеней соединены с диффузорами предыдущих ступеней, внутри их устроены направляющие лопатки, теплообменник, сопла II-й и последующих ступеней соединены с нагнетательным патрубком насоса параллельно, кожух примыкает к корпусу конденсатора и снабжен входным патрубком, рубашка охлаждения и диффузор последней ступени соединены с конденсатором через отверстия в стенке его корпуса и крышке соответственно.

АХММСЭ содержит замкнутый циркуляционный контур, в котором последовательно установлены генератор 1, мультиступенчатый эжектор 2, конденсатор 3, дроссель 4, испаритель 5, насос 6 и теплообменник 7, причем корпус мультиступенчатого эжектора 2 покрыт кожухом 8 с образованием полости, являющейся рубашкой охлаждения 9 и состоит из последовательно размещенных по ходу пара и соединенных между собой I-й, II-й и и III-й ступеней, каждая из которых содержит приемную камеру 10, сопло 11 и диффузор 12, при этом приемная камера 10 и сопло 11 I-й ступени соединены трубопроводами с испарителем 5 и генератором 1 соответственно, генератор 1, в свою очередь, соединен с теплообменником 7 и насосом 6, приемные камеры 10 II-й и последующих ступеней соединены с диффузорами 12 предыдущих ступеней, внутри их устроены направляющие лопатки 13, теплообменник 7, сопла 11 II-й и последующих ступеней соединены с нагнетательным патрубком насоса 6 параллельно, кожух 8 примыкает к корпусу конденсатора 3 и снабжен входным патрубком 14, рубашка охлаждения 9 соединена с межтрубным пространством конденсатора 3 через отверстие 15 в стенке его корпуса, а диффузор 12 последней III-й ступени соединен с верхней крышкой конденсатора 3 через отверстие 16.

АХММСЭ работает следующим образом.

