Многомерная геометрия

Элементы общей теории многомерных пространств. Понятие векторного многомерного пространства на основе аксиоматики Вейля. Евклидово векторное пространство. Четырёхмерное пространство, его пределение и исследование. Применение многомерной геометрии.

Рубрика Математика
Вид дипломная работа
Язык русский
Дата добавления 24.02.2010
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

, .

Теорема 3. Существует единственная плоскость Пr+1 размерности , содержащая плоскости Пk и Пl.

Доказательство. Возьмём произвольную точку и зафиксируем произвольную точку ; обозначим через линейную оболочку вектора (рис. 16). Допустим, что существует какая-то плоскость , содержащая Пk и Пl; пусть - её направляющее подпространство. Очевидно, что должно содержать Lk, Ll и , а следовательно, и сумму этих подпространств. Обозначим эту сумму через Lr+1:

Обратно, если - любое подпространство, включающее Lr+1, то , проходящая через точку А в направлении , будет содержать Пk и Пl. В самом деле, так как и, то; так как , то , так как и , то .

Рис. 21

Получим среди всех плоскостей искомую плоскость Пr+1 минимальной размерности r + 1 в том единственном случае, когда в качестве берётся Lr+1. Подсчитаем r + 1. С этой целью рассмотрим и обозначим размерность через р. По теореме 3 (в n-мерном пространстве L имеются подпространства Lk и Ll, размерности которых соответственно равны k и l. Если их пересечение имеет размерность m, то размерность их суммы Lk + Ll равна r = k + l - m) имеем р = k + l - m.

Покажем, что есть прямая сумма, поэтому размерность Lr+1 равна р + 1, то есть (r + 1) = (k + l - m) +1.

Для этого достаточно показать, что вектор не принадлежит пространству . Предположим противное. Пусть . Тогда по определению суммы подпространств существуют векторы х и у такие, что, , . (v) По первой аксиоме аффинного пространства найдётся точка С такая, что , причём . По второй аксиоме аффинного пространства . (vv)

Учитывая (v), (vv), находим, что , так что . Получается, что плоскости Пk и Пl имеют общую точку С, но это невозможно, поскольку плоскости Пk и Пl скрещиваются. Теорема 3 доказана.

Замечание. Рисунок 20 лишь частично иллюстрирует теорему 3. Например, если размерности Пk и Пl больше m и различны между собой, , то, как,

Проведённые выше рассуждения показывают, что плоскости Пk и Пl, о которых идёт речь в теореме 3, не содержатся ни в какой плоскости меньшей размерности, чем r + 1.

Сохраняя обозначения предыдущего подпункта, сформулируем достаточное условие пересечения двух плоскостей.

Теорема 4. Если в Un даны плоскости Пk и Пl, такие, что , где m - размерность пересечения Lm направляющих подпространств Lk и Ll, то Пk и Пl пересекаются.

Доказательство. Исключая тривиальный случай, когда какая-нибудь из данных плоскостей совпадает со всем пространством, имеет

В расположении двух данных плоскостей могут быть лишь три возможности:

либо Пk параллельна Пl;

либо плоскости Пk и Пl скрещиваются;

либо они пересекаются.

Если Пk параллельна Пl, то для размерности m пересечения соответствующих им пространств Lk и Ll имеем m = min (k, l). Теорема доказана.

2. Размерность многообразия k-плоскостей

Найдём размерность Рn,k, многообразия всех k-плоскостей

n-пространства.

Прежде всего заметим, что число параметров, от которых зависят k+1 точек M0, M1, …, Mk n - пространства с линейно независимыми векторами , через которые проходит единственная k-плоскость, равно числу координат, этих точек, т. е. (k +1)n. Далее заметим, что число параметров, от которых зависят те же точки на k-плоскости, равно числу параметров этих точек, т. е. (k +1)k. Так как в n-пространстве, число параметров, от которых зависят точки равно сумме числа Рn,k и числа параметров, от которых зависят точки на k-плоскости, то получим, что

, т. е.

