Комбинаторика и вероятность

Основные принципы и формулы классической комбинаторики. Использование методов комбинаторики в теории вероятностей. Формулы числа перестановок, сочетаний, размещений. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Решение комбинаторных задач.

Рубрика Математика
Вид учебное пособие
Язык русский
Дата добавления 07.05.2012
Размер файла 659,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Например, в кондитерском магазине продаются пирожные 4 видов: корзиночки, наполеоны, песочные и эклеры. Если куплено 3 корзиночки (к), 1 наполеон (н), 2 песочных (п) и 1 эклер (э), то получим такую запись:

В этой записи палочки отделяют одну группу пирожных от другой. Если же куплено 2 корзиночки и 5 песочных, то получим запись . Ясно, что разным покупкам соответствуют при этом разные комбинации из 7 единиц и 3 палочек. Обратно, каждой комбинации единиц и палочек соответствует какая-то покупка. Например, комбинации соответствует покупка 3 наполеонов и 4 песочных (крайние группы отсутствуют).

В результате мы получим столько единиц, сколько предметов входит в комбинацию, т.е. k, а число палочек будет на 1 меньше, чем число типов предметов, т.е. n-1. Таким образом, мы получим перестановки с повторениями из k единиц и n-1 палочек. Различным комбинациям при этом соответствуют различные перестановки с повторениями, а каждой перестановке с повторениями соответствует своя комбинация.

Итак, число сочетаний с повторениями из элементов n типов по k равно числу P(k,n-1) перестановок с повторениями из n-1 палочек и k единиц. А

. Поэтому.

Пример 12.1. В кондитерской имеется 3 вида пирожных. Сколькими способами можно купить 9 пирожных?

Решение. В задаче требуется найти число всевозможных групп по 9 элементов, которые можно составить из данных трех различных элементов, причем указанные элементы в каждой группе могут повторяться, а сами группы отличаются друг от друга хотя бы одним элементом. Это задача на отыскание числа сочетаний с повторениями из трех элементов по девять. Следовательно,

Пример 12.2. В почтовом отделении продаются открытки 10 сортов. Сколькими способами можно купить в нем 12 открыток? 8 открыток? Сколькими способами можно купить 8 различных открыток?

Решение. Данная задача на отыскание числа сочетаний с повторениями из 10 элементов по 10. Следовательно,

, .

В случае, когда требуется купить 8 различных открыток, получим сочетания без повторений:

.

Пример 12.3. Сколько всего чисел (не больше 100000) можно составить из цифр 1, 2, 3, 4 и 5 в каждом из которых цифры расположены в неубывающем порядке?

Решение. Это задача о числе сочетаний из пяти цифр по одному, по два, по три, по четыре и по пяти с повторениями в каждом случае. Поскольку , , , , , то существует чисел, удовлетворяющих условию задачи.

Упражнения

12.1. Сколькими способами Буратино, кот Базилио и лиса Алиса могут поделить между собой 5 одинаковых золотых монет?

Ответ: .

12.2. В кондитерской имеется пять разных сортов пирожных. Сколькими способами можно выбрать набор из четырёх пирожных?

Ответ: .

12.3. Сколько существует треугольников, длины сторон которых принимают одно из значений 4, 5, 6, 7?

Ответ: .

12.4. Сколько можно построить различных прямоугольных параллелепипедов, длина каждого ребра которых является целым числом от 1 до 10?

Ответ: .

13. ФОРМУЛА ВКЛЮЧЕНИЙ И ИСКЛЮЧЕНИЙ

Принцип сложения можно применять в тех случаях, когда все множество перечисляемых комбинаций разбивается на попарно непересекающиеся группы комбинаций. Обобщим принцип сложения на случай, когда могут иметь место случаи непустых пересечений.

Размещено на http://www.allbest.ru/

Пусть имеется n предметов, которые могут обладать двумя свойствами A и B. При этом каждый предмет может либо не обладать ни одним из этих свойств, либо обладать одним или обоими свойствами. Обозначим через n(A), n(B), n(AB) количество предметов, обладающих свойством A, свойством B, обоими свойствами. Тогда число предметов, обладающих хотя бы одним из указанных свойств, равно

. (13.1)

Появление третьего слагаемого связано с тем, что число предметов обладающих обоими свойствами при сложении n(A) и n(B) учитывались дважды (см. рис. 13.1).

Формула (13.1) является частным случаем более общей формулы:

(13.2)

которую называют формулой перекрытий, или формулой включений и исключений. Чаще эту формулу записывают в следующем виде.

Обозначим символом свойство A, которым данные предметы не обладают. Тогда число предметов, не обладающих ни одним из указанных свойств, будет равно

(13.3)

Здесь алгебраическая сумма распространена на все комбинации свойств A1,…,Am (без учета их порядка), причем знак «+» ставится, если число учитываемых свойств четно, и знак «-», если это число нечетно. Название формулы (13.2) как формулы включений и исключений связано с тем, что сначала исключаются все предметы, обладающие хотя бы одним из свойств, потом включаются предметы, обладающие по крайней мере двумя из этих свойств, после этого исключаются предметы, обладающие по крайней мере тремя свойствами, и т.д.

В случае трёх свойств формулы (13.2) и (13.3) примут вид:

, (13.4)

. (13.5)

Пример 13.1. В научно-исследовательском институте работают 67 человек. Из них 47 знают английский язык, 35 - немецкий язык и 23 - оба языка. Сколько человек в институте не знают ни английского, ни немецкого языков?

Решение. Обозначим через A - сотрудников, знающих английский язык, через B - сотрудников, знающих немецкий язык. По условию

Тогда

.

Итак, 8 человек не знают ни английского, ни немецкого языка.

Пример 13.2. Сколько можно сделать перестановок из n элементов, в которых данные два элемента a и b не стоят рядом? Данные три элемента a, b, c не стоят рядом (в любом порядке)? Никакие два из элементов a, b, c не стоят рядом?

Решение. Если a и b стоят рядом, то их можно объединить в один знак. Учитывая, что a и b можно переставлять местами, получаем перестановок, в которых a и b стоят рядом. Тогда в

случаях они не стоят рядом. Точно также получаем, что a, b, c не стоят рядом

случаях. Никакие два из элементов a, b, c не стоят рядом

случаях (формула включений и исключений).

Пример 13.3. Сколькими способами можно посадить рядом 3 англичан, 3 французов и 3 немцев так, чтобы никакие три соотечественника не сидели рядом?

Решение. 9 человек можно пересаживать 9! способами. Найдём, во скольких перестановках 3 англичанина сидят рядом. Все такие перестановки получаются из одной пересаживанием между собой англичан (3! способов) и 3 французов и 3 немцев и компании из трех англичан (7! способов). Всего получаем 3!7! перестановок. Во стольких же перестановках сидят рядом 3 французов и во стольких же - 3 немцев. Далее, в (3!)25! перестановках сидят рядом трое англичан и трое французов, а также трое англичан и трое немцев, трое французов и трое немцев. И, последнее, в (3!)4 перестановках сидят рядом и англичане, и французы, и немцы. В результате, по формуле включений и исключений, находим

способа.

