Методические указания и контрольные задания для студентов-заочников
Основные задачи при изучении курса "Высшая математика", Числовые множества: натуральные, целые, рациональные, действительные числа. Модуль числа, интервал, окрестность, отрезок, числовая ось. Аналитическая геометрия, скалярное произведение и вектор.
Рубрика | Математика |
Вид | методичка |
Язык | русский |
Дата добавления | 26.10.2009 |
Размер файла | 201,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Производной n-го порядка (или n-й производной) от функции f(x) называется производная (первого порядка) от ее (n-1)-й производной.
Обозначение: у(n)=(y(n-1))ґ=f(n)(x). Производные 2-го и 3-го порядка обозначаются соответственно y?ґ и yґ?ґ.
Свойства производных высших порядков.
Основные свойства производных высших порядков следуют из соответствующих свойств первой производной:
1. (cf(x))(n)=c?f(n)(x).
2. (f(x)+g(x))(n)=f(n)(x)+g(n)(x).
3. Для y=xm y(n)=n(n-1)…(n-m+1)xm-n. Если m - натуральное число, то при n>m y(n)=0.
4. Можно вывести так называемую формулу Лейбница, позволяющую найти производную n-го порядка от произведения функций f(x)g(x):
.
Дифференциалы высших порядков.
Дифференциал от дифференциала функции называется ее вторым дифференциалом или дифференциалом второго порядка.
Обозначение: dІy=d(dy).
Дифференциалом n-го порядка называется первый дифференциал от дифференциала (n-1)-го порядка:
dny = d(dn-1y) = (f(n-1)(x)dn-1x)ґ = f(n)(x)dnx.
Свойства дифференциалов высших порядков.
1. Производную любого порядка можно представить как отношение дифференциалов соответствующего порядка:
.
2. Дифференциалы высших порядков не обладают свойством инвариантности.
Точки экстремума функции.
Точка х0 называется точкой максимума (минимума) функции y = =f(x), если f(x) ? f(x0) (f(x) ? f(x0)) для всех х из некоторой д-окрестности точки х0 .
Точки максимума и минимума функции называются ее точками экстремума.
Теорема (теорема Ферма). Если функция y = f(x) определена в некоторой окрестности точки х0, принимает в этой точке наибольшее (наименьшее) в рассматриваемой окрестности значение и имеет в точке х0 производную, то f?(x0)=0.
Произведение последовательных натуральных чисел 1•2•3•…•(n-1)n называется факториалом числа n и обозначается
n! = 1•2•3•…•(n-1)n .
Дополнительно вводится 0!=1.
Полученное представление функции называется формулой Тейлора, а Rn(x) называется остаточным членом формулы Тейлора.
Формы остаточного члена в формуле Тейлора.
Rn = o(x-a)n запись остаточного члена в форме Пеано.
Применение формулы Тейлора для приближенных вычислений.
Заменяя какую-либо функцию, для которой известно разложение по формуле Тейлора, многочленом Тейлора, степень которого выбирается так, чтобы величина остаточного члена не превысила выбранное значение погрешности, можно находить приближенные значения функции с заданной точностью.
Найдем приближенное значение числа е, вычислив значение многочлена Тейлора (21.14) при n=8:
При этом
Функция y = f(x) называется возрастающей (убывающей) на [ab], если
таких, что x1 < x2, f(x1) < f(x2) ( f(x1) > f(x2) ).
Если функция f(x), дифференцируемая на [ab], возрастает на этом отрезке, то на [ab].
Если f(x) непрерывна на [ab] и дифференцируема на (ab), причем для a < x < b, то эта функция возрастает на отрезке [ab].
Теорема (необходимое условие экстремума). Пусть функция f(x) задана в некоторой окрестности точки х0. Если х0 является точкой экстремума функции, то или не существует.
Если функция определена в некоторой окрестности точки х0 и ее производная в этой точке равна нулю или не существует, точка х0 называется критической точкой функции.
Достаточные условия экстремума.
Теорема Пусть функция f(x) непрерывна в некоторой окрестности точки х0, дифференцируема в проколотой окрестности этой точки и с каждой стороны от данной точки f ?(x) сохраняет постоянный знак. Тогда:
1) если f ?(x) > 0 при x < x0 и f ?(x) < 0 при x > x0 , точка х0 является точкой максимума;
2) если f ?(x) < 0 при x < x0 и f ?(x) > 0 при x > x0 , точка х0 является точкой минимума;
3) если f ?(x) не меняет знак в точке х0 , эта точка не является точкой экстремума.