. (6. 7)

§ 7. K-параллелепипеды в пространстве

1. Полуплоскости и параллелепипеды

Если в уравнении

(7. 1)

k-плоскости придавать одному из параметров tb только неотрицательные значения , а остальным параметрам - произвольные действительные значения, мы получим k-полуплоскость, ограничиваемую (k-1)-плоскостью,

(7. 2)

Если в том же уравнении (7. 1) придать всем параметрам только значения , мы получим k-параллелепипед с вершинами

;

2-параллелепипеды называются параллелограммами.

Условимся называть k-параллелепипед с вершинами А0, А1, А2, …, А12…k параллелепипедом А0 А1 А2А12…k.

На рисунке 22 изображён 3-параллелепипед

А0 А1 А2 А3 А12 А13 А123

и параллелограмм А0 А1 А2 А12.

а) б)

Рис. 22

2. Грани параллелепипеда

Придавая в уравнении (7. 1) значения всем параметрам при , а параметру - значения или , мы получим (k - 1)-параллелепипеды, являющиеся гранями k-параллелепипеда. Грани этих (k- 1)-параллелепипедов называются (k - 2)-гранями k-параллелепипеда, грани этих (k-3)-гранями k-параллелепипеда и т. д. Таким образом, k-параллелепипед обладает р - гранями, где р - пробегает значения от 0 до k - 1, 0-грани параллелепипеда совпадают с его вершинами, 1-грани называются рёбрами (при m= 2 - сторонами). На рисунке 22 (а) стороны параллелограмма - четыре отрезка А0 А1, А0 А2, А0 А3, А0 А12, А1 А13, А2 А12, А2 А23, А3 А13, А12 А123, А13 А123, А23 А123; 2-грани - шесть параллелограммов А0 А1 А1 А12, А0 А1 А3 А13, А0 А2 А3 А23, А1 А12 А13 А123, А2 А12 А23 А123, А3 А13 А23 А123.

Число р-граней k-параллелепипеда равно , где - число сочетаний из k по р.

3. Объём прямоугольного параллелепипеда

Определим объём прямоугольного k-параллелепипеда, то есть такого k-параллелепипеда, у которого все векторы ра попарно перпендикулярны. Длина любого отрезка прямоугольного k - параллелепипеда называется его измерением.

Объём прямоугольного k-параллелепипеда называется его измерением.

Объём прямоугольного k-параллелепипеда только постоянным множителем отличается от произведения его измерений, т. е. функция отличается от произведения измерений прямоугольного параллелепипеда только постоянным множителем .

В дальнейшем будем считать этот постоянный множитель равным 1, то есть будем считать, что объём Vk прямоугольного k -параллелепипеда равен произведению его измерений.

(7. 4)

4. Объём произвольного параллелепипеда

Сравнивая прямоугольные k-параллелепипед и (k-1)-параллелепипед с объёмами, равному данному k-параллелепипеду и одной из его граней мы получим, что объём Vk k-параллелепипеда равен произведению объёма Vk-1 одной из его (k-1)-граней на расстояние hk между этой гранью и параллельной ей (k-1)-гранью.

(7. 5)

Если назвать выделенную (k-1)-грань k-параллелепипеда его основанием, а расстояние hk его высотой, то формула (7. 5) показывает, что объём k-параллелепипеда равен произведению объёма его основания на высоту.

Объём Vk k-параллелепипеда, определяемого уравнением , при , определяется соотношением

,

т. е. квадрат объёма этого параллелепипеда равен определителю Грамма, составленному из k векторов ра.

Утверждение очевидно при k =1, когда параллелепипед совпадает с отрезком, определяемым вектором р1, и объём этого параллелепипеда совпадает с длиной этого отрезка , т. е. .

Рассмотрим теперь k-параллелепипед и предположим, что наше утверждение справедливо для его (k - 1)-граней. Рассмотрим его (k - 1)-грань, определяемую уравнением , при и . Тогда скалярный квадрат векторного произведения в k-плоскости k-параллелепипеда, равный определителю Грамма, составленному из k-1 векторов (а < k), равен объёму этой (k - 1)-грани. Так как объём Vk k-параллелепипеда равен произведению объёма Vk-1 этой (k-1)-грани на соответствующую высоту hk , то объём Vk равен

, (7. 7)

где - угол между вектором рk и перпендикуляром к (k-1)-грани в k-плоскости k-параллелепипеда.