Из поддона испарителя 5 слабый раствор по трубопроводу поступает в насос 6, после которого его давление повышается от P3 до P1 а его поток делится на 2 части: одна часть подается в генератор 1 для образования пара для I-й ступени через теплообменник 7, а другая - холодная часть, подается на абсорбцию во II-ю и III-ю ступени мультиступенчатого эжектора 2. Первая часть слабого раствора, количество которого находят исходя из требуемого количества пара для эжектирования, подогревается в теплообменнике 7 за счет тепла горячей оборотной воды и при давлении P1 подается в генератор 1, где нагревается до температуры кипения за счет тепла постороннего теплоносителя (например, вторичного пара), в результате чего образуется пар, который с концентрацией легкокипящего компонента ХН при давлении P1 подается в приемную камеру 10 через сопло 11 I-й ступени мультиступенчатого эжектора 2. В результате истечения струи пара из сопла 11 в приемной камере 10 I-й ступени и соединенном с ней трубопроводом испарителе 5 создается разрежение P3, а давление паровой смеси на выходе из диффузора 12 снижается от P1 до P2?". Одновременно в диффузоре 12 I-й ступени за счет теплообмена через стенку с охлажденной оборотной водой происходит охлаждение паровой смеси и частичная ее конденсация, образуются капли раствора, осуществляется процесс абсорбции паров легкокипящего компонента этими каплями, в результате чего концентрация легкокипящего компонента в паровой фазе снижается, а в жидкой фазе возрастает. после чего парожидкостная смесь поступает в приемную камеру 10 II-й ступени. Одновременно другую - холодную часть слабого раствора (общее количество слабого раствора должно обеспечивать оптимальные условия эжекции и абсорбции) после испарителя 5 при давлении P1насос 6 подает параллельно в приемные камеры 10 через сопла 11 во II-ю и последующие ступени мультиступенчатого эжектора 2. Из диффузора 12 I-й ступени мультиступенчатого эжектора 2 парожидкостная смесь поступает в приемную камеру 10 II-й ступени, где за счет наличия направляющих лопаток 13 происходит закручивание и перемешивание парожидкостного потока, в результате чего интенсифицируется процесс поглощения легкокипящего компонента раствором. В результате истечения слабого раствора из сопла 11 в приемной камере 10 II-й ступени также при давлении P1, жидкостная струя которого увлекает парожидкостную смесь, последняя на выходе из приемной камеры 11 и перемещении по диффузору 12 по инерции совершает вращательное движение, смешивается с ней, после чего давление в ней на выходе из диффузора 12 повышается от P2?" до Р2?'. Одновременно в диффузоре 12 II-й ступени осуществляется процесс абсорбции паров легкокипящего компонента слабым раствором, который интенсифицируется процессами закручивания и перемешивания парожидкостного потока, в результате чего концентрация легкокипящего компонента в паровой фазе становится ниже, а в жидкой фазе больше, чем на выходе из диффузора 12 I-й ступени. Далее парожидкостная смесь поступает в приемную камеру 10 III-й ступени, в которой происходят процессы, аналогичные произошедшим во II-й ступени, в результате которых давление в ней на выходе из диффузора 12 дополнительно повышается от до Р2?' до Р2, концентрация легкокипящего компонента в паровой фазе становится ниже, а в жидкой фазе больше, чем на выходе из диффузора 12 II-й ступени (линия c-d на диаграмме У-Х, фиг. 3), после чего насыщенная парожидкостная смесь через отверстие 16 поступает в конденсатор 3. Параллельно процессам эжектирования и абсорбции, происходящих во всех трех ступенях мультиступенчатого эжектора 2, осуществляется отвод тепла абсорбции от его поверхности потоком оборотной холодной воды, подаваемой из входного патрубка 14 в рубашку охлаждения 9 и удаляющейся из нее через отверстие 15 в межтрубное пространство конденсатора 3. В конденсаторе 3 происходит дальнейшее охлаждение и конденсация парожидкостной смеси, поступающей из III-й ступени мультиступенчатого эжектора 2 до окончательного образования крепкого раствора с давлением P2 и концентрацией легкокипящего компонента ХК, который стекает в поддон, отвод остаточного тепла абсорбции и тепла конденсации, воспринимаемого оборотной водой, поступающей из рубашки охлаждения 9 и частично нагретой в ней за счет тепла абсорбции в мультиступенчатом эжекторе 2, после чего горячая оборотная вода направляется в теплообменник 7. Крепкий раствор из поддона конденсатора 3 поступает через дроссель 4 в испаритель 5, где он дросселируется до давления разрежения P3, в результате чего снижается его температура кипения, происходит испарение легкокипящего компонента при низкой температуре с образованием пара, поступающего в приемную камеру 10 I-й ступени мультиступенчатого эжектора 2 и образование слабого раствора с концентрацией легкокипящего компонента ХН, а также охлаждение хладоагента, который далее направляют потребителю. Из поддона испарителя 5 слабый раствор поступает в насос 6, после которого при давлении P1 делится на 2 части, и цикл повторяется. При этом охлажденная в теплообменнике 7 оборотная вода охлаждается далее, например, в градирне.

Из описания работы мультиступенчатого эжектора 2 видно, что этот аппарат одновременно выполняет функции компрессора и струйного абсорбера. Из сравнения рабочей линии процесса абсорбции в одноступенчатом аппарате a-d' с конечной ХК?' концентрацией легкокипящего компонента в растворе и суммарной рабочей линии процесса a-b-c-d с конечной ХК концентрацией легкокипящего компонента в растворе в предлагаемом мультиступенчатом эжекторе 2, при равных начальных концентрациях ХН (диаграмма У-Х, фиг.3) следует, что конструкция последнего позволяет проводить процессы абсорбции ступенчато, что обеспечивает при одинаковых расходах абсорбента (раствора) большую степень поглощения легкокипящего компонента и таким образом снизить удельный расход абсорбента [Касаткин А.Г. Основные процессы и аппараты химической технологии. - М.: Химия, 1971, с. 492-495]. В то же время мультиступенчатый эжектор 2 обеспечивает большее повышение давления, чем одноступенчатый аппарат (P2>Р2?"). При этом, в результате использования тепла горячей оборотной воды, нагретой в конденсаторе 3, для подогрева слабого раствора в теплообменнике 7, предлагаемая АХММСЭ вырабатывает только холод без выработки низкопотенциального тепла, которому трудно найти потребителя, а затрата тепла в генераторе 1 в ней меньше, чем в известном устройстве.