Упражнения

13.1. На загородную прогулку поехали 92 человека. Бутерброды с колбасой взяли 47 человек, с сыром - 38 человек, с ветчиной - 42 человека, и с сыром и с колбасой - 28 человек, и с колбасой и с ветчиной - 31 человек, и с сыром и с ветчиной - 26 человек. Все три вида бутербродов взяли 25 человек, а несколько человек вместо бутербродов захватили с собой пирожки. Сколько человек взяли с собой пирожки?

Ответ: 25.

13.2. В отделе научно-исследовательского института работают несколько человек, причем каждый из них знает хотя бы один иностранный язык, 6 человек знает английский язык, 6 - немецкий, 7 - французский, 4 знают английский и немецкий, 3 - немецкий и французский, 2 - французский и английский, 1 человек знает все три языка. Сколько человек работает в отделе? Сколько из них знают только английский язык? Сколько человек знают только один язык?

Ответ: По формуле включений и исключений число работающих равно 6+7+6-4-3-2+1=11. Только английский знают 6-4-2+1=1, только немецкий 6-4-3+1=0, только французский 7-3-2+1=3. Т.о., только один язык знают 4 человека.

13.3. Староста одного класса дал следующие сведения об учениках: «В классе учатся 45 школьников, в том числе 25 мальчиков. 30 школьников учатся на хорошо и отлично, в том числе 16 мальчиков. Спортом занимаются 28 учеников, в том числе 18 мальчиков и 17 школьников, учащихся на хорошо и отлично. 15 мальчиков учатся на хорошо и отлично и занимаются спортом». Покажите, что в этих сведениях есть ошибка.

Ответ: Число школьников, которые не учатся на хорошо и отлично и не занимаются спортом, равно 45-30-28+17=4. Число мальчиков, которые не учатся на хорошо и отлично и не занимаются спортом, равно 25-16-18+15=6, т.е. их больше 4, что не может быть.

13.4. В лифт сели 8 человек. Сколькими способами они могут выйти на четырех этажах так, чтобы на каждом этаже вышел, по крайней мере, один человек?

Ответ: 8 пассажиров могут распределиться между этажами 48 способами. Из них в 38 случаях на данном этаже, 28 случаях на данных двух этажах и в 1 случае на данных трех этажах не выйдет ни один человек. По формуле включений и исключений получаем способа.

13.5. Сколько неотрицательных целых чисел, меньших чем миллион, содержит все цифры 1, 2, 3, 4? Сколько чисел состоит только из этих цифр?

Ответ: По формуле включений и исключений получаем, что все цифры 1, 2, 3, 4 содержат чисел. Только из цифр 1, 2, 3, 4 состоят чисел.

14. АЛГЕБРА СОБЫТИЙ

Одним из основных понятий теории вероятностей является понятие случайного события. Под событием понимается любое явление, которое происходит в результате осуществления определенного комплекса условий и которые можно неоднократно повторять. Осуществление этого комплекса условий называют экспериментом (опытом, испытанием, наблюдением). Таким образом, любое событие в теории вероятностей рассматриваются как исход некоторого эксперимента. Поэтому события часто называют исходами. Например, бросание кубика можно считать испытанием, которое можно неоднократно повторять, а полученный результат - исходом испытания.

Событие называется случайным, если оно при одних и тех же условиях может как произойти, так и не произойти. Случайными будут, например, события: а) при подбрасывании игрального кубика выпадет 6 очков; б) при выстреле в мишень пуля попадет в «десятку»; в) по пути в школу вы встретите черную кошку.

Чтобы говорить о случайности или неслучайности какого-то события, нужно иметь возможность неоднократно наблюдать за ним. Недаром каждый из перечисленных примеров начинается со слов «при …» - то есть, при выполнении определенных условий. Эти условия могут создаваться специально или возникать в окружающей нас жизни.

Случайным экспериментом называют комплекс действий или условий, которые можно многократно повторять, а исход, к которому они приводят, заранее непредсказуем. С примерами случайных экспериментов вы, наверняка, сталкивались и раньше: а) подбрасывание монеты или игрального кубика; б) проведение лотереи; в) стрельба по мишени; г) подъем уровня воды во время весеннего половодья. Последний пример показывает, что случайные эксперименты может совершать и сама природа - в этом случае нам остается лишь наблюдать за их исходами.

Остановимся еще раз на двух важнейших свойствах случайного опыта - непредсказуемости и повторяемости.

Первым важным свойством случайного опыта является его непредсказуемость. Мы не можем заранее предсказать на какую сторону упадет подброшенная вверх монета или кубик; в какую точку мишени попадет пуля.

Вторым важным свойством случайного опыта является его повторяемость: мы (или природа) можем повторять опыт неограниченное число раз в одних и тех же (или очень близких) условиях.

Теория вероятностей не изучает уникальные эксперименты, которые нельзя повторить многократно, даже если их исходы непредсказуемы.

События будем обозначать заглавными буквами латинского алфавита: A, B, C и т.д.

Событие называется невозможными, если при проведении данного случайного эксперимента никогда не происходит. Например, события: а) при подбрасывании игрального кубика выпадет 7 очков; б) при подбрасывании трех монет число орлов окажется равно числу решек, являются, очевидно, невозможными.

Событие называется достоверным, если при проведении данного случайного эксперимента оно обязательно произойдет. Например, события: а) при подбрасывании игрального кубика выпадет меньше 7 очков; б) при подбрасывании трех монет число орлов окажется не равно числу решек, являются, очевидно, достоверными.

События A и B называются несовместными, если наступление одного из них исключает возможность появления другого. Например, при подбрасывании монеты могут наступить два события: выпадет «орел» или «решка». Однако, одновременно эти события, при одном подбрасывании, появится не могут. Если в результате испытания возможно одновременное появление событий A и B, то такие события называются совместными. Например, выпадение чётного числа очков при подбрасывании игральной кости (событие А) и числа очков, кратного трем (событие В) будут совместными, ибо выпадение шести очков означает наступление и события А, и события В.

Возможными исходами случайного эксперимента называются все взаимоисключающие друг друга варианты, одним из которых он должен завершиться. В результате эксперимента всегда происходит один и только один из его исходов. То есть, с одной стороны, в одном эксперименте не могут произойти сразу два исхода, с другой - эксперимент не может завершиться вообще без всякого исхода. Исходы эксперимента называют элементарными, если их нельзя поделить на более простые. Элементарные исходы в теории вероятностей называют еще элементарными событиями.

Заметим, что число возможных исходов случайного опыта может быть любым - от двух до бесконечности. Например, опыт с монетой имеет всего два возможных исхода (орел и решка), а опыт с кубиком - шесть. Но далеко не во всех случаях все возможные исходы опыта столь очевидны.