5. Аффинность k-параллелепипедов

Если даны два произвольных k-параллелепипеда А0 А1… АkА12…k и

В0 В1… ВkВ12…k, то системы точек А0, А1, … ,Аk и В0, В1, … ,Вk определяют аффинное преобразование, переводящее первые из этих точек во вторые. Так как при аффинном преобразовании плоскости переходят в плоскости, а параллельные плоскости в параллельные плоскости, это аффинное преобразование переводит весь k- параллелепипед А0 А1… АkА12…k в k-параллелепипед В0 В1… ВkВ12…k. Поэтому всякие два k-параллелепипеда аффинны.

Относительный объём k-параллелепипеда, определяемого уравнением и , при аффинном преобразовании относительные величины преобразуются по формуле, то есть умножается на определитель матрицы этого аффинного преобразования, если k-параллелепипед с объёмом Vk переходит при аффинном преобразовании с матрицей в k-параллелепипед с объёмом , то

(7. 8)

Отсюда вытекает, что отношения относительных объёмов k-параллелепипедов не изменяются при аффинных преобразованиях.

Выпуклые многогранники

В этом пункте будем рассматривать действительное k-мерное аффинное пространство , считая, что в нем дана аффинная система координат.

Пусть через некоторую точку имеющую координаты , проведена прямая в направлении вектора , координаты которого обозначим . Согласно изложенному ранее эту прямую можно задать параметрическими уравнениями

, . (7.9)

.

Пусть на прямой (9) выбраны какие-нибудь точки и . Соответствующие им значения параметра обозначим и . Предположим, что < .

Определение. Множество точек прямой, удовлетворяющих неравенством , называется отрезок .

Если точка имеет координаты , точка имеет координаты , то в качестве направляющего вектора прямой можно взять вектор . Тогда , и для точки прямой имеем

, причем = 0 в точке , = 1 в точке , так что отрезок задается теперь неравенствами 0 1. Положим 1 = , = . Тогда для точек отрезка и только для них имеем , , (7.10)

, , .

Точка, в которой , называется серединой отрезка .

Определение. Множество точек действительного аффинного пространства называется выпуклым, если вместе с каждыми двумя своими точками , оно содержит отрезок .

Простейшими примерами выпуклых множеств могут служить: отрезок, плоскость любой размерности, все пространство .

Множество, состоящее из одной точки, и пустое множество также считается выпуклыми.

Из определения следует, что пересечение любой совокупности выпуклых множеств само является выпуклым множеством. В самом деле, если точки , принадлежат пересечению некоторой совокупности выпуклых множеств, то отрезок принадлежит каждому из них множеств, а значит, и их пересечению.

Пусть в пространстве дана произвольная гиперплоскость

. (7.11)

Гиперплоскость (11) развивает пространство на две части, называемые открытыми полупространствами. Их точки характеризуются неравенствами

и соответственно. (7.12)

Присоединяя к открытому полупространству гиперплоскость (11), мы получим так называемое замкнутое полупространство. Одно из них состоит из точек, координаты которых удовлетворяют неравенствам.

Существенно, что рассматриваемое пространство является действительным.

Каждое полупространство является выпуклым множеством.

Таким образом произвольная точка принадлежит пространству (7, 12). Но точка на отрезке взята произвольно, значит, весь отрезок принадлежит пространству.

Определение. Пересечение конечного числа полупространств (если оно не пустое) называется выпуклым многогранником.

Ограничимся рассмотрением многогранников, образованных пересечением замкнутых полупространств. С наглядной точки зрения выпуклый многогранник представляет собой кусок пространства, высеченный несколькими гиперплоскостями. (=3).

Рис. 23 Рис. 24

Может быть так, что многогранник целиком содержится в некоторой -мерной плоскости < (при = 3, = 2).

Рис.25

Многогранник называется -мерным параллелепипедом, если в некоторой аффинной системе координат он задается неравенствами

0 1, и построен на независимых векторах , приложенных к точке .