Параметры АХММСЭ зависят от физико-химических свойств веществ, составляющих раствор, мощности и давления, развиваемого насосом 1 и числа ступеней в мультиступенчатом эжекторе 2. Оптимальное число ступеней находят из технико-экономического расчета.

Таким образом, компоновка предлагаемой АХММСЭ и применение в ней мультиступенчатого эжектора обеспечивают повышение эффективности ее работы.

Абсорбционная холодильная машина с мультиступенчатым эжектором, содержащая замкнутый циркуляционный контур, в котором последовательно установлены генератор, эжектор с приемной камерой, абсорбер, выполненный в виде струйного аппарата, конденсатор, дроссель, испаритель, насос, теплообменник, отличающаяся тем, что эжектор и струйный абсорбер выполнены в виде мультиступенчатого эжектора, корпус которого покрыт кожухом с образованием полости, являющейся рубашкой охлаждения, причем мультиступенчатый эжектор состоит из последовательно размещенных по ходу пара и соединенных между собой n ступеней, каждая из которых содержит приемную камеру, сопло и диффузор, при этом приемная камера и сопло I-й ступени соединены трубопроводами с испарителем и генератором соответственно, генератор, в свою очередь, соединен с теплообменником и насосом, приемные камеры II-й и последующих ступеней соединены с диффузорами предыдущих ступеней, внутри их устроены направляющие лопатки, теплообменник и сопла II-й и последующих ступеней соединены с нагнетательным патрубком насоса параллельно, кожух примыкает к корпусу конденсатора и снабжен входным патрубком, рубашка охлаждения и диффузор последней ступени соединены с конденсатором через отверстия в стенке его корпуса и крышке соответственно.

3.3 Абсорбционно-диффузионный холодильный агрегат и способ его работа (патент РФ №2053462)

Рисунок 17 - Вертикальный продольный разрез холодильника и стены здания

Рисунок 18 - Горизонтальный поперечный разрез холодильника

Рисунок 18 - Горизонтальный поперечный разрез холодильника

Использование: изобретение относится к холодильной технике, в частности, к устройствам абсорбционно-диффузионных холодильных агрегатов (АДХА) и способам работы холодильника. Сущность изобретения заключается в том, что теплорассеивающие элементы 1, 2 АДХА имеют тепловую связь с теплорассеивающей поверхностью 3, которая охлаждается воздухом атмосферы вне помещения. Тепловая связь осуществлена при помощи тепловой трубы (или двухфазного термосифона) и теплопроводной пластины 8. Обеспечен теплообмен при помощи тепловой трубы двухфазного термосифона между поверхностью, связанной в тепловом отношении с воздухом охлаждаемой камеры, и поверхностью, воспринимающей холод атмосферы.

Изобретение относится к холодильной технике, в частности к устройствам абсорбционно-диффузионных холодильных агрегатов (АДХА) и способам работы холодильника.

Известен АДХА, содержащий термосифон, связанный нижней частью с ресивером абсорбера, частично заполненного крепким раствором, а верхней частью с полостью слабого раствора, которая связана магистралью с верхней частью абсорбера, источник тепловой мощности (электронагреватель), связанный в тепловом отношении частично с нижней частью термосифона и частично с нижней частью полости слабого раствора.