Из коробки с одним белым и двумя черными шарами вытаскивают наугад один шар. Сколько возможных исходов у этого опыта? Можно сказать два: шар окажется либо белым, либо черным. А можно сказать три: белый, черный-1, черный-2. И то, и другое правильно, просто во втором случае исходы выбраны более элементарными, а сам опыт описывается ими более детально.

Любое неэлементарное событие может наступить при различных исходах опыта. Все такие исходы называют благоприятными для этого события. Благоприятные они в том смысле, что приводят к его наступлению. Например, для случайного события «На кубике выпадет четное число очков» благоприятными исходами будут 2, 4 и 6.

Если обозначить множество всех возможных исходов опыта большой греческой буквой (читается омега), то каждый исход можно рассматривать как элемент этого множества , а любое случайное событие A - как его подмножество , состоящее из благоприятных для него исходов.

При этом невозможное и достоверное события получаются как два частных случая таких подмножеств: невозможному событию соответствует пустое множество исходов ; достоверному событию соответствует множество всех исходов опыта .

Итак, для любого случайного события A все исходы эксперимента делятся на два множества: благоприятные для этого события и все остальные, которые можно назвать неблагоприятными для него. Если рассматривать событие A как подмножество в множестве всех возможных исходов, то оно будет состоять из благоприятных исходов.

Например, выниманию из колоды одной карты можно поставить в соответствие множество элементарных событий (карт) с 36 исходами. Тогда событию B={вынут туз} соответствует подмножество B={туз пик, туз крести, туз буби, туз червы}.

Пример 14.1. Пусть эксперимент состоит в подбрасывании один раз игральной кости. Обозначим через X число выпавших очков. Построить пространство элементарных событий ? и указать состав подмножеств, соответствующих следующим событиям: A={X кратно3}, B={X - нечетно}, C={X < 7}, D={X > 7}.

Решение. Очевидно, что за элементарные события здесь лучше всего взять события: {1}, {2}, {3}, {4}, {5}, {6}, которые образуют полную группу несовместных событий. При помощи этих элементарных событий можно легко описать все перечисленные в задаче события:

A={3;6}, B={1;3;5}, C=?, D=.

Над событиями можно совершать те же самые операции, что и для множеств. В частности:

Произведением AB событий A и B называют событие, которое происходит тогда и только тогда, когда имеют место оба события A и B одновременно. Например, событие C={вынут туз черви} является произведением событий A и B, где A={вынута карта червонной масти}, а B={вынут туз}.

Суммой A+B событий A и B называют событие, которое происходит только тогда, когда имеет место либо событие A, либо событие B, либо оба вместе.

Разность A-B событий A и B называют событие, которое происходит только тогда, когда имеет место событие A, но не имеет место событие B.

Событие называется противоположным к событию, если оно происходит тогда и только тогда, когда не происходит . Другими словами, противоположное событие состоит из тех элементарных исходов множества , при которых событие не происходит, т.е. .

Действия над событиями становятся более наглядными, если придать им геометрическую интерпретацию в виде диаграмм Эйлера-Венна:

A+B

AB

A-B

B-A

Пример 14.2. Эксперимент состоит в подбрасывании двух игральных костей. Обозначим через X сумму очков, выпадавших на обеих костях. Описать следующие события A+B, AB, A-B, B-A, если A={X кратно трем}={3;6;9;12}и B={X нечетно}={3;5;7;9;11}. Тогда

A+B={3;5;6;7;9;11;12},

A-B={6;12},

AB={3;9},

B-A={5;7;11}.

Пример 14.3. Пусть имеется колода карт, из которой вынимается одна карта. Описать события AB, , A+B, A-B, , если A={вынутая карта - туз}, B={вынутая карта - черви}.

Ответ:

AB = {вынутая карта - червовый туз},

= {вынутая карта - червовая, но не туз},

A+B = {вынутая карта - либо туз, либо черви},

A-B = {вынутая карта -туз, но не черви},

= {вынутая карта - не туз и не черви}.

Используя операции над событиями, можно описывать более сложные события. Например, пусть A, B, C - три события, наблюдаемые в некотором эксперименте. Используя алгебру событий, опишем событие, произошло только событие А. Это означает, произошло событие A, но события B и С не произошли. Это можно записать следующим образом

.

Аналогично, можно описать события: произошло только одно событие, не важно какое или: произошло хотя бы одно событие. Все это можно коротко записать так

,

.

Пример 14.4. Пусть ёлочная гирлянда имеет следующий вид

Размещено на http://www.allbest.ru/

Опишите событие, что: а) цепь будет работать (т.е. загорится хотя бы одна лампочка), б) имеется разрыв цепи (т.е. ни одна лампочка не загорится).

Ответ: а) Для того чтобы цепь работала, нужно чтобы работала лампочка А и (операция умножения) верхняя или нижняя ветка гирлянды (операция сложения). Верхняя ветка будет работать, если будут работать и лампочка B, и лампочка C (операция умножения). Используя алгебру событий всё это можно записать в виде формулы:

.

б) Для того чтобы цепь не работала, нужно чтобы не работала лампочка А или (операция сложения) верхняя и нижняя ветка гирлянды (операция умножения). Верхняя ветка не будет работать, если не будут работать или лампочка B, или лампочка C (операция сложения). Используя алгебру событий всё это можно записать в виде формулы (для обозначения, что лампочка не работаем мы будем использовать символ противоположного события):

.

Упражнения

14.1. Имеется колода карт. Вынимается одна карта. Опишите события и если A={карта пиковой масти}, B={карта - дама}.

Ответ: ={вынутая карта - либо не пики, либо не дама}, ={вынутая карта - либо не пики, либо дама}.

14.2. В урне находится 12 шаров. Все они пронумерованы от 1 до 12. Опишите событие и (A-B)+(B-A), если A={шар с номером кратным 3}, B={шар с номером меньше 5}.

Ответ: ={5, 7, 8, 10, 11}, (A-B)+(B-A)={6, 9, 12, 1, 2, 4}.

14.3. В урне находится 12 шаров. Все они пронумерованы от 1 до 12. Опишите событие и , если А={шар, с номером кратным 4}, B={шар, с номером не меньше 6}.

Ответ: ={8, 12, 1, 2, 3, 5}, ={8, 12}.

14.4. Имеется электрическая цепь. Опишите, что: а) цепь будет работать, б) имеется разрыв цепи.

1) 2) .

Ответ: 1) , ;

2) , .

14.5. Имеется электрическая цепь. Опишите, что: а) цепь будет работать, б) имеется разрыв цепи.

1) 2) .

Ответ: 1) , ;

2) , .

15. ВЕРОЯТНОСТЬ СЛУЧАЙНЫХ СОБЫТИЙ

Чтобы охарактеризовать вероятность события числом, нужно установить единицу измерения вероятности. Здесь поступают следующим образом: достоверному событию приписывают вероятность, равную единице; невозможному - равную нулю. Таким образом, вероятность P(A) события А должна удовлетворять следующим условиям:

1) P(A)=1, если А - достоверное событие;

2) P(A)=0, если А - невозможное событие;

3) 0<P(A)<1, если А - случайное событие.

