Методические указания и контрольные задания для студентов-заочников

Основные задачи при изучении курса "Высшая математика", Числовые множества: натуральные, целые, рациональные, действительные числа. Модуль числа, интервал, окрестность, отрезок, числовая ось. Аналитическая геометрия, скалярное произведение и вектор.

Рубрика Математика
Вид методичка
Язык русский
Дата добавления 26.10.2009
Размер файла 201,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Производной n-го порядка (или n-й производной) от функции f(x) называется производная (первого порядка) от ее (n-1)-й производной.

Обозначение: у(n)=(y(n-1))ґ=f(n)(x). Производные 2-го и 3-го порядка обозначаются соответственно y?ґ и yґ?ґ.

Свойства производных высших порядков.

Основные свойства производных высших порядков следуют из соответствующих свойств первой производной:

1. (cf(x))(n)=c?f(n)(x).

2. (f(x)+g(x))(n)=f(n)(x)+g(n)(x).

3. Для y=xm y(n)=n(n-1)…(n-m+1)xm-n. Если m - натуральное число, то при n>m y(n)=0.

4. Можно вывести так называемую формулу Лейбница, позволяющую найти производную n-го порядка от произведения функций f(x)g(x):

.

Дифференциалы высших порядков.

Дифференциал от дифференциала функции называется ее вторым дифференциалом или дифференциалом второго порядка.

Обозначение: dІy=d(dy).

Дифференциалом n-го порядка называется первый дифференциал от дифференциала (n-1)-го порядка:

dny = d(dn-1y) = (f(n-1)(x)dn-1x)ґ = f(n)(x)dnx.

Свойства дифференциалов высших порядков.

1. Производную любого порядка можно представить как отношение дифференциалов соответствующего порядка:

.

2. Дифференциалы высших порядков не обладают свойством инвариантности.

Точки экстремума функции.

Точка х0 называется точкой максимума (минимума) функции y = =f(x), если f(x) ? f(x0) (f(x) ? f(x0)) для всех х из некоторой д-окрестности точки х0 .

Точки максимума и минимума функции называются ее точками экстремума.

Теорема (теорема Ферма). Если функция y = f(x) определена в некоторой окрестности точки х0, принимает в этой точке наибольшее (наименьшее) в рассматриваемой окрестности значение и имеет в точке х0 производную, то f?(x0)=0.

Произведение последовательных натуральных чисел 1•2•3•…•(n-1)n называется факториалом числа n и обозначается

n! = 1•2•3•…•(n-1)n .

Дополнительно вводится 0!=1.

Полученное представление функции называется формулой Тейлора, а Rn(x) называется остаточным членом формулы Тейлора.

Формы остаточного члена в формуле Тейлора.

Rn = o(x-a)n запись остаточного члена в форме Пеано.

Применение формулы Тейлора для приближенных вычислений.

Заменяя какую-либо функцию, для которой известно разложение по формуле Тейлора, многочленом Тейлора, степень которого выбирается так, чтобы величина остаточного члена не превысила выбранное значение погрешности, можно находить приближенные значения функции с заданной точностью.

Найдем приближенное значение числа е, вычислив значение многочлена Тейлора (21.14) при n=8:

При этом

Функция y = f(x) называется возрастающей (убывающей) на [ab], если

таких, что x1 < x2, f(x1) < f(x2) ( f(x1) > f(x2) ).

Если функция f(x), дифференцируемая на [ab], возрастает на этом отрезке, то на [ab].

Если f(x) непрерывна на [ab] и дифференцируема на (ab), причем для a < x < b, то эта функция возрастает на отрезке [ab].

Теорема (необходимое условие экстремума). Пусть функция f(x) задана в некоторой окрестности точки х0. Если х0 является точкой экстремума функции, то или не существует.

Если функция определена в некоторой окрестности точки х0 и ее производная в этой точке равна нулю или не существует, точка х0 называется критической точкой функции.

Достаточные условия экстремума.

Теорема Пусть функция f(x) непрерывна в некоторой окрестности точки х0, дифференцируема в проколотой окрестности этой точки и с каждой стороны от данной точки f ?(x) сохраняет постоянный знак. Тогда:

1) если f ?(x) > 0 при x < x0 и f ?(x) < 0 при x > x0 , точка х0 является точкой максимума;

2) если f ?(x) < 0 при x < x0 и f ?(x) > 0 при x > x0 , точка х0 является точкой минимума;

3) если f ?(x) не меняет знак в точке х0 , эта точка не является точкой экстремума.