Наибольшее и наименьшее значения функции, дифференцируемой на отрезке находят по схеме:
1) найти критические точки функции, принадлежащие данному отрезку;
2) вычислить значения функции в точках а и b, а также в найденных критических точках. Наименьшее из полученных чисел будет наименьшим значением функции на данном отрезке, а наибольшее - ее наибольшим значением на нем.
Асимптоты.
Прямая называется асимптотой графика функции y = f(x) , если расстояние от переменой точки этого графика до прямой стремится к нулю при удалении точки в бесконечность.
Рассмотрим три вида асимптот и определим способы их нахождения.
1. Вертикальные асимптоты - прямые, задаваемые уравнениями вида х = а. В этом случае определение асимптоты подтверждается, если хотя бы один из односторонних пределов функции в точке а бесконечен. Пример. Вертикальной асимптотой графика функции y = 1/x является прямая х = 0, то есть ось ординат.
2. Горизонтальные асимптоты - прямые вида у = а. Такие асимптоты имеет график функции, предел которой при или при конечен, т.е. .
3. Наклонные асимптоты - прямые вида y = kx + b. Найдем k и b. Поскольку при , , если этот предел существует, конечен и не равен нулю. Однако даже при выполнении этих условий наклонная асимптота может не существовать. Для ее существования требуется, чтобы имелся конечный предел при разности f(x) - kx. Этот предел будет равен b , так как при .
Общая схема исследования функции.
1) область определения функции и ее поведение на границах области определения (найти соответствующие односторонние пределы или пределы на бесконечности);
2) четность и периодичность функции;
3) интервалы непрерывности и точки разрыва (указав при этом тип разрыва);
4) нули функции (т.е. значения х , при которых f(x) = 0) и области постоянства знака;
5) интервалы монотонности и экстремумы;
6) интервалы выпуклости и вогнутости и точки перегиба;
7) асимптоты графика функции.
Вопросы для самопроверки.
1.Каков геометрический смысл производной7
2.Каков геометрический смысл дифференциала?
3.Как использовать дифференциал для приближенного вычисления функции?
4.Как найти производную и дифференциал произведения трех функций7
5.Пользуясь определением производной, найдите производную функции у=3х.
6.Как вычисляется производная сложной функции? приведите пример.
7.Что такое вторая производная?
8.Как использовать формулу Тейлора для вычисления приближенных значений функции?
9.Каковы условия возрастания и убывания функции?
10.Сформултруйте необходимое и достаточное условие максимума дифференцируемой функции. В чем различие между необходимым и достаточным условием?
11.Что такое точка перегиба?
12.Какие бывают асимптоты? Приведите примеры.
КОНТРОЛЬНАЯ РАБОТА №1
Задача 1.
Даны векторы a и b. Найти вектор c = a + b и скалярное произведение (a ·b),
где a = {1, M + 4, -1, N - 5},b = {-M + 5, -1, 5 - N, 2} .
Задача 2.
Даны матрица А = || аij|| размерностью 33 и вектор-строка b. Найти произведения Ат bт и b А;
аij = -i - j + M - N - 4, b = {M-5, 1, 4-N}/
Задача 3.
Даны матрицы А = || аij|| и В = || bij || размерностью 33. Проверить, коммутативны ли матрицы А и В, найти определители матриц. Элементы матриц вычисляются по формулам: аij = -i - j + M, bij = 2i - j + N - 5.
Задача 4.
Решить систему линейных алгебраических уравнений методом Гаусса и с помощью формул Крамера.
х + 2у + 3z = 10,
-2х + у + (N-5)z = N-9,
x - y + 6z = 7.
Задача 5.
Составить систему из двух уравнений с двумя неизвестными так, чтобы она:
имела единственное решение;
не имела решений;
имела бесконечно много решений.
Найти определители этих систем, учитывая, что каждое из уравнений системы является уравнением прямой линии на плоскости, изобразить эти прямые и пояснить, что означает каждый из трех вариантов с точки зрения взаимного расположения прямых.
Задача 6.
Найти расстояние между точками А ( N + 2, -M - 1, M + N) и B ( M,N,M - N) в трехмерном пространстве.