Существует несколько подходов к нахождению вероятности события: классический, геометрический, статистический, аксиоматический. Мы рассмотрим только классическое и статистическое определения вероятности.

Классическое определение вероятности основано на понятии равновозможности (или равновероятности). Это понятие относится к числу первичных, не подлежащим формальному определению. Оно лишь поясняется рядом простых и доступных примеров. Например, выпадение одной из сторон монеты или одной из граней игральной кости - равновозможные события. Это утверждение опирается на повседневную практику и симметрию изучаемого объекта. Симметрия возможных исходов чаще всего наблюдается в искусственно организованных опытах, где приняты специальные меры для ее обеспечения (например, тасовка карт или костей домино, которая для того и производится, чтобы каждая из них могла быть выбрана с одинаковой вероятностью; или же приемы случайного выбора группы изделий для контроля качества в производственной практике). В таких опытах подсчет вероятностей производится проще всего. Не случайно первоначальное свое развитие теория вероятностей получила на материале азартных игр.

Говорят, что несколько событий образуют полную группу, если в результате опыта неизбежно должно появиться хотя бы одно из них. Примеры событий, образующих полную группу: 1) появление «1», «2», «3», «4», «5», «6» очков при бросании игральной кости; 2) «два попадания», «два промаха», «одно попадание» при двух выстрелах по мишени; 3) «появление хотя бы одного белого», «появление хотя бы одного черного» шара при вынимании двух шаров из урны. Несовместные события, образующие полную группу, называются элементарными событиями (или элементарными исходами). Отметим, что события первого и второго примеров являются элементарными, а третьего - нет, т.к. они совместны.

Элементарные исходы, в которых интересующее нас событие наступает, называются благоприятствующими этому событию. Например, при бросании одной игральной кости для события, состоящего в том, что выпадет не более двух очков, благоприятствующими элементарными исходами будут выпадение «1» или «2» очков.

Классическое определение вероятности: вероятностью события А называется отношение числа m благоприятствующих этому событию исходов к общему числу n всех равновозможных несовместных элементарных исходов, образующих полную группу:

(15.1)

При вычислении вероятностей по классической схеме приходится решать фактически комбинаторные задачи. При решении конкретной комбинаторной задачи нужно вначале выяснить, каким способом вы будете ее решать, либо непосредственным применением принципов умножения и сложения, либо применением комбинаторных формул, но перед этим нужно выяснить какой вид комбинации имеется в задаче, важен ли в ней порядок или нет, допускаются повторения или нет.

Пример 15.1. В колоде 36 карт. Какова вероятность вынуть: а) туза; б) туза пик; в) тузы красного цвета; г) любую карту, кроме туза.

Решение. Найдем общее число возможных исходов. Поскольку вынимается только одна карта, то число всевозможных исходов будет n=36. Найдем число благоприятствующих исходов для каждого случая. а) В колоде всего четыре туза, следовательно, m1=4. Тогда

.

б) Имеется всего один пиковый туз, т.е. m2=1 и

.

в) Тузов красного цвета в колоде два (черви и бубни), т.е. m3=2 и

.

г) Карт, отличающихся от туза, в колоде всего m4=32. Следовательно, искомая вероятность будет равна

.

Пример 15.2. На школьной вечеринке разыгрывается 100 билетов, из них 25 - выигрышных. Главный приз - компьютер - 1, игровых приставок - 5 и остальные призы поощрительные - шариковые ручки. Какова вероятность того, что владелец одного билета: а) выиграет главный приз; б) выиграет ценный приз; в) хоть что-нибудь выиграет; г) выбросит деньги на ветер?

Решение. Очевидно, что общее исходов n=100. Рассмотрим каждую из ситуаций отдельно. а) Благоприятствующих исходов выиграть компьютер только один: m1=1. Поэтому вероятность выиграть компьютер будет

.

б) Для второго случая , т.е. вероятность выиграть ценный приз

.

в) Всего выигрышных билетов m3=25, следовательно, вероятность хоть что-нибудь выиграть равна

.

8) Поскольку проигрышных билетов m4=75, то вероятность выбросить деньги на ветер, т.е. ничего не выиграть, равна

.

Пример 15.3. В урне содержатся 3 синих, 5 красных и 2 белых шара. Из нее наудачу извлекаются сразу два шара. Найти вероятность того, что будут вынуты либо два белых шара, либо два разных цветных (синий и красный) шара.

Решение. Поскольку в данной задаче неважен порядок, то для решения будем применять сочетания без повторения (шары не возвращаются обратно в урну). Найдем общее число возможных исходов:

Теперь найдем число благоприятствующих возможных исходов. Два белых шара можно вынуть m1=C22=1 способом, два разных цветных шара m2=C31C51=35=15 способами. Тогда общее число благоприятствующих исходов, в соответствии с принципом сложения, равно m = m1+m2 = 16. Таким образом,

Пример 15.4. Наудачу взятый телефонный номер состоит из 5 цифр. Какова вероятность, что в нем все цифры разные?

Решение. Предположим, что равновозможны появления любой из 10 цифр во всех позициях телефонного номера. Поскольку при составлении пятизначным номеров важен порядок и возможны повторения, то общее число возможных пятизначных номеров будет равно

Номера, у которых все цифры разные, - это размещения без повторений

Таким образом, искомая вероятность (при сделанном предположении) будет равна

Упражнения

15.1. Зенитная батарея, состоящая из 3 орудий, производит залп по группе, состоящей из 4 самолётов. Каждое из орудий выбирает себе цель наудачу независимо от остальных. Найти вероятность того, что все орудия выстрелят: а) по разным самолётам; б) по одному и тому же самолёту.

Решение: В данной задаче важен порядок, т.е. различается, какое орудие и по какому самолету выстрелило. Следовательно, в данной задаче мы имеем дело с размещениями. Поскольку орудия могут выстрелить по одному и тому же самолету, то общее число возможных исходов будет равно числу размещений с повторениями .

а) Если все орудия выстрелят по разным самолетам, то будем иметь дело с размещениями без повторений. Тогда число благоприятствующих исходов будет равно . Таким образом,

.

б) Если все орудия выстрелят по одному и тому же самолету, то число благоприятствующих исходов будет равно . Таким образом,

.

15.2. Собрание, на котором присутствуют 20 человек, в том числе 8 женщин, выбирают делегацию из 5 человек. Найти вероятность того, что в делегацию войдут 3 женщины, считая, что каждый из присутствующих может быть избран с одинаковой вероятностью?

Ответ: .

15.3. Для уменьшения общего количества игр 10 команд случайным образом разбиты на две равные подгруппы. Определить вероятность того, что две наиболее сильные команды окажутся в одной подгруппе.