Наибольшее и наименьшее значения функции, дифференцируемой на отрезке находят по схеме:

1) найти критические точки функции, принадлежащие данному отрезку;

2) вычислить значения функции в точках а и b, а также в найденных критических точках. Наименьшее из полученных чисел будет наименьшим значением функции на данном отрезке, а наибольшее - ее наибольшим значением на нем.

Асимптоты.

Прямая называется асимптотой графика функции y = f(x) , если расстояние от переменой точки этого графика до прямой стремится к нулю при удалении точки в бесконечность.

Рассмотрим три вида асимптот и определим способы их нахождения.

1. Вертикальные асимптоты - прямые, задаваемые уравнениями вида х = а. В этом случае определение асимптоты подтверждается, если хотя бы один из односторонних пределов функции в точке а бесконечен. Пример. Вертикальной асимптотой графика функции y = 1/x является прямая х = 0, то есть ось ординат.

2. Горизонтальные асимптоты - прямые вида у = а. Такие асимптоты имеет график функции, предел которой при или при конечен, т.е. .

3. Наклонные асимптоты - прямые вида y = kx + b. Найдем k и b. Поскольку при , , если этот предел существует, конечен и не равен нулю. Однако даже при выполнении этих условий наклонная асимптота может не существовать. Для ее существования требуется, чтобы имелся конечный предел при разности f(x) - kx. Этот предел будет равен b , так как при .

Общая схема исследования функции.

1) область определения функции и ее поведение на границах области определения (найти соответствующие односторонние пределы или пределы на бесконечности);

2) четность и периодичность функции;

3) интервалы непрерывности и точки разрыва (указав при этом тип разрыва);

4) нули функции (т.е. значения х , при которых f(x) = 0) и области постоянства знака;

5) интервалы монотонности и экстремумы;

6) интервалы выпуклости и вогнутости и точки перегиба;

7) асимптоты графика функции.

Вопросы для самопроверки.

1.Каков геометрический смысл производной7

2.Каков геометрический смысл дифференциала?

3.Как использовать дифференциал для приближенного вычисления функции?

4.Как найти производную и дифференциал произведения трех функций7

5.Пользуясь определением производной, найдите производную функции у=3х.

6.Как вычисляется производная сложной функции? приведите пример.

7.Что такое вторая производная?

8.Как использовать формулу Тейлора для вычисления приближенных значений функции?

9.Каковы условия возрастания и убывания функции?

10.Сформултруйте необходимое и достаточное условие максимума дифференцируемой функции. В чем различие между необходимым и достаточным условием?

11.Что такое точка перегиба?

12.Какие бывают асимптоты? Приведите примеры.

КОНТРОЛЬНАЯ РАБОТА №1

Задача 1.

Даны векторы a и b. Найти вектор c = a + b и скалярное произведение (a ·b),

где a = {1, M + 4, -1, N - 5},b = {-M + 5, -1, 5 - N, 2} .

Задача 2.

Даны матрица А = || аij|| размерностью 33 и вектор-строка b. Найти произведения Ат bт и b А;

аij = -i - j + M - N - 4, b = {M-5, 1, 4-N}/

Задача 3.

Даны матрицы А = || аij|| и В = || bij || размерностью 33. Проверить, коммутативны ли матрицы А и В, найти определители матриц. Элементы матриц вычисляются по формулам: аij = -i - j + M, bij = 2i - j + N - 5.

Задача 4.

Решить систему линейных алгебраических уравнений методом Гаусса и с помощью формул Крамера.

х + 2у + 3z = 10,

-2х + у + (N-5)z = N-9,

x - y + 6z = 7.

Задача 5.

Составить систему из двух уравнений с двумя неизвестными так, чтобы она:

имела единственное решение;

не имела решений;

имела бесконечно много решений.

Найти определители этих систем, учитывая, что каждое из уравнений системы является уравнением прямой линии на плоскости, изобразить эти прямые и пояснить, что означает каждый из трех вариантов с точки зрения взаимного расположения прямых.

Задача 6.

Найти расстояние между точками А ( N + 2, -M - 1, M + N) и B ( M,N,M - N) в трехмерном пространстве.

Найти точку пересечения прямых у = - (N +1)x +2 и y = (M +1)x - N - M.