Где - начало в координатах, и - базис. -мерный параллелепипед при = 1 представляет собой отрезок, при = 2 - параллелограмм.

Часть параллелепипеда (0 1, ), расположенная в какой-нибудь из гиперплоскостей = 0 или = 1, сама является (- 1)-мерным параллелепипедом и называется (- 1)-мерной гранью параллелепипеда.

Пример. В трехмерном евклидовом пространстве с заданной декартовой прямоугольной системой координат () рассмотрим прямоугольные параллелепипеды, ребра которых параллельны координатным осям. Пусть () - координаты центра параллелепипеда, - длины его ребер, параллельных осям соответственно. Обозначим через множество тех параллелепипедов указанного вида, центры которых лежат в кубе , , , длины ребер не превышают . Каждому параллелепипеду из множества можно поставить в соответствие точку шестимерного аффинного пространства с координатами (, ). Тогда само множество можно рассматривать как шестимерный параллелепипед.

, , ,

, , .

Затем, что геометрические фигуры одного пространства часто бывает удобно рассматривать как точки другого пространства.

Определение. Множество точек в аффинном пространстве называется ограниченным, если координаты всех точек этого множества удовлетворяют неравенству (> 0 - некоторое число).

Это определение не зависит от выбора аффинной системы координат. Множество ограниченно в том и только в том случае, если оно содержится в некотором параллелепипеде.

Определение. Выпуклой оболочкой множества точек в аффинном пространстве называется такое выпуклое множество , которое содержится в любом выпуклом множестве, содержащем .

Пример. 1) Выпуклой оболочкой двух точек , является отрезок .

2) Выпуклая оболочка любого конечного числа точек является ограниченным выпуклым многогранником, а конечная система точек - его вершинами.

Пусть в аффинном пространстве даны точки с радиус-векторами соответственно.

Определение. Выпуклая оболочка системы точек , находящихся в общем положении, называется -мерным симплексом с вершинами .

Симплекс с вершинами при . При этом числа называются барицентрическими координатами точки симплекса, имеющей радиус-вектор .

Частные случаи:

нульмерный симплекс - одна точка;

одномерный симплекс - отрезок;

двумерный симплекс - треугольник;

трехмерный симплекс - треугольная пирамида.

Точка симплекса, в которой все барицентрические координаты равны между собой , называется центром симплекса.

Пусть - симплекс с вершинами ; и пусть - какой-нибудь из его вершин. -мерный симплекс, который является выпуклой оболочкой вершин называется -мерной гранью симплекса . Одномерные грани, то есть отрезки, соединяющие вершины, называются ребрами симплекса.

Две грани размерности и - называются противоположными гранями симплекса , если они не имеют общих вершин.

В качестве упражнений докажем, что симплекс является выпуклой оболочкой пары противоположных граней, и что противоположные грани симплекса всегда располагаются в скрещивающихся плоскостях и что отрезок, соединяющий центры противоположных граней, проходит через центр симплекса.

Докажем, что -мерный симплекс в -мерном пространстве представляет собой пересечение замкнутых подпространств в числе .

Пусть - вершины симплекса . Примем за начало координат, базис выберем следующим образом:

, , …, .

Тогда соотношения при в координатах примут вид

(7.13)

откуда следует, что

(7.14)

С другой стороны, из (7.14) вытекает (7.13),если положить для , . Таким образом, системы (7.13) и (7.14) эквивалентны и задают один и тот же симплекс . (при =3).

Рис. 26

Система неравенств (7.14) показывает, пересечением каких полупространств образован симплекс .

Выше говорилось, что многогранник можно представить в виде куска пространства, «высеченного» несколькими гиперплоскостями.

Отметим попутно, что слово «симплекс» (simplex) в переводе с латинского означает «простой».

В следующем параграфе данной главы состоится знакомство с -симплексами в пространстве.

§8. K-симплексы в пространстве

1. Симплексы

Если заданы точек не лежащих в одной () -плоскости, то точки, определяемые радиус-векторами

, (8.1)

где индекс пробегает значения от 0 до , а параметры связаны условием

(8.2)

образуют - симплекс с вершинами , который будем называть - симплексом .На рисунке 23 а, б, и в изображен 2 - симплекс (треугольник) 3 - симплекс (тетраэдр) и 4 - симплекс .