Недостатком известного устройства является низкая эффективность его работы, обусловленная, в частности, слабой очисткой парогазовой смеси перед поступлением в испаритель АДХА от паров хладагента. Известное устройство реализовано в абсорбционных холодильниках "Иней" АШ-120 и "Север-7" АШ-100. Уровень температур в низкотемпературном отделении холодильника "Иней" АШ-120 не превышает минус 6оС. Это свидетельствует о малой холодопроизводительности агрегата.

Известен АДХА бытового холодильника, содержащий теплорассеивающие элементы трубку слабого раствора и абсорбер, связанные в тепловом отношении с окружающим воздухом помещения.

Недостатком известного АДХА является низкая эффективность его работы и как следствие малая холодопроизводительность, обусловленная, в частности, относительно высокими температурами слабого раствора, поступающего в абсорбер, и самого абсорбера.

Цель изобретения повышение термодинамической эффективности АДХА.

В части конструкции АДХА указанная цель достигается тем, что теплорассеивающие элементы конструкции холодильного агрегата трубка слабого раствора и абсорбер имеют тепловую связь с теплорассеивающей поверхностью, воспринимающей холод атмосферного воздуха вне помещения, тепловая связь между теплорассеивающими элементами агрегата и поверхностью, воспринимающей атмосферный холод, осуществлена при помощи теплопередающего устройства, реализующего испарительно-конденсационный цикл (например, тепловая труба или двухфазный термосифон), и теплопроводной пластины.

Сравнение заявляемого устройства не только с прототипом, но и с другими техническими решениями в данной области техники, не позволило выявить в них признаки, отличающие заявляемое устройство от прототипа.

Это дает основание признать заявляемое решение соответствующим критерию "существенные отличия".

Для обоснования достигаемого с помощью предлагаемого устройства положительного эффекта можно отметить следующее.

Во-первых, необходимо принять во внимание тот факт, что на территории СНГ в зависимости от климатического района холодильники могут не потреблять электрическую энергию от 3 до 7 месяцев в году, т.е. в этот период уровень температур атмосферного воздуха ниже 0оС.

Во-вторых, известно, что парциальное давление паров хладагента в парогазовой смеси (ПГС), поступающей на вход испарителя, во многом определяет уровень температур испарения хладагента при работе АДХА. Чем ниже содержание паров хладагента в ПГС, тем ниже уровень температур его испарения. Улучшить степень очистки ПГС от паров хладагента можно, в частности, путем увеличения движущей силы процесса абсорбции разности массовой концентрации хладагента в ПГС и равновесной массовой концентрации хладагента в слабом растворе, поступающем на вход абсорбера.

Из опыта проектно-конструкторских разработок и испытаний АДХА для холодильников типа "Кристалл-404-1" и "Иней-М" авторам известно, что температура слабого раствора, поступающего в абсорбер, выше температуры воздуха в помещении на 5-7оС, а средняя температура абсорбера выше на 15-16оС. При этом слабый раствор имеет 15%-ную концентрацию хладагента. Сочетание перечисленных факторов приводит к тому, что даже современная модернизированная модель "Кристалл-404-1" АШ-150, не обеспечивает в низкотемпературном отделении (НТО) уровень температур ниже минус 12оС. Это в значительной мере определяется недостаточно высокой степенью очистки ПГС, поступающей на вход зоны испарения.

Расчеты показывают, что для достижения интенсивности процесса абсорбции, близкой к существующей в модели "Кристалл-9М" (при 10%-ной концентрации слабого раствора), достаточно снизить температуру 15%-ного раствора, поступающего в абсорбер, до 5оС. Соответствующее увеличение холодопроизводительности АДХА обеспечивает в НТО уровень температур не выше минус 18оС, что характерно для лучших образцов холодильной техники такого класса.

Конструкция предлагаемого АДХА позволяет на практике повысить движущую силу процесса абсорбции путем охлаждения слабого раствора до температуры ниже температуры воздуха в помещении за счет отвода тепла от трубки слабого раствора и абсорбера к теплопроводной поверхности, воспринимающей холод атмосферного воздуха вне помещения. Это обеспечит высокую степень очистки ПГС, поступающей на вход испарителя, и в конечном итоге повысит эффективность работы АДХА.