Найти уравнение прямой, проходящей через точку ( M +1,N +1) и перпендикулярной к прямой у = - 2х -1.

какая кривая описывается уравнением (N+1)x2 + (M+1)y2 =4? Написать каноническое уравнение этой кривой.

Задача 7.

Найти области определения функций:

а) у = 11 - N - 2x ; б) у = 1 ;

х2 + 2 M + 3 x + M + 2

Задача 8.

1. Найти сумму, разность, произведение и частное комплексных чисел z1 = N + 1 +2i, z2 = -2 + (M +1)i.

2. Разложить на множители многочлен х2 - 2 N + 5 х + N + 6.

КОНТРОЛЬНАЯ РАБОТА №2

Задача1.

1. Найти пределы:

а) lim [(N + 5)x2 + ( M +2) x + ( N + M)];

x 2

б) lim {(10 - N )ln[ e + tg (arcsin x )] + (10 - M)sin [ M + 1) arctg ex]};

x 0

в) lim (M+3)xN+5 + (M+1)xN+2+1

x (2M+2)xN+5-1

г) lim N+1+(10-M)x - N+1 -(2M-9)x

x0 x

д) lim [ x2(N+1) + (M +5)xN+1 - x2(N+1) - (M +1) x N+1]

х

е) lim sin [(10 - N)x]

x 0 ln[1+(12-M)x]

3. В каких точках непрерывны функции:

а) у = tg (M+3)x ; б) y = 1 ;

x2 + 2 N + 3 x + N + 2

Задача №2

Найти производные функций:

1) у = ( M+N+5)xM+N+2 2) y = ln(x+N)cos(M+2)x-e(N+1)x tg(M+2)x

3) y = arctg9N+2)x 4) y = sin[ln(3x+N+2)]-arctg[cos(M+3)x]

ln(2x+M+1)

Задача 3.

Найти вторую производную функции у = е(N+2)чcos(М+2)х.

Задача 4.

Пользуясь понятием дифференциала, вычислить приближенное значение функции

у = ln[1 + (N+2)x] при х = 0,1

5

Задача 5.

Разложить по формуле Тейлора в окрестности точки х = 0 до членов порядка х2 функцию

у = cos (М+1)х + ln 1 + (N+2)х и найти ее приближенное значение при х = 0,1. Почему

4

это приближенное значение более точно соответствует истинному значению функции, чем приближенное значение, полученное с помощью первого дифференциала?

Задача 6.

Пользуясь формулой Тейлора, найти предел lim tg [(N+2)x] ;

x0 ln [ 1 -(M+3)x]

Задача 7.

Исследовать функции и построить их графики:

а) у = (N+2)x2+x+1 б) y = M+2

x x2+1.

Правила выполнения и оформления контрольных работ

В первом семестре выполняются контрольные работы 1 и 2. Вариант каждой задачи выбирается по последней и предпоследней цифрам номера студенческого билета (зачетной книжки). Последняя цифра обозначается буквой N, предпоследняя - буквой М. Например, для зачетной книжки № 147 N=7, М=4. При выполнении контрольных работ необходимо придерживаться указанных ниже правил. Работы, выполненные без соблюдения этих правил, не зачитываются и возвращаются студенту для переработки.

Каждая контрольная работа должна быть выполнена в отдельной тетради в клетку чернилами синего или черного цвета, кроме красного. Необходимо оставлять поля шириной 4-5 см для замечаний рецензента.

В заголовке работы на обложке тетради должны быть ясно написаны фамилия студента, его инициалы, учебный номер (номер зачетной книжки), название дисциплины, номер контрольной работы; здесь же следует указать название учебного заведения, дату отсылки работы в институт и адрес студента. В конце работы следует поставить дату ее выполнения и подпись студента.

Федеральное агентство по рыболовству

Федеральное государственное образовательное учреждение высшего профессионального образования

Мурманский государственный технический университет

Мончегорский филиал

Кафедра ЕН и ОПД

Математика

Контрольная работа №1

Выполнил:

студент ...................................

курса.......................................

группы....................................

заочная форма обучения

специальность.......................

зачетная книжка №...............

Проверил:

ученая степень, должность

Фамилия, имя , отчество

Мончегорск, 2007

В работу должны быть включены все задачи, указанные в задании, строго по положенному варианту контрольной работы. Задания, содержащие не все задачи, а также задачи не своего варианта, не зачитываются.