Рис. 27

Грани симплекса.

Если в уравнении (8.1) один из параметров равен 0, получаем - симплекс, называемый гранью - симплекса. Грани этих - симплексов называются - гранями - симплекса, грани этих -симплексов называются - гранями - симплекса и т.д. Таким образом, - симплекс обладает - гранями, где пробегает значения от 0 до ; 0 - грани - симплекса совпадают с его вершинами, 1-грани называются ребрами (при - сторонами). На рисунке 3, а стороны треугольника - 3 отрезка ; на рисунке 3, б ребра тетраэдра - 6 отрезков , 2-грани-4треугольника А0А1А2, ; на рисунке 3, в - ребра 4 - симплекса - 10 отрезков , , , 2 - грани - 10 треугольников , , , , , , , 3-грани - 5 тетраэдров , , , , .

Если представим векторы в виде , то формулу (1) можно переписать в виде , где параметры ограничены условиями 0 , .

Так как любая система вершин - симплекса определяет - грань симплекса, число - граней симплекса равно числу сочетаний из по , т.е. =. (8.3)

2. Объем симплекса.

Прежде всего покажем, что объем произвольного - симплекса выражается через объем одной из его - граней и расстояния от вершины, лежащей против этой грани, до плоскости этой грани по формуле

. (8.4)

Если будем называть выделенную -грань - симплекса его основанием, а расстояние - его высотой, то формула (8.4) показывает, что объем - симплекса равен произведение его основания на высоту. Пусть основание k - симплекса (на рисунке 28 изображается при )

Проведем плоскость, параллельную плоскости - грани на расстоянии от нее. Это плоскость высечет из нашего k - симплекса -симплекс и отсечет от него k - симплекс , Обозначим -симплекса через , то формулу для определения объема k - симплекса можно записать в виде

. (8.5)

Так как k - симплекса может быть получен из k - симплекса гомотетией с центром в вершине и с коэффициентом получается из - грани той же гомотетией. Так как матрица гомотетии, отображающей - грань на - грань является матрицей -20 порядка вида , определить этой матрицы равен и объем может быть записан в виде

.

Поэтому

.

Применяя формулу (4) к объему - грани, выразим этот объем через объем одной из ее - граней и соответственную высоту этой - грани. Аналогично выразим объемы , , … , и площадь , вложенных друг в друга - грани, - грани, …, 3-грани и 2-грани симплекса через объемы , …, , площадь и длину одного из ребер - симплекса и соответственные высоты , , … , этих граней, получим что

.

В том случае, когда k - симплекс определяется уравнением (1), где , произведение … равно объему k - параллелепипеда, определяемого уравнением

с векторами при 0, поэтому объем k - симплекса связан с объемом соответствующего k - параллелепипеда соотношением

=. (8.6)

Так как квадрат объема в силу (7.6 из § 7) равен определителю Грамма, составленному из вектора , из формулы (8.6) вытекает, что объем k - симплекса, определяемого уравнением (8.1), где , определяется соотношением

(8.7)

Объем - симплексa, определяемого уравнением (8.1) при = , где , равен

=, (8.8)

квадрат косого произведения () равен определителю Грамма, составленному из векторов .

3. Аффинность k - симплексов.

Если даны два произвольных k - симплекса и , то системы их вершин определяют аффинное преобразование, переводящее первую из этих систем вершин во вторую.

Так как при аффинном преобразовании плоскости переходят в плоскости, это аффинное преобразование переводит весь k - симплекс в k - симплекс . Поэтому всякие два k - симплекса аффинны.

Относительный объем k - симплекса, определяемого уравнением (8.1) при = , где , выражается по формуле при аффинном преобразовании с оператором умножается на определитель матрицы оператора , получаем, что при аффинном преобразовании относительные объемы всех k - симплексов умножаются на определитель матрицы этого аффинного преобразования, т.е. если k - симплекс с относительным объемом переходит при аффинном преобразовании с матрицей в k - симплекс с объемом , то, так же как в случае k - параллелепипедов,

=. (8.9)

Отсюда вытекает, что отношения объемов k - симплексов не изменяются при аффинных преобразованиях.