Конкретизация достижения поставленной цели в устройстве обеспечивается следующим образом.

Трубка слабого раствора связана в тепловом отношении с теплопроводной поверхностью, воспринимающей холод атмосферного воздуха, В этом случае цель достигается за счет переохлаждения слабого раствора, т.е. снижения равновесной массовой концентрации хладагента в растворе, поступающем в абсорбер, последующей более глубокой очистки ПГС и, как следствие, снижения температур испарения.

Абсорбер связан в тепловом отношении с теплопроводной поверхностью охлаждаемой воздухом атмосферы.

Данное техническое решение обеспечивает непосредственный отвод тепла абсорбции из зоны взаимодействия раствора и ПГС. Это в значительной мере обусловит эффект дополнительной очистки ПГС и соответствующее снижение температур испарения.

Тепловая связь трубки слабого раствора и абсорбера с теплорассеивающей поверхностью, воспринимающей холод атмосферного воздуха, осуществляется при помощи теплопередающего устройства, реализующего испарительно-конденсационный цикл, и теплопроводной пластины.

Такое техническое решение обеспечит минимальное термическое сопротивление тепловой связи и как следствие наиболее эффективное воздействие источника холода. Теплопроводная пластина (например, из меди или алюминия) связана в тепловом отношении с абсорбером, с трубкой слабого раствора и с испарительным участком теплопередающего устройства.

Тепловая связь осуществляется при помощи тепловой трубы (ТТ).

Известно, что ТТ реализует испарительно-конденсационный цикл и для транспорта теплоносителя в ней используются капиллярные силы, которые дают разработчикам большую свободу при выборе компоновки тепловой связи для реальных конструкций АДХА.

Тепловая связь осуществляется при помощи двухфазного термосифона (ДТ).

Применение ДТ позволяет в отличие от ТТ обеспечить минимальное термическое сопротивление тепловой связи, так как наличие в ТТ капиллярной структуры вносит дополнительный вклад в термическое сопротивление всей тепловой цепи. Применение ДТ подразумевает создание условий для стока теплоносителя из зоны конденсации в зону испарения.

Транспортные зоны теплопередающих устройств (ТТ или ДТ) покрыты теплоизоляцией, например пенополиуретаном.

Наличие тепловой изоляции на транспортных зонах теплопередающих устройств (ТТ или ДТ) позволяет повысить эффективность тепловой связи за счет снижения температурного воздействия воздуха помещения.

Неочевидность предложенных технических решений заключается в том, что дополнительное переохлаждение слабого раствора, поступающего в абсорбер, осуществлено при помощи холода атмосферного воздуха вне помещения; теплорассеивающие элементы АДХА (трубка слабого раствора и абсорбер), имеют тепловую связь с теплорассеивающей поверхностью, воспринимающей холод атмосферного воздуха вне помещения.

Устройство содержит теплорассеивающие элементы трубку слабого раствора 1 и абсорбер 2, которые имеют тепловую связь с теплорассеивающей поверхностью 3, воспринимающей холод атмосферного воздуха вне помещения, причем тепловая связь осуществлена при помощи теплопередающего устройства, реализующего испарительно-конденсационный цикл, например, ТТ или двухфазного термосифона (ДТ), которое содержит участок испарения 4, участок конденсации 5 и транспортный участок 6, покрытый теплоизоляцией 7. Тепловая связь осуществляется также при помощи теплопроводной пластины 8, выполненной из меди, алюминиевого сплава или стали и связанной в тепловом отношении с трубкой слабого раствора 1, абсорбером 2 и участком испарения 4, например сваркой, пайкой или при помощи хомутов болтовым соединением.

