Измеримые множества
Мера ограниченного открытого множества. Мера ограниченного замкнутого множества. Внешняя и внутренняя меры ограниченного множества. Измеримые множества. Измеримость и мера как инварианты движения. Класс измеримых множеств.
Рубрика | Математика |
Предмет | Высшая математика |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | Александр |
Дата добавления | 28.05.2007 |
Размер файла | 122,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Градусная и радианная мера угла. Функция как соотношение между двумя числовыми множествами, размерность числового множества. Понятие множества значений некоторого угла. Элементарные тригонометрические функции произвольного угла: синус, косинус, тангенс.
реферат [239,9 K], добавлен 19.08.2009Теория частичных действий как естественное продолжение теории полных действий. История создания и перспективы развития теории упорядоченных множеств. Частично упорядоченные множества. Вполне упорядоченные множества. Частичные группоиды и их свойства.
реферат [185,5 K], добавлен 24.12.2007Понятие множества, его обозначения. Операции объединения, пересечения и дополнения множеств. Свойства счетных множеств. История развития представлений о числе, появление множества натуральных, рациональных и действительных чисел, операции с ними.
курсовая работа [358,3 K], добавлен 07.12.2012Понятие множества и его элементов. Обозначение принадлежности элемента множеству. Конечные и бесконечные множества. Строгое и нестрогое включение. Способы задания множеств. Равенство множеств и двухсторонее включение. Диаграммы Венна для трех множеств.
презентация [564,8 K], добавлен 23.12.2013Определения понятия множество. Предельная точка множества, предел функции в точке. Эквивалентные, счетные и несчетные множества. Замкнутые и открытые множества. Функции на множестве. Свойства непрерывных функций на замкнутом ограниченном множестве.
курсовая работа [222,3 K], добавлен 11.01.2011Понятие множества, его трактование Георгом Кантором. Условные обозначения множеств. Виды множеств, способы их задания. Операции над множествами (пересечение, объединение, разность и дополнение), условия их равенства и основные свойства, отношения.
презентация [1,2 M], добавлен 12.12.2012Основные понятия размерности упорядоченных множеств. Определение размерности упорядоченного множества. Свойства размерности конечных упорядоченных множеств. Порядковая структура и элементы алгебраической теории решёток.
дипломная работа [191,8 K], добавлен 08.08.2007Алгоритм упорядочивания множества. Определение декартового произведения, его графическая интерпретация. Обратное декартово произведение множеств. Проецирование на оси координат и на координатные плоскости. Область определения и область значений.
лекция [126,5 K], добавлен 18.12.2013Нумерация как отображение некоторого подмножества множества натуральных чисел N на исследуемый класс конструктивных объектов. Приведение к общему знаменателю на основе понятия нумерованного множества. Каноническое представление морфизма функции.
реферат [2,1 M], добавлен 16.05.2009Свойства множества Кантора. Исследование заданной функции на непрерывность. Выражение множества B (кладбище Серпинского) и D (гребёнка Кантора) через множество Кантора. Свойства и построение всюду непрерывной, но нигде не дифференцируемой функции.
курсовая работа [1,1 M], добавлен 24.06.2015