Логические задачи и методы их решения

Способы решения логических задач типа "Кто есть кто?" методами графов, табличным способом, сопоставлением трех множеств; тактических, истинностных задач, на нахождение пересечения множеств или их объединения. Буквенные ребусы и примеры со звездочками.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 15.06.2010
Размер файла 622,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Задачи довольно сложны для понимания и требуют некоторой подготовки, некоторого опыта логических рассуждений. Однако один раз встретившись с такой задачей, учащиеся успешно решают ей подобные почти не затрудняясь.

1.7 Задачи типа «Два города»

в задачах типа «Два города» рассуждения еще усложняются. Эти задачи требуют постановки вопроса учащимися, т.е. анализа исходных данных и информации, которую необходимо получить. Рассмотрим пример.

Задача 27. «Марсиане». Наблюдения показали, что планета Марс почти пустынна, за исключением двух больших городов: Марс-Полиса и Марс-Сити. Жители Марс-Полиса никогда не лгут, а жители Марс-Сити не говорят правду. Марсиане свободно перемещаются из одного города в другой, поэтому некоторые жители Марс-Полиса могут находится в Марс-Сити, и наоборот. Однажды два американских аэронавта оказались в одном из этих городов. Увы, они не знали, в каком именно. Когда один марсианин приблизился к ракете, первый аэронавт спросил у него (на языке, который должен был понимать марсианин), находятся ли они в Марс-Сити.

- Нет, - ответил марсианин, который, может быть, и солгал (мы забыли сказать, что неразговорчивые марсиане на все вопросы отвечали только «да» или «нет»). Тогда второй аэронавт задал марсианину очень хитрый вопрос, который позволил аэронавтам определить, в каком городе они оказались. Что это был за вопрос?

Решение. Второй аэронавт спросил: «Вы живете здесь?». Если аэронавты находятся в Марс-Полисе, то ясно, что марсианин ответит «да», откуда бы родом он ни был. Если они находятся в Марс-Сити, то марсианин, очевидно, ответит «нет». Как только аэронавты узнают, в каком городе они находятся, их первый вопрос позволит легко определить, откуда родом встретившийся им марсианин.

Интересные задачи такого типа приведены в книгеРеймонда Смаллиана «Принцесса и тигр».

Задача 28. «Рыцари, плуты и нормальные люди». На одном острове, где живут рыцари, плуты и нормальные люди, рыцари всегда говорят только правду, плуты всегда лгут, а люди, которых принято называть нормальными, в одних случаях лгут, а в других высказывают правду. Однажды я посетил этот остров и встретил двух его обитателей. А и В. еще раньше мне было известно, что один из них рыцарь, а другой - нормальный человек, однако я не знал, кто же именно. Я спросил А, является ли В нормальным человеком, на что А ответил мне вполне определенно. Тут я сразу понял, кем являются аА и В. Итак, кто же из этих обитателей острова нормальный человек?

Решение. Если бы А ответил «да», то он мог оказаться либо рыцарем, либо нормальным человеком и лгал. Однако в этом случае невозможно узнвть точно, кем является А в действительности. Если бы А ответил «нет», то он не мог бы оказаться рыцарем, поскольку в этом случае В был бы нормальным человеком, а сам А лгал. Поэтому А должен был быть нормальным человеком. Однако выяснить, кем же является А на самом деле, я мог лишь в одном случае, если бы А сказал «нет». Значит А действительно нормальный человек.

ЗАКЛЮЧЕНИЕ

Я изучила логические задачи и методы их решения. В курсовой работе специально был подобран интересный материал, который не встречается в школьном курсе, а если и встречается, то менее ярко преподносится. В эту курсовую работу было внесено много примеров и задач, которые помогают лучше понять данный материал.

Важно не научить, а увлечь предметом школьника. Если это удастся, то ребенок сам будет изучать те аспекты предмета, которые не предусмотрены школьным курсом.

Думаю, данная работа может послужить методическим пособием для проведения краткого факультатива, но нужно учитывать, что единой системы

СПИСОК ЛИТЕРАТУРЫ

1. А.В. Дмитриева, А.Ф. Овчиников. «Логические задачи. Методы решения.». Новосибирск 2005.

2. Бизам Д., Герцог Я. Игра и логика. Москва: Мир, 1975.

3. Арифметика: Учебник для 5 кл. общеобразовательных учреждений/ С. М. Никольский, М. К. Потапов, Н.Н. Решетников, А.В. Шевкин./ - 2-е изд. - Москва: Просвещение, 2002.

4. Арифметика: Учебник для 6 кл. общеобразовательных учреждений/ С.М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин./ - 2-е изд. - Москва: Просвещение, 2002.

5. Беррондо М. Занимательные задачи. Москва: Мир, 1983.


Подобные документы

  • Применение граф-схем - кратчайший путь доказательства теорем. Нахождение искомых величин путем рассуждений. Алгоритм решения логических задач методами таблицы и блок-схемы. История появления теории траекторий (математического бильярда), ее преимущества.

    реферат [448,4 K], добавлен 21.01.2011

  • Понятие множества и его элементов. Обозначение принадлежности элемента множеству. Конечные и бесконечные множества. Строгое и нестрогое включение. Способы задания множеств. Равенство множеств и двухсторонее включение. Диаграммы Венна для трех множеств.

    презентация [564,8 K], добавлен 23.12.2013

  • Понятие множества, его обозначения. Операции объединения, пересечения и дополнения множеств. Свойства счетных множеств. История развития представлений о числе, появление множества натуральных, рациональных и действительных чисел, операции с ними.

    курсовая работа [358,3 K], добавлен 07.12.2012

  • Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.

    презентация [247,7 K], добавлен 20.02.2015

  • Нахождение полинома Жегалкина методом неопределенных коэффициентов. Практическое применение жадного алгоритма. Венгерский метод решения задачи коммивояжера. Применение теории нечетких множеств для решения экономических задач в условиях неопределённости.

    курсовая работа [644,4 K], добавлен 16.05.2010

  • Понятия множеств и их элементов, подмножеств и принадлежности. Способы задания множеств, парадокс Рассела. Количество элементов или мощность. Сравнение множеств, их объединение, пересечение, разность и дополнение. Аксиоматическая теория множеств.

    курсовая работа [1,5 M], добавлен 07.02.2011

  • Составление четкого алгоритма, следуя которому, можно решить большое количество задач на нахождение угла между прямыми, заданными точками на ребрах многогранника. Условия задач по теме и примеры их решения. Упражнения для решения подобного рода задач.

    практическая работа [1,5 M], добавлен 15.12.2013

  • Определение понятия множеств Г. Кантора, их примеры и обозначения. Способы задания, включение и равенство множеств, операции над ними: объединение, пересечения, разность, дополнение, их определение и наглядное представление на диаграмме Эйлера-Венна.

    реферат [70,9 K], добавлен 11.03.2009

  • Понятие "задача" и процесс ее решения. Технология обучения приемам восприятия и осмысления, поиска и составления плана решения. Методика обучения решению задач различными методами. Сущность, смысл и обозначение дробей, практические способы их сравнения.

    методичка [242,5 K], добавлен 03.04.2011

  • Рассмотрение общих сведений обратных задач математической физики. Ознакомление с методами решения граничных обратных задач уравнений параболического типа. Описание численного решения данных задач для линейно упруго-пластического режима фильтрации.

    диссертация [2,8 M], добавлен 19.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.