Теплорассеивающая поверхность 3, охлаждаемая холодом атмосферного воздуха вне помещения, установлена на внешней стороне стены 9 здания, причем в качестве такой поверхности могут быть использованы элементы конструкции здания металлические колонны, ограждение балкона, перегородки и т.п.

Проем в стене 9, через который проходит транспортный участок 6 ТТ (или ДТ), заполнен теплоизоляцией.

Холодильный агрегат установлен на задней стенке теплоизолированного шкафа холодильника, который имеет НТО 10 и высокотемпературное отделение (ВТО) 11. В НТО 10 размещен испаритель 12 АДХА, связанный в тепловом отношении с тепловоспринимающей поверхностью 13, выполненной, например, в виде оребренной пластины из теплопроводного материала (алюминиевого сплава).

Кроме того, АДХА содержит генератор 14, конденсатор 15, который выполнен с уклоном, и его нижняя часть связана магистралью 16 со входом испарителя 12. Транспорт очищенной ПГС из абсорбера 2 в верхнюю часть испарителя 12 осуществляется по магистрали 17. В целях стабилизации подачи жидкого хладагента в зону испарения конденсатор 15 связан по пару уравнительной магистралью 18 с каналом насыщенной ПГС 19, который в свою очередь связывает выходной участок испарителя 12 с паровым объемом ресивера 20. Жидкостная полость ресивера 20 через обогреваемую полость жидкостного теплообменника (ЖТО) 21 связана с генератором 14. Охлаждаемая полость ЖТО 21 при помощи трубки слабого раствора 1 связана с верхней частью абсорбера 2. В нижней части генератора 14, закрытого теплоизоляционным кожухом, установлен электронагреватель (не показан).

Работа АДХА осуществляется следующим образом.

Внутренняя полость АДХА вакуумируется и заполняется водоаммиачным раствором с массовой концентрацией 0,34.0,36 кг/кг раствора и инертным газом (водородом) до давления 1,6.2,1 мПа. Объем раствора выбирается таким, чтобы в ресивере 20 оставалась паровая полость для прохода ПГС из испарителя 12 в абсорбер 2.

При помощи электронагревателя в генераторе 14 АДХА происходит выпаривание крепкого раствора, подводимого по ЖТО 21 из ресивера 20. Получившийся пар хладагента поступает в конденсатор 15, где сжижается и по магистрали 16 транспортируется на вход испарителя 12. Слабый раствор через ЖТО 21 и по трубке слабого раствора 1 поступает в верхнюю часть абсорбера 2.

В испарителе 12 хладагент (аммиак) испаряется в инертный газ (водород) при низком парциальном давлении, производя при этом эффект искусственного охлаждения. В процессе стекания аммиака в нижнюю часть испарителя 12 происходит насыщение водорода парами аммиака, при этом ПГС становится насыщенной и за счет разности плотностей с очищенной ПГС, находящейся в ресивере 20 и абсорбере 2, опускается по каналу 19 в ресивер 20, откуда она поступает в нижнюю часть абсорбера 2.

Навстречу насыщенной ПГС из верхней части абсорбера 2 стекает слабый раствор. При их контактном взаимодействии осуществляется процесс абсорбции поглощение слабым водоаммиачным раствором паров аммиака из насыщенной ПГС. Теплота абсорбции рассеивается в окружающую среду. Очищенная ПГС из абсорбера 2 поступает по магистрали 17 на вход испарителя 12.

Рассмотрим работу предлагаемого устройства в случае, когда температура воздуха вне здания ниже (например, минус 10оС), чем в помещении, где установлен холодильник.

При прохождении слабого раствора по трубке 1 он отдает свое тепло через теплопроводную пластину 8 испарительному участку 4 ТТ (или ДТ). При этом осуществляется генерация паров теплоносителя (например, фреона 22), заполняющего испарительный участок 4 ТТ. Пары теплоносителя через транспортную зону 6 попадают в конденсационный участок 5 ТТ (или ДТ), где сжижаются с отводом теплоты парообразования на теплорассеивающую поверхность 3, воспринимающую холод атмосферного воздуха. Конденсат стекает через транспортную зону 6 в испарительный участок 4, и цикл повторяется.