Найти точку пересечения прямых у = - (N +1)x +2 и y = (M +1)x - N - M.
Найти уравнение прямой, проходящей через точку ( M +1,N +1) и перпендикулярной к прямой у = - 2х -1.
какая кривая описывается уравнением (N+1)x2 + (M+1)y2 =4? Написать каноническое уравнение этой кривой.
Задача 7.
Найти области определения функций:
а) у = 11 - N - 2x ; б) у = 1 ;
х2 + 2 M + 3 x + M + 2
Задача 8.
1. Найти сумму, разность, произведение и частное комплексных чисел z1 = N + 1 +2i, z2 = -2 + (M +1)i.
2. Разложить на множители многочлен х2 - 2 N + 5 х + N + 6.
КОНТРОЛЬНАЯ РАБОТА №2
Задача1.
1. Найти пределы:
а) lim [(N + 5)x2 + ( M +2) x + ( N + M)];
x 2
б) lim {(10 - N )ln[ e + tg (arcsin x )] + (10 - M)sin [ M + 1) arctg ex]};
x 0
в) lim (M+3)xN+5 + (M+1)xN+2+1
x (2M+2)xN+5-1
г) lim N+1+(10-M)x - N+1 -(2M-9)x
x0 x
д) lim [ x2(N+1) + (M +5)xN+1 - x2(N+1) - (M +1) x N+1]
х
е) lim sin [(10 - N)x]
x 0 ln[1+(12-M)x]
3. В каких точках непрерывны функции:
а) у = tg (M+3)x ; б) y = 1 ;
x2 + 2 N + 3 x + N + 2
Задача №2
Найти производные функций:
1) у = ( M+N+5)xM+N+2 2) y = ln(x+N)cos(M+2)x-e(N+1)x tg(M+2)x
3) y = arctg9N+2)x 4) y = sin[ln(3x+N+2)]-arctg[cos(M+3)x]
ln(2x+M+1)
Задача 3.
Найти вторую производную функции у = е(N+2)чcos(М+2)х.
Задача 4.
Пользуясь понятием дифференциала, вычислить приближенное значение функции
у = ln[1 + (N+2)x] при х = 0,1
5
Задача 5.
Разложить по формуле Тейлора в окрестности точки х = 0 до членов порядка х2 функцию
у = cos (М+1)х + ln 1 + (N+2)х и найти ее приближенное значение при х = 0,1. Почему
4
это приближенное значение более точно соответствует истинному значению функции, чем приближенное значение, полученное с помощью первого дифференциала?
Задача 6.
Пользуясь формулой Тейлора, найти предел lim tg [(N+2)x] ;
x0 ln [ 1 -(M+3)x]
Задача 7.
Исследовать функции и построить их графики:
а) у = (N+2)x2+x+1 б) y = M+2
x x2+1.
Правила выполнения и оформления контрольных работ
В первом семестре выполняются контрольные работы 1 и 2. Вариант каждой задачи выбирается по последней и предпоследней цифрам номера студенческого билета (зачетной книжки). Последняя цифра обозначается буквой N, предпоследняя - буквой М. Например, для зачетной книжки № 147 N=7, М=4. При выполнении контрольных работ необходимо придерживаться указанных ниже правил. Работы, выполненные без соблюдения этих правил, не зачитываются и возвращаются студенту для переработки.
Каждая контрольная работа должна быть выполнена в отдельной тетради в клетку чернилами синего или черного цвета, кроме красного. Необходимо оставлять поля шириной 4-5 см для замечаний рецензента.
В заголовке работы на обложке тетради должны быть ясно написаны фамилия студента, его инициалы, учебный номер (номер зачетной книжки), название дисциплины, номер контрольной работы; здесь же следует указать название учебного заведения, дату отсылки работы в институт и адрес студента. В конце работы следует поставить дату ее выполнения и подпись студента.
Федеральное агентство по рыболовству Федеральное государственное образовательное учреждение высшего профессионального образования Мурманский государственный технический университет Мончегорский филиал Кафедра ЕН и ОПД Математика Контрольная работа №1 Выполнил: студент ................................... курса....................................... группы.................................... заочная форма обучения специальность....................... зачетная книжка №............... Проверил: ученая степень, должность Фамилия, имя , отчество Мончегорск, 2007 |
В работу должны быть включены все задачи, указанные в задании, строго по положенному варианту контрольной работы. Задания, содержащие не все задачи, а также задачи не своего варианта, не зачитываются.