Решение: В данной задаче порядок неважен, т.е. не принимается во внимание порядок отбора команд в группу. Следовательно, в данной задаче мы имеем дело с сочетаниями. Для того чтобы разбить 10 на две равные подгруппы достаточно выбрать 5 команд, которые и образуют одну из подгрупп, тогда остальные образуют другую подгруппу. Таким образом, общее число разбиений команд на две равные подгруппы будет равно . Для того, чтобы разбить команды на две подгруппы с указанными условиями, можно поступить следующим образом. Либо выбрать две наиболее сильные команды (это можно сделать способами ), а затем добавить к ним 3 оставшиеся команды из оставшихся 8 не самых сильных команд ( способов). Либо выбрать сразу 5 команд из 8 не самых сильных команд ( способов). Тогда число благоприятствующих исходов будет равно . Таким образом,

.

15.4. Шесть различных книг случайных образом расставляют на полке. Найти вероятность того, что две определенные книги окажутся рядом.

Ответ: .

15.5. 10 вариантов контрольной работы распределены среди 6 студентов. Найти вероятность того, что варианты с номерами 1, 2 и 3 не будут использованы.

Ответ: .

15.6. В первой урне находятся 5 белых и 3 черных шара, во второй - 4 белых и 6 черных шаров. Из каждой урны случайным образом вынули по одному шару. Найти вероятность того, что оба шара будут разного цвета.

Ответ: .

15.7. В урне 4 белых и 5 черных шаров. Из урны взяли три шара. Какова вероятность того, что шары будут одного цвета?

Ответ: .

При различных подходах к вероятности, величина P(A) может трактоваться по-разному. На практике часто используются статистическое определение вероятности, т.е. под вероятностью события A понимается величина

, (15.2)

где под n понимается количество наблюдений результатов эксперимента, в которых событие A встречалось ровно m раз (конечно, число наблюдений n должно быть достаточно большим).

Пример 15.3. Аналитик по инвестициям собирает данные об акциях и отмечает, выплачивались ли по ним дивиденды и увеличивались или нет акции в цене за интересующий его период времени. Собранные данные были представлены в виде таблицы:

Выплата дивидендов

Цена увеличилась

Цена не увеличилась

Итого

Производилась

34

78

112

Не производилась

85

49

134

Итого

119

127

246

Если акция выбрана случайно из набора в 246 акций, то чему равна вероятность того, что: а) она из числа тех акций, которые увеличились в цене; б) по ней выплачены дивиденды; в) по ней не выплачены дивиденды, и она не выросла в цене.

Решение. Используя статистическое определение вероятности, легко получаем:

а) ;

б) ;

г) .

Упражнения

15.8. Статья в журнале «Business Week» обсуждает проблему заработной платы руководителей крупных корпораций. Следующая таблица составлена из данных этой статьи и содержит данные по ряду фирм, в которых руководители имели годовой доход свыше 1 млн. дол. и меньше 1 млн. дол. Таблица составлена в соответствии с тем, получали или нет владельцы акций этих корпораций годовой доход за обсуждаемый период времени.

Доход руководителя свыше 1 млн. дол.

Доход руководителя меньше 1 млн. дол.

Итого

Держатели акций получили доход

1

6

7

Держатели акций не получили доход

2

1

3

Итого

3

7

10

а) Если фирма выбрана случайным образом, чему равна вероятность того, что её руководитель имеет годовой доход свыше 1 млн. дол.?

б) Если фирма выбрана случайно, чему равна вероятность того, что держатели её акций получили годовой доход?

в) Зная, что некоторая фирма не выплатила дивиденды, чему равна вероятность того, что её руководитель имеет годовой доход свыше 1 млн. дол.?

г) Зная, что руководитель одной из фирм получает свыше 1 млн. дол. годового дохода, чему равна вероятность получения дивидендов держателями акций этой фирмы?

Ответ. а) 0,3; б) 0,7; в) 2/3; г) 1/3.

16. УМНОЖЕНИЕ ВЕРОЯТНОСТЕЙ

В задачах, использующих вероятностные количественные характеристики, приходится по вероятностям одних событий оценивать вероятности других событий. Для этого используются различные соотношения, в основе которых лежат теоремы сложения и умножения вероятностей.

Событие А называется независимым от события В, если вероятность появления события А не зависит от того, произошло событие В или нет; в противном случае такие события называются зависимыми. Например, вероятность события того, что во второй раз из урны, содержащей белые и черные шары, будет вынут белый шар, не зависит от того, какой шар был вынут в первый раз, если он был возвращен обратно. Однако если первый шар не был возвращен обратно, то результат второго извлечения уже будет зависеть от первого, ибо состав шаров в урне уже изменится в зависимости от результата первого извлечения.

Вероятность произведения независимых событий A и B равна произведению вероятностей этих событий:

. (16.1)

Пример 16.1. Алмазы, возможно, вскоре станут использовать в качестве полупроводников в спутниках связи. Эксперты предсказывают, что алмазные микросхемы будут более быстродействующими, термо- и радиационностойкими, что особенно важно для приборов, работающих в космосе. По оценкам экспертов, вероятности этих трех событий равны 0,9; 0,9 и 0,95 соответственно. Предполагается, что обсуждением проекта по разработке алмазных микросхем стоит вести лишь в том случае, если имеется хотя бы 70% уверенности в том, что они будут обладать всеми тремя указанными свойствами. Должен ли обсуждаться проект?

Решение. Пусть A - событие, состоящее в том, что алмазные микросхемы будут более быстродействующими, B - событие, состоящее в том, что алмазные микросхемы будут более термостойкими, C - событие, состоящее в том, что алмазные микросхемы будут более радиационностойкими. Поскольку события A, B и С независимы, то, используя теорему умножения вероятностей (2.3), получим

.

Таким образом, поскольку 0,7695>0,7, то предложенный проект следует обсуждать.

Пример 16.2. Дана электрическая цепь:

Вероятность выхода из строя элемента А равна 0,1, элемента В - 0,2, элемента С - 0,3. Найти вероятность разрыва цепи.

Решение. В данном случае разрыв цепи произойдет только тогда, когда выйдут из строя все элементы цепи, т.е. и элемент А, и элемент В, и элемент С. При помощи алгебры событий разрыв цепи можно описать следующим образом: . Поскольку эти события независимы, то

Вероятность события A, вычисленная при условии, что имело место другое событие B, называется условной вероятностью события A и обозначается или .

Вероятность произведения двух событий A и B равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое событие уже имело место:

. (16.2)

Пример 16.3. Одна из наиболее сложных проблем рыночных исследований - отказ потребителей отвечать на вопросы о потребительских предпочтениях, либо, если опрос проводится по месту жительства, - отсутствие их дома на момент опроса. Предположим, что исследователь рынка с вероятностью в 0,94 верит, респондент согласится отвечать на вопросы анкеты, если окажется дома. Он также полагает, что вероятность того, что этот человек будет дома, равна 0,65. Имея такие данные, оцените процент заполненных анкет.