Поскольку теплопроводная пластина 8 связана в тепловом отношении с абсорбером 2, то в процессе реализации испарительно-конденсационного цикла ТТ (или ДТ) будет также отводиться непосредственно тепло абсорбции, выделяющееся при взаимодействии слабого раствора с ПГС. Охлаждение абсорбера 2 будет способствовать более глубокой очистке ПГС от паров хладагента.

Таким образом, положительный эффект предлагаемого устройства заключается в повышении эффективности работы АДХА за счет дополнительного переохлаждения слабого раствора, поступающего в абсорбер, и самого абсорбера холодом атмосферного воздуха вне помещения, что приводит к понижению температур испарения хладагента в испарителе холодильного агрегата.


Подобные документы

  • Принцип действия абсорбционных холодильных установок и нахождение удельной тепловой нагрузки дефлегматора. Вычисление испарителя для охлаждения жидкого хладоносителя - раствора аммиака. Гидравлический расчет тракта подачи исходной смеси в генератор.

    курсовая работа [1,0 M], добавлен 01.07.2011

  • Характеристика основного назначения холодильной техники, которая позволяет сохранять свойства пищевых продуктов, а также получать пищевые продукты с новыми свойствами. Принцип действия компрессионных, абсорбционных и пароэжекторных холодильных машин.

    реферат [276,7 K], добавлен 15.12.2010

  • Основные принципы агрегатирования парокомпрессорных холодильных машин. Состав компрессорно-конденсаторных и компрессорно-испарительных агрегатов. Конструктивные особенности воздушного конденсатора. Морозильные бонеты, их виды и область применения.

    реферат [541,7 K], добавлен 11.09.2014

  • Холодильная машина и комплекс составляющих ее технических элементов. Перенос тепла к источнику, температура которого значительно выше окружающей среды, при помощи холодильной машины. Классификация холодильных машин по виду затрачиваемой энергии.

    реферат [130,8 K], добавлен 01.04.2011

  • Понятие и классификация погрузочных машин, их разновидности и выполняемые функции, особенности и условия практического применения. Буропогрузочные машины: типы и внутреннее устройство, сферы использования на сегодня. Погрузочно-транспортные машины.

    реферат [880,6 K], добавлен 25.08.2013

  • Литературный и патентный обзор аппаратов поверхностной очистки зерна. Общие данные об обоечных машинах. Назначение и область применения машины Р3-БМО-6: мукомольное, крупяное и комбикормовое производство. Технический результат усовершенствования машины.

    курсовая работа [689,6 K], добавлен 06.09.2014

  • Методологические основы создания машин. Анализ конструкций и технических характеристик отечественных бульдозеров, область их применения. Выводы по результатам патентного исследования. Описание сущности технического решения по усовершенствованию машины.

    контрольная работа [1,7 M], добавлен 15.02.2014

  • Назначение и область применения машин для измельчения. Классификация машин для дробления. Разработка задания на проведение патентных исследований. Экспериментальное исследование влияния рабочих параметров машины на технико-эксплуатационные показатели.

    курсовая работа [1,8 M], добавлен 15.11.2014

  • Системы охлаждения холодильных камер. Основные способы получения холода. Устройство и принцип действия компрессионной холодильной машины. Холодильные машины и агрегаты, применяемые в современной торговой деятельности. Их конструкция и основные виды.

    курсовая работа [1,3 M], добавлен 17.04.2010

  • История развития швейной машины, надежность машин производства компании "Зингер". Общие сведения о механизмах швейной машины. Типы челночного устройства. Устройство швейной машины и принципы ее работы. Разновидности швейных машин и их предназначение.

    курсовая работа [2,4 M], добавлен 10.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.