Дослідження збіжності рішень для диференціальних рівнянь у частинних похідних, отриманих методом сіток

Чисельні методи рішення диференціальних рівнянь у частинних похідних 2-го порядку, початкові і крайові умови. Метод сіток та представлення часткових похідних у скінчено-різницевому вигляді. Структура похибки розв'язку задачі, стійкість і коректність.

Рубрика Математика
Предмет Чисельні методи
Вид курсовая работа
Язык украинский
Прислал(а) m32
Дата добавления 22.08.2010
Размер файла 986,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Методи скінченних різниць або методи сіток як чисельні методи розв'язку інтегро-диференціальних рівнянь алгебри диференціального та інтегрального числення. порядок розв’язання задачі Діріхле для рівняння Лапласа методом сіток у прямокутної області.

    курсовая работа [236,5 K], добавлен 11.06.2015

  • Рішення з заданим ступенем точності задачі Коші для системи диференціальних рівнянь на заданому інтервалі. Формування мінімальної погрішності на другому кінці. Графіки отриманих рішень і порівняння їх з точним рішенням. Опис математичних методів рішення.

    курсовая работа [258,9 K], добавлен 27.12.2010

  • Поняття диференціальних рівнянь. Задача Коші і крайова задача. Класифікація методів для задачі Коші. Похибка методу Ейлера. Модифікований метод Ейлера-Коші. Пошук рішення задачі однокроковим методом Ейлера. Порівняння чисельного рішення з точним рішенням.

    презентация [294,4 K], добавлен 06.02.2014

  • Власні числа і побудова фундаментальної системи рішень. Однорідна лінійна система диференціальних рівнянь. Побудова фундаментальної матриці рішень методом Ейлера. Знаходження наближеного рішення у вигляді матричного ряду. Рішення неоднорідної системи.

    курсовая работа [378,9 K], добавлен 26.12.2010

  • Загальні властивості диференціальних рівнянь Ріккаті. Прості випадки інтегрованості в квадратурах. Побудова загального розв’язку у випадку, коли відомий один частинний розв’язок. Структура загального розв’язку, коли відомо два або три частинних розв’язки.

    курсовая работа [134,0 K], добавлен 22.01.2013

  • Розгляд крайової задачі для нелінійного рівняння другого порядку. Вивчення різницевого методу розв'язання крайових задач для звичайних диференціальних рівнянь. Метод прогонки - окремий випадок методу Гауса. Програма на алгоритмічній мові Turbo Pascal.

    курсовая работа [49,7 K], добавлен 10.04.2011

  • Етапи розв'язування задачі дослідження певного фізичного явища чи процесу, зведення її до диференціального рівняння. Методика та схема складання диференціальних рівнянь. Приклади розв'язування прикладних задач за допомогою диференціального рівняння.

    контрольная работа [723,3 K], добавлен 07.01.2016

  • Графічний спосіб розв'язку рівнянь. Комбінований метод пошуку та відокремлення коренів. Метод Ньютона (метод дотичних або лінеаризації). Процедура Ейткена прискорення збіжності. Метод половинного поділу та простих ітерацій уточнення коренів рівняння.

    лекция [1,9 M], добавлен 27.07.2013

  • Класичні та сучасні наближені методи розв'язання диференціальних рівнянь та їх систем. Класифікація наближених методів розв'язування. Розв'язування трансцендентних, алгебраїчних і диференціальних рівнянь, методи чисельного інтегрування і диференціювання.

    отчет по практике [143,9 K], добавлен 02.03.2010

  • Розгляд найбільш відомих скінченно-різнецевих методів рішення рівнянь руху з непереривною силою: чисельна ітерація рівнянь Ньютона; алгоритм Бімана і Шофілда; метод Рунге-Кутта; методи Адамса, Крилова, Чаплигіна. Програма Рунге-Кутта на мові С#.

    курсовая работа [359,5 K], добавлен 27.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.