Решение. Пусть A - событие того, что респондент окажется дома. Вероятность этого события . Пусть B - событие того, что респондент согласится отвечать на вопросы. По условию задачи задана условная вероятность , т.е. вероятность того, что он согласится отвечать на вопросы, если он будет дома. Тогда, согласно теореме умножения вероятностей зависимых событий (2.4), вероятность того, что человек будет дома и согласится отвечать на вопросы, будет равна

,

т.е. процент заполненных анкет будет равен 61%.

Пример 16.4. Вероятность попадания в цель при отдельном выстреле (событие А) равна 0,8. Какова вероятность поражения цели, если в 2% случаях бывают осечки, т.е. в 2% случаях выстрела не происходит?

Решение. Пусть событие В состоит в том, что выстрел произошел, тогда событие означает противоположное событие, т.е. что произошла осечка. По условию P()=0,02, отсюда получаем P(B)=1-P()=0,98. По условию задачи PB(A)=0,8. Поражение цели означает совмещение событий В и А, т.е. что выстрел произойдет и даст попадание. Поэтому

P(AB) = P(B)PB(A) = 0,980,8 = 0,784.

Пример 16.5. В коробке девять одинаковых радиоламп, три из которых были в употреблении. В течение рабочего дня мастеру для ремонта пришлось взять две радиолампы. Какова вероятность того, что обе радиолампы были в употреблении?

Решение. Вероятность того, что первая взятая радиолампа была в употреблении (событие А), равна P(A)=3/9. После того как событие А произошло в коробке осталось 8 радиолам, из которых две были в употреблении. Поэтому для события В, состоящего в том, что вторая радиолампа была в употреблении, условная вероятность PA(B)=2/8. Следовательно, вероятность появления двух ламп, бывших в употреблении, равна:

P(AB) = P(A)PA(B) = .

Заметим, что данную задачу можно решить и комбинаторным способом:

P(AB) = .

Понятие условной вероятности позволяет естественным образом определить независимость событий. Говорят, что событие А независимо от события В, если имеет место равенство

PB(A) = P(A),

т.е. если наступление события В не влияет на вероятность наступления события А. Если событие А не зависит от В, то и событие В также не зависит от А. Таким образом, свойство независимости взаимно. Поэтому за определение независимости двух событий А и В можно принять условие (16.1).

Упражнения

16.1. Вероятность того, что завтра цены на потребительские товары вырастут, равна 0,3; вероятность того, что завтра поднимется цена на серебро, равна 0,2, а вероятность одновременного роста цен на потребительские товары и серебро составляет 0,06. Являются ли цены на потребительские товары и серебро независимыми друг от друга? Поясните ответ.

Ответ. Да, т.к. 0,30,2=0,23.

16.2. Иностранная фирма, производящая автомобили, интересуется российским рынком. Для изучения вкусов потенциальных покупателей проводится опрос, в котором выясняются наиболее желательные характеристики автомобиля. Предположим, что результаты опроса показали: 35% потенциальных покупателей в основном оценивают автомобиль по его техническим характеристикам, 50% - по его дизайну, 25% - считают важным и то, и другое. Основываясь на этой информации, ответьте, являются ли два вида предпочтений потенциальных покупателей независимыми друг от друга? Объясните почему?

Ответ. Нет, не являются, т.к. 0,350,50,25.

16.3. Аудиторская фирма размещает рекламу в журнале "Коммерсант". По оценкам фирмы, 60% людей, читающих журнал, являются потенциальными клиентами фирмы. Выборочный опрос показал также, что 85% людей, которые читают журнал, помнят о рекламе фирмы, помещенной в конце журнала. Оцените, чему равен процент людей, которые являются потенциальными клиентами фирмы и могут вспомнить ее рекламу?

Ответ. 0,850,6=0,51, т.е. 51%.

16.4. Консультационная фирма получила приглашение для выполнения двух видов работ от двух международных корпораций. Руководство фирмы оценивает вероятность получения заказа от фирмы А (событие А) равной 0,45. Также, по мнению руководителей фирмы, в случае, если фирма заключит договор с компанией А, то с вероятностью в 90% компания В даст фирме консультационную работу. С какой вероятностью компания получит оба заказа?

Ответ. 0,450,9=0,405.

16.5. Вероятность наступления события А в каждом опыте одинакова и равна 0,4. Опыты производятся последовательно до наступления события А. Определить вероятность того, что понадобится ровно 3 опыта.

Ответ. 0,40,40,6=0,096.

17. СЛОЖЕНИЕ ВЕРОЯТНОСТЕЙ

Вероятность суммы несовместных событий A и B равна сумме вероятностей этих событий:

. (17.1)

Пример 17.1. В ходе исследования потребительского рынка проводили опрос потребителей. В частности, один из вопросов касался сорта зубной пасты, которую использует потребитель. Если известно, что 14% населения использует сорт A, а 9% - сорт B, то чему равна вероятность того, что случайно выбранный человек будет использовать одну из двух паст. (Предполагается, что в данный момент человек использует только одну пасту).

Решение. Пусть A - событие, состоящее в том, что выбранный человек использует пасту сорта A, а B - событие, состоящее в том, что выбранный человек использует пасту сорта B. Поскольку события A и B несовместные по условию задачи, то, используя теорему сложения вероятностей (2.2), получим

.

Пример 17.2. Из колоды в 36 карт наугад вынимают 3 карты. Найти вероятность того, что среди них окажется хотя бы один туз.

Решение. Введем следующие события: B={появление хотя бы одного туза}, A1={появление одного туза}, A2={появление двух тузов}, A3={появление трех тузов}. Очевидно, что B=A1+A2+A3. Поскольку события A1, A2 и A3.несовместны, то

P(B) = P(A1)+P(A2)+P(A3) =

Вероятность суммы совместных событий A и B равна сумме вероятностей этих событий без вероятности их совместного появления:

. (17.2)

Пример 17.3. Вероятность того, что покупатель, собирающийся приобрести компьютер и пакет прикладных программ, приобретет только компьютер, равна 0,15. Вероятность того, что покупатель купит только пакет программ, равна 0,1. Вероятность того, что будут куплены и компьютер и пакет программ, равна 0,05. Чему равна вероятность того, что будут куплены или компьютер, или пакет программ, или компьютер и пакет программ вместе?

Решение. Пусть A - событие того, что покупатель приобретет компьютер, B - событие того, что покупатель приобретет пакет программ, тогда AB - событие того, что покупатель приобретет и компьютер, и пакет программ. Следовательно, вероятность того, что будут куплены или компьютер, или пакет программ, или компьютер и пакет программ вместе, будет равна

.

Пример 17.3. Два стрелка делают одновременно по одному выстрелу по мишени. Вероятность попадания для первого стрелка равна 0,8, для второго - 0,7. Какова вероятность поражения цели?

Решение. Пусть A1={первый стрелок попал по цели}, A2={второй стрелок попал по цели}. Мишень будет поражена (событие В), если произойдет событие А1+А2. Поскольку события А1 и А2 совместны, но независимы, то

P(А1+А2) = P(А1)+P(А2)-P(А1)P(А2) = 0,7+0,8-0,70,8 = 0,94.