Решения задач надо располагать в порядке возрастания их номеров, указанных в задании, сохраняя номера задач.
Перед решением каждой задачи надо полностью выписать ее условие. В том случае, если несколько задач имеют общую формулировку, следует, переписывая условие задачи, заменить общие данные конкретными, взятыми из соответствующего номера.
Решения задач следует излагать подробно и аккуратно, объясняя и мотивируя все действия по ходу решения и делая необходимые чертежи.
После получения прорецензированной работы, как не зачтенной, так и зачтенной, студент должен исправить все отмеченные рецензентом ошибки и недочеты и выполнить все рекомендации рецензента.
Если рецензент предлагает внести в решения задач исправления или дополнения и прислать их для повторной проверки, то это следует сделать в короткий срок.
В случае незачета работы и отсутствия прямого указания рецензента о том, что студент может ограничиться представлением исправленных решений отдельных задач, вся работа должна быть выполнена заново.
При высылаемых исправлениях должна обязательно находиться прорецензированная работа и рецензия на нее. Поэтому рекомендуется при выполнении контрольной работы оставлять в конце тетради несколько чистых листов для всех дополнений и исправлений в соответствии с указаниями рецензента.
Вносить исправления в сам текст работы после ее рецензирования запрещается.
Подобные документы
Число как основное понятие математики. Натуральные числа. Простые числа Мерсенна, совершенные числа. Рациональные числа. Дробные числа. Дроби в Древнем Египте, Древнем Риме. Отрицательные числа. Комплексные, векторные, матричные, трансфинитные числа.
реферат [104,5 K], добавлен 12.03.2004Вектор - направленный отрезок, имеющий начало и конец, его свойства. Виды определения векторов, действия над ними. Правила сложения векторов, их сумма. Скалярное произведение векторов. Особенности использования векторов. Решение геометрических задач.
контрольная работа [640,1 K], добавлен 18.01.2013Мнимые и действительные, равные и сопряжённые комплексные числа; модуль и аргумент. Арифметические действия над множеством комплексных чисел: сумма, разность, произведение, деление. Представление комплексных чисел на координатной комплексной плоскости.
презентация [60,3 K], добавлен 17.09.2013Элементы алгебры и введение в математический анализ. Дифференциальное исчисление функций одной или нескольких переменных и элементы дифференциальной геометрии. Интегральное исчисление. Числовые и функциональные ряды. Кратные и криволинейные интегралы.
дипломная работа [188,5 K], добавлен 09.03.2009Натуральные, целые, иррациональные числа. Арифметическая и геометрическая прогрессии. Экономические вопросы, связанные с деньгами, прибылью, доходами. История открытий (Эвклид, Архимед, Лобачевский, Эйнштейн).
творческая работа [50,0 K], добавлен 18.06.2007Краткие теоретические сведения по важнейшим темам курса "Высшая математика", рассмотрены типовые задачи с учетом ГОСа по специальности "Информационные системы" и "Вычислительные системы и комплексы", предложены контрольно-измерительные материалы.
учебное пособие [1,1 M], добавлен 30.11.2009Учебное пособие "Высшая математика для менеджеров" включает разделы высшей математики, изучение которых применяется для решения прикладных экономических и управленческих задач - это аналитическая геометрия, линейная алгебра и математический анализ.
дипломная работа [468,8 K], добавлен 24.04.2009Вектор - элемент векторного пространства (некоторого множества с двумя операциями на нем, которые подчиняются восьми аксиомам). Свободный и связанный векторы. Евклидовая норма и правило параллелограмма. Скалярное произведение и умножение вектора на число.
контрольная работа [102,6 K], добавлен 03.07.2011Системы линейных уравнений. Функции: понятия и определения. Комплексные числа, действия над ними. Числовые, функциональные, тригонометрические ряды. Дифференциальные уравнения. Множества, операции над ними. Теория вероятностей и математической статистики.
учебное пособие [4,7 M], добавлен 29.10.2013Алгоритм упорядочивания множества. Определение декартового произведения, его графическая интерпретация. Обратное декартово произведение множеств. Проецирование на оси координат и на координатные плоскости. Область определения и область значений.
лекция [126,5 K], добавлен 18.12.2013