Некоторые приложения кратных интегралов
Изучение теории кратных интегралов. Исследование понятия "двойной и тройной интеграл". Применение кратных интегралов для вычисления объема, массы, площади, моментов инерции, статистических моментов и координат центра масс тела на конкретных примерах.
Рубрика | Математика |
Предмет | Математика |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | Анастасия |
Дата добавления | 13.12.2012 |
Размер файла | 469,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Рассмотрение задач численного интегрирования по простейшим формулам. Понятие тройных интегралов и их применение для вычисления объема, массы, площади, моментов инерции, статистических моментов и координат центра масс тела на конкретных примерах.
курсовая работа [348,5 K], добавлен 17.12.2013Исследование способа вычисления кратных интегралов методом Монте-Карло. Общая схема метода Монте-Карло, вычисление определенных и кратных интегралов. Разработка программы, выполняющей задачи вычисления значений некоторых примеров кратных интегралов.
курсовая работа [349,3 K], добавлен 12.10.2009Понятие двойного и тройного интеграла. Кратные интегралы в криволинейных координатах. Геометрические и физические приложения кратных интегралов. Криволинейные и поверхностные интегралы: понятия и способы вычисления. Геометрические и физические приложения.
дипломная работа [237,7 K], добавлен 27.02.2009Вычисление относительной и абсолютной погрешности табличных определённых интегралов. Приближенные методы вычисления определённых интегралов: метод прямоугольников, трапеций, парабол (метод Симпсона). Оценка точности вычисления "не берущихся" интегралов.
курсовая работа [187,8 K], добавлен 18.05.2019Понятие определённого интеграла, расчет площади, объёма тела и длины дуги, статического момента и центра тяжести кривой. Вычисление площади в случае прямоугольной криволинейной области. Применение криволинейного, поверхностного и тройного интегралов.
курсовая работа [2,1 M], добавлен 19.05.2011Методика и основные этапы нахождения параметров: площади криволинейной трапеции и сектора, длины дуги кривой, объема тел, площади поверхности тел вращения, работы переменной силы. Порядок и механизм вычисления интегралов с помощью пакета MathCAD.
контрольная работа [752,3 K], добавлен 21.11.2010Понятие интеграла. Приложения двойных интегралов к задачам механики: масса плоской пластинки переменной плотности; статические моменты и центр тяжести пластинки; моменты инерции пластинки. Вычисление площадей и объёмов с помощью двойных интегралов.
реферат [508,3 K], добавлен 16.06.2014Способы вычисления интегралов. Формулы и проверка неопределенного интеграла. Площадь криволинейной трапеции. Неопределенный, определенный и сложный интеграл. Основные применения интегралов. Геометрический смысл определенного и неопределенного интегралов.
презентация [1,2 M], добавлен 15.01.2014Нахождение неопределенных интегралов (с проверкой дифференцированием). Разложение подынтегральных дробей на простейшие. Вычисление определенных интегралов, представление их в виде приближенного числа. Вычисление площади фигуры, ограниченной параболой.
контрольная работа [123,7 K], добавлен 14.01.2015Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.
реферат [99,0 K], добавлен 05.09.2010