Отметим, что событие В можно записать также в виде . Тогда получим

P(B) = P(A1)P()+P()P(A2)+P(A1)P(A2) = 0,80,3+0,20,7+0,70,8 = 0,94.

Пример 17.4. Дана электрическая цепь:

Вероятность выхода из строя элемента А равна 0,1, элемента В - 0,2, элемента С - 0,3. Найти вероятность разрыва цепи.

Решение. В данном случае разрыв цепи произойдет только тогда, когда выйдет из строя элемент А, или сразу два элемента В и С. При помощи алгебры событий разрыв цепи можно описать следующим образом: . Поскольку эти события совместные и независимые, то получим

= .

Упражнения

17.1. Предположим, что 25% населения живёт в области, охваченной коммерческим TV, рекламирующим новые модели автомобилей некоторой фирмы; 34% населения охвачено коммерческим радио, рекламирующим продукцию той же фирмы. Также известно, что 10% населения охвачено коммерческим и радио и телевидением. Если случайно отобрать человека, живущим в данной области, то чему будет равна вероятность того, что он знаком хотя бы с одной из рекламных передач фирмы?

Ответ. 0,25+0,34-0,1=0,49.

17.2. В большом универмаге установлен скрытый "электронный глаз" для подсчета числа входящих покупателей. Когда два покупателя входят в магазин вместе и один идет перед другим, то первый из них будет учтен электронным устройством с вероятностью 0,98, второй - с вероятностью 0,94, а оба - с вероятностью 0,93. Чему равна вероятность того, что устройство сканирует по крайне мере одного из двух входящих вместе покупателей.

Ответ. 0,98+0,93-0,980,93=0,9986.

17.3. Девушка забыла последнюю цифру телефонного номера своего жениха и набрала её наугад. Какова вероятность того, что ей понадобится набирать номер не более трёх раз? Рассмотреть случай блондинки и брюнетки. (Блондинка не помнит какую цифру она набирала перед этим, а брюнетка помнит.)

Ответ. Случай блондинки: ;

случай брюнетки: .

18. ВЕРОЯТНОСТЬ ПОЯВЛЕНИЯ ХОТЯ БЫ ОДНОГО СОБЫТИЯ

В жизни, производстве часто возникают такие ситуации, когда нужно вычислить вероятность появления хотя бы одного события из некоторого набора возможных событий. Например, если по цели был сделан залп из нескольких орудий, то интерес представляет вероятность того, что цель будет поражена, т.е. что будет хотя бы одно попадание.

Два несовместных события A и называются противоположными, если при эксперименте одно из них обязательно произойдет. Иначе, для противоположных событий справедливы равенства:

, .

Вероятности противоположных событий связаны соотношением

(18.1)

Вероятность появления хотя бы одного из событий A1, A2,…, An равна разности между единицей и вероятности совместного появления противоположных событий:

. (18.2)

Если события A1, A2,…, An независимы и их вероятности одинаковы, т.е. и , то

. (18.3)

Пример 18.1. Вероятности попадания в цель при стрельбе из трех орудий таковы: p1=0,8, p2=0,7, p3=0,9. Найти вероятность хотя бы одного попадания при одном залпе из всех орудий.

Решение. Поскольку вероятности попаданий независимы и q1=1-p1=0,2, q2=1-p2=0,3, q3=1-p3=0,1, то искомая вероятность равна

P(A) = 1-q1q2q3 = 1-0,006 = 0,994.

Пример 18.2. Уличный торговец предлагает прохожим иллюстрированную книгу. Из предыдущего опыта ему известно, что в среднем один из 65 прохожих, которым он предлагает книгу, покупают ее. В течение некоторого промежутка времени он предложил книгу 20 прохожим. Чему равна вероятность того, что он продаст им хотя бы одну книгу?

Решение. Пусть Ai - событие того, что i-й прохожий купит книгу. Вероятность этого события , а противоположного события . Тогда вероятность того, что хотя бы один из 20 прохожих купят книгу, будет равна

.

Пример 18.3. Вероятность того, что при одном выстреле стрелок попадет в цель, равна p=0,4. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью не менее 0,9 он попал в цель хотя бы один раз?

Решение. Вероятность попадания хотя бы один раз при n выстрелах равна:

P(A) = 1 - qn,

где q=1-p. Поскольку P(A)0,9, то

1 - qn 0,9 qn 0,1 n lg q lg0,1

.

Таким образом, чтобы хотя бы один раз попасть в цель с вероятностью не менее 0,9, стрелок должен произвести не менее 5 выстрелов.

Упражнения

18.1. Отдел маркетинга фирмы проводит опрос для выяснения мнений потребителей по определенному типу продуктов. Известно, что в местности, где проводятся исследования, 10% населения являются потребителями интересующего фирму продукта и могут дать ему квалифицированную оценку. Компания случайным образом отбирает 10 человек из всего населения. Чему равна вероятность того, что, по крайней мере, один человек из них может квалифицированно оценить продукт?

Ответ. .

18.2. Пакеты акций, имеющихся на рынке ценных бумаг, могут дать доход владельцу с вероятностью 0,5 (для каждого пакета). Сколько пакетов акций различных фирм нужно приобрести, чтобы с вероятностью, не меньшей 0,96875, можно было ожидать доход хотя бы по одному пакету акций?

Ответ. Из уравнения получаем, что не менее 5 пакетов.

18.3. Для рыночного исследования необходимо проведение интервью с людьми, которые добираются на работу общественным транспортом. В районе, где проводится исследование, 75% людей добираются на работу общественным транспортом. Если три человека согласны дать интервью, то чему равна вероятность того, что, по крайней мере, один из них добирается на работу общественным транспортом?

Ответ. .

18.4. Модельер, разрабатывающий новую коллекцию одежды к весеннему сезону, создает модели в зеленой, черной и красной цветовой гамме. Вероятность того, что зеленый цвет будет в моде весной, модельер оценивает в 0,3, что черный - в 0,2, а вероятность того, что будет моден красный цвет - в 0,15. Предполагая, что цвета выбираются независимо друг от друга, оцените вероятность того, что цветовое решение коллекции будет удачным хотя бы по одному из выбранных цветов?

Ответ. P=1 - 0,70,80,85 = 0,524

18.5. Предположим, что для одной торпеды попасть в цель равна 0,7. Какова вероятность того, что три торпеды потопят корабль, если для потопления корабля достаточно одного попадания в цель?

Ответ. .

ЗАДАЧИ

1. Вычислить:

а) ,

б) ,

в) ,

г) ,

д) ,

е) .

Ответ: а); б) 4; в) 1; г) 42; д) 4; е) .

2. Упростить:

а) ,

б) ,

в) ,

г) ,

д) ,

е) .

Ответ: а) ; б) ; в) ; г) ; д) ; е) .

3. Решить уравнения (n):

а) ,

б) ,

в) ,

г) ,

д) ,

е) .