Решения задач надо располагать в порядке возрастания их номеров, указанных в задании, сохраняя номера задач.

Перед решением каждой задачи надо полностью выписать ее условие. В том случае, если несколько задач имеют общую формулировку, следует, переписывая условие задачи, заменить общие данные конкретными, взятыми из соответствующего номера.

Решения задач следует излагать подробно и аккуратно, объясняя и мотивируя все действия по ходу решения и делая необходимые чертежи.

После получения прорецензированной работы, как не зачтенной, так и зачтенной, студент должен исправить все отмеченные рецензентом ошибки и недочеты и выполнить все рекомендации рецензента.

Если рецензент предлагает внести в решения задач исправления или дополнения и прислать их для повторной проверки, то это следует сделать в короткий срок.

В случае незачета работы и отсутствия прямого указания рецензента о том, что студент может ограничиться представлением исправленных решений отдельных задач, вся работа должна быть выполнена заново.

При высылаемых исправлениях должна обязательно находиться прорецензированная работа и рецензия на нее. Поэтому рекомендуется при выполнении контрольной работы оставлять в конце тетради несколько чистых листов для всех дополнений и исправлений в соответствии с указаниями рецензента.

Вносить исправления в сам текст работы после ее рецензирования запрещается.


Подобные документы

  • Число как основное понятие математики. Натуральные числа. Простые числа Мерсенна, совершенные числа. Рациональные числа. Дробные числа. Дроби в Древнем Египте, Древнем Риме. Отрицательные числа. Комплексные, векторные, матричные, трансфинитные числа.

    реферат [104,5 K], добавлен 12.03.2004

  • Вектор - направленный отрезок, имеющий начало и конец, его свойства. Виды определения векторов, действия над ними. Правила сложения векторов, их сумма. Скалярное произведение векторов. Особенности использования векторов. Решение геометрических задач.

    контрольная работа [640,1 K], добавлен 18.01.2013

  • Мнимые и действительные, равные и сопряжённые комплексные числа; модуль и аргумент. Арифметические действия над множеством комплексных чисел: сумма, разность, произведение, деление. Представление комплексных чисел на координатной комплексной плоскости.

    презентация [60,3 K], добавлен 17.09.2013

  • Элементы алгебры и введение в математический анализ. Дифференциальное исчисление функций одной или нескольких переменных и элементы дифференциальной геометрии. Интегральное исчисление. Числовые и функциональные ряды. Кратные и криволинейные интегралы.

    дипломная работа [188,5 K], добавлен 09.03.2009

  • Натуральные, целые, иррациональные числа. Арифметическая и геометрическая прогрессии. Экономические вопросы, связанные с деньгами, прибылью, доходами. История открытий (Эвклид, Архимед, Лобачевский, Эйнштейн).

    творческая работа [50,0 K], добавлен 18.06.2007

  • Краткие теоретические сведения по важнейшим темам курса "Высшая математика", рассмотрены типовые задачи с учетом ГОСа по специальности "Информационные системы" и "Вычислительные системы и комплексы", предложены контрольно-измерительные материалы.

    учебное пособие [1,1 M], добавлен 30.11.2009

  • Учебное пособие "Высшая математика для менеджеров" включает разделы высшей математики, изучение которых применяется для решения прикладных экономических и управленческих задач - это аналитическая геометрия, линейная алгебра и математический анализ.

    дипломная работа [468,8 K], добавлен 24.04.2009

  • Вектор - элемент векторного пространства (некоторого множества с двумя операциями на нем, которые подчиняются восьми аксиомам). Свободный и связанный векторы. Евклидовая норма и правило параллелограмма. Скалярное произведение и умножение вектора на число.

    контрольная работа [102,6 K], добавлен 03.07.2011

  • Системы линейных уравнений. Функции: понятия и определения. Комплексные числа, действия над ними. Числовые, функциональные, тригонометрические ряды. Дифференциальные уравнения. Множества, операции над ними. Теория вероятностей и математической статистики.

    учебное пособие [4,7 M], добавлен 29.10.2013

  • Алгоритм упорядочивания множества. Определение декартового произведения, его графическая интерпретация. Обратное декартово произведение множеств. Проецирование на оси координат и на координатные плоскости. Область определения и область значений.

    лекция [126,5 K], добавлен 18.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.