Правильный k - симплекс

Определение правильных многоугольников и многогранников позволяет определить правильный k - симплекс.

Прежде всего построим правильный k - симплекс. Правильный k - симплекс при = 2 - равносторонний треугольник. Равносторонний треугольник с центром в начале координат и со стороной на прямой имеет вершины в точках с координатами , и .

Рис. 29

Для построения правильного k - симплекса с центром в начале системы прямоугольных координат и с гранью на плоскости предположим, что мы построили аналитичный правильный - симплекс.

Так как центр О k - симплекса делит отрезок прямой между точкой и плоскостью в отношении : 1, а прямая совпадает с -ой координатной осью, вершина имеет координаты (0, 0, 0, …); -е координаты вершин равны - 1, а первые -1 координаты этих вершин можно получить из координат вершин (-1) - симплекса умножением их на такой множитель , чтобы все расстояния , , …, ==

Расстояние от центра построенного - симплекса до его (-1) - граней равно 1, а расстояние от того же центра до вершин этого - симплекса равно . Длина каждого из ребер этого - симплекса равна .

Из определения правильного - симплекса видно, что все - грани правильного - симплекса являются правильными - симплексами.

Рис.30

На рисунке изображен правильный (-1) - симплекс (= 4)

Объем правильного - симплекса.

Вычислим объем построенного правильного симплекса. Так как объем основания этого - симплекса равен произведению , а высота этого - симплекса равна +1, получаем, что

.

.

При = 2 формула дает нам .

При = 3 формула .

Объем правильного - симплекса, (-1) - грани которого находятся на расстоянии от его центра, равен

.

§ 9. K-шары в пространстве

Называть k-мерной сферой евклидова k-пространства или k-сферой этого пространства множество всех точек этого пространства, лежащих в одной (k + 1)-плоскости и отстоящих от данной точки, называемой центром k-сферы, на одном и том же расстоянии, называемом радиусом k-сферы.

При k = n - 1 k-сфера определяется как множество всех точек пространства, отстоящих от одной точки на одном и том же расстоянии: в дальнейшем, говоря «сфера», будем иметь в виду (n - 1)-сферу. При k = 1, k-сфера называется окружностью.

Если радиус (k- 1)-сферы равен R, то множество всех точек k-плоскости этой (k- 1)-cферы, находящихся от центра (k- 1)-cферы на расстоянии , называется k-шаром. При k = n n-шар определяется как множество всех точек n-пространства, отстоящих от центра сферы на расстоянии . В дальнейшем, говоря «шар», будем иметь в виду n-шар. При k = 2 k-шар называется кругом.

Если центр сферы - точка М0(х0), а радиус равен R (рис. 31), радиус-вектор х произвольной точки М сферы связан условием, состоящим в том, что расстояние М0М равно R. Так как это расстояние равно модулю вектора , т. е. , то уравнение сферы с центром в точке М0, и радиусом R имеет

(9. 1)

или, после возведения обеих частей уравнения (9. 1) в квадрат

(9. 2)

Рис. 31

Уравнению (9. 2) не удовлетворяет радиус-вектор ни одной точки, для которой расстояние М0М не равно R, так как и расстояние М0М и радиус R - положительные числа.

Уравнение (9. 2) называется векторным уравнением сферы. Это уравнением сферы. Это уравнение является частным случаем векторного уравнения поверхности. Поэтому сфера является частным случаем уравнения поверхности, так как k-сферу можно рассматривать как сферу в (k + 1)-пространстве.

Так как k-сфера с центром в точке М0(х0) и радиусом в некоторой (k + 1)-плоскости является пересечением сферы с тем же центром и радиусом с указанной (k + 1)-плоскостью, уравнениями k-сферы является уравнение (9. 2) сферы с тем же центром и радиусом и уравнения (k + 1)-плоскости.

Если центр сферы находится в начале, х0=0, то уравнение (9. 2) примет вид

(9. 3)

Уравнение (9. 2) можно переписать в виде

(9. 4)

или, умножая обе части этого равенства на число а, в виде

(9. 5)

Вектор и число с в уравнении (9. 5) связаны с радис-вектором х0 центра сферы и её радиусом R соотношениями

, (9. 6)

Поэтому, если дано уравнение (9. 5) сферы, то центр и радиус этой сферы определяются соотношениями.

, (9. 7)

Уравнение (9. 5) при а = 1, т. е. уравнение

(9. 8)

называется нормальным уравнением сферы. В случае нормального уравнения сферы соотношения (9. 7) показывает, что, для того чтобы уравнение (9. 5) было уравнением сферы, необходимо выполнение неравенства

(9. 9)

В случае, когда , уравнению (9. 5) удовлетворяет только одна точка М0(х0), которую можно рассматривать как сферу нулевого радиуса. Для того, чтобы общее уравнение второй степени было бы уравнением сферы, необходимо выполнение неравенства, равносильного неравенству (9. 9).

Геометрия k-сфер

1. Уравнение k-сфер

Определим k-сферы как пересечения сферы с (k+1)-плоскостью. Так как (k+1)-плоскость в свою очередь является пересечением n - k - 1 плоскостей, а каждая из этих плоскостей может быть заменена такой сферой, что указанная плоскость является радикальной плоскостью для этой сферы и данной сферы, k-сфера является пересечением n - k независимых сфер. Поэтому k - сферу можно задать n - k - уравнениями

В этом случае произвольная сфера, проходящая через данную k-сферу, определяется уравнением

(9. 10)

При k = n - 2 совокупность сфер с уравнениями вида (9. 10) составляет пучок сфер.

Если даны две сферы

, ,

то совокупность сфер с уравнениями

называется пучком сфер,

содержащем две сферы.

Уравнение при является уравнением плоскости.

Взаимное расположение двух k-сфер

Две k-сферы k-пространства без общих точек будем называть зацепленными, если всякая сфера, проходящая через одну из этих k-сфер, пересекается со всякой сферой, проходящей через другую k-сферу. Будем называть две k-сферы k-пространства без общих точек незацепленными, если существуют непересекающиеся сферы, проходящие через эти k-сферы.

На рисунке изображены различные виды взаимного расположения двух окружностей в 3-пространстве.

а) зацепление б) пересечение в точке

в) незацепление

Рис. 32

Объём сферы

Объём сферы радиуса r, который будем обозначать Sk, выражается интегралом

,

в котором переменное изменяется от 0 до 2, а переменные (при i > 1) от до поэтому этот интеграл равен произведению k интегралов

тогда объём Sk сферы радиуса r в k-пространстве при чётном n равен:

(9. 11)

и для n чётного:

Формулы объёма дают при k = 2 (считая 0!! = 1), 3, 4 и 5 соответственно.

, .

Объём шара

Объём шара радиуса r, который будем обозначать Vk, выражается интегралом

который с помощью интеграла (9. 11) для вычисления объёма сферы Sk может быть записан в виде

Поэтому объём Vk шара радиуса r в k-пространстве при чётном и нечётном n соответственно равен

, (9. 12)

Формула (9. 12) дает при k = 2, 3, 4, 5 соответственно

, , , (9. 13)

Глава III. Применения многомерной геометрии

§ 10. О необходимости введения многомерного пространства (на примерах задач)

В чём состоит польза многомерных пространств? Где они применяются? Зачем понадобилось расширять представления о пространстве от реального трёхмерного мира до столь далёких абстракций, которые нелегко и не сразу укладываются в сознании?

Для ответа на эти вопросы необходимо рассмотреть несколько примеров задач.

Пример 1. Сумма n чисел равна единице. Каковы должны быть эти числа, чтобы сумма их квадратов была наименьшей?

Рис. 33

Решение. Получим ответ на поставленный вопрос геометрическим путём, рассматривая сначала случай n = 2, затем n = 3, а потом обсудим ситуацию при n > 3.

Итак, пусть сначала n = 2. Иначе говоря, рассматривая числа х, у, удовлетворяющие условию х + у = 1, и требуется найти, в каком случае сумма квадратов х2