Ответ: а) 8; б) 4; в) 10; г) 8; д) 5; е) 4.

4. Найти все n, удовлетворяющие условию:

а) ,

б) ,

в) ,

г) ,

д) ,

е) .

Ответ: а) ; б) ; в) ; г) ; д) ; е) .

5. Доказать справедливость равенств:

а) ,

б) ,

в) ,

г) ,

д) ,

е) .

6. Разложить по формуле бинома Ньютона и упростить:

а) ,

б) ,

в) ,

г) .

Ответ: а) ;

б) ; в) ;

г) .

7. Найти средние члены разложения:

а) ,

б) .

Ответ: а) и ; б) .

8. Решите уравнения:

а) б) в)

Ответ: а) 4; б) 5; в) 9.

9. У одного человека есть 7 книг по математике, а у другого - 9 книг. а) Сколькими способами они могут обменять книгу одного на книгу другого? б) То же самое, но меняются две книги одного на две книги другого.

Ответ: а) ; б) .

10. Несколько человек садятся за круглый стол. Будем считать, что два способа рассадки совпадают, если каждый человек имеет одних и тех же соседей в обоих случаях. а) Сколькими различными способами можно посадить четырех человек? б) семь человек? в) Во скольких случаях два данных человека из семи оказываются соседями? г) Во скольких случаях данный человек (из семи) имеет двух данных соседей?

Решение: а) Отношение соседства сохраняется при циклических перестановках и при симметричном отражении. В случае четырех человек мы имеем 24=8 преобразований, сохраняющих отношение соседства. Т.к. общее число перестановок 4 человек равно 4!=24, то имеем 24/8=3 различных способа рассадки.

б) Если за столом сидят 7 человек, то имеем 7!/14=360 способов, вообще, а в случае n человек (n-1)!/2 способов.

в) Число способов, при которых 2 данных человека сидят рядом, вдвое больше числа способов посадить 6 человек (в силу возможности поменять этих людей местами). Значит оно равно .

г) Находится аналогичным образом: .

11. Сколькими способами можно посадить за круглый стол 5 мужчин и 5 женщин так, чтобы никакие два лица одного пола не сидели рядом? Если они садятся не за круглый стол, а за карусель и способы, переходящие друг в друга при вращении карусели, считаются совпадающими.

Ответ:, .

12. Из колоды, содержащей 52 карты, вынули 10 карт. Во скольких случаях среди этих карт окажется хотя бы один туз? Во скольких случаях ровно один туз? Во скольких случаях не менее двух тузов? Ровно два туза?

Ответ:, , , .

13. В купе ж/д вагона имеется два противоположных дивана по 5 мест в каждом. Из 10 пассажиров четверо желают сидеть лицом к паровозу, а трое - спиной, остальным безразлично как сидеть. Сколькими способами могут разместиться пассажиры?

Решение: Сначала выберем, кто из трех пассажиров, кому безразлично как сидеть, сядет лицом к паровозу. Этот выбор можно сделать 3 способами. На каждом диване можно пересаживать пассажиров 5! Способами. Всего получаем способов.

14. У мамы 2 одинаковых яблока и 3 одинаковых груши. Каждый день в течение пяти дней подряд она выдает по одному фрукту. а) Сколькими способами это можно сделать? б) Если яблок m, а груш n. в) 2 яблок,3 груши, 4 апельсина.

Ответ: а) ; б) , в) .

15. У отца есть 5 различных апельсинов, которые он выдает своим 8 сыновьям так, что каждый получает либо один апельсин, либо ничего. Сколькими способами можно это сделать? Решите эту задачу при условии, что число апельсинов, получаемых каждым сыном, неограниченно.

Ответ: ; .

16. Из группы, состоящей из 7 мужчин и 4 женщин. Надо выбрать 6 человек так, чтобы среди них было не меньше 2 женщин. Сколькими способами можно это сделать?

Ответ: .

17. Найти сумму всех трёхзначных чисел, которые можно написать с помощью цифр 1, 2, 3, 4. А если никакая цифра не должна появляться дважды в записи каждого числа?


Подобные документы

  • Сущность понятия "комбинаторика". Историческая справка из истории развития науки. Правило суммы и произведения, размещения и перестановки. Общий вид формулы для вычисления числа сочетаний с повторениями. Пример решения задач по теории вероятностей.

    контрольная работа [293,2 K], добавлен 30.01.2014

  • Содержание правил суммы и произведения; их применение с целью решения комбинаторных задач. Виды комбинаторных соединений. Обозначение и свойства факториала. Формулы расчета всех возможных перестановок и размещений. Понятие и разновидности сочетаний.

    реферат [22,1 K], добавлен 08.09.2014

  • Возникновение комбинаторики как раздела математики. Исследование на практических примерах особенностей чисел размещений с повторениями и без них. Анализ задач, решение которых опирается на правила комбинаторики и относящиеся к ней вычислительные формулы.

    курсовая работа [175,3 K], добавлен 05.01.2018

  • Решение задач по факультативному курсу комбинаторики, подготовка сообщений и докладов. Комбинаторика как ветвь математики, изучающая комбинации и перестановки предметов. Основные правила суммы и правило произведения. Поиск числа сочетаний с повторениями.

    дипломная работа [508,5 K], добавлен 26.01.2011

  • Применение леммы Бернсайда к решению комбинаторных задач. Орбиты группы перестановок. Длина орбиты группы перестановок. Лемма Бернсайда. Комбинаторные задачи. "Метод просеивания". Формула включения и исключения.

    дипломная работа [163,6 K], добавлен 14.06.2007

  • Знакомство с основными понятиями и формулами комбинаторики как науки. Методы решения комбинаторных задач. Размещение и сочетание элементов, правила их перестановки. Характеристики теории вероятности, ее классическое определение, свойства и теоремы.

    презентация [1,3 M], добавлен 21.01.2014

  • Значение и применение комбинаторики. Решение и геометрическое представление комбинаторной задачи "очередь в кассу". Применение метода подсчёта ломаных, определение свойства числа сочетаний. Блуждания по бесконечной плоскости в четырёх направлениях.

    курсовая работа [262,5 K], добавлен 05.12.2012

  • Знакомство со средством Microsoft Excel, внутренняя структура и элементы данной программы, ее функциональные особенности и возможности, особенности использования в решении математических задач. Основы теории вероятностей, ее принципы и главные задачи.

    контрольная работа [1,5 M], добавлен 16.11.2013

  • Основные понятия комбинаторики. Определение теории вероятности. Понятие математического ожидания и дисперсии. Основные элементы математической статистики. Условная вероятность как вероятность одного события при условии, что другое событие уже произошло.

    реферат [144,6 K], добавлен 25.11.2013

  • Определение понятий множества и факториала. Условия равности двух кортежей. Содержание основных разделов комбинаторики - перечислительного, экстремального и вероятностного. Сущность теории Рамсея. Сведения о размещении, перестановке и сочетании элементов.

    реферат [509,5 K], добавлен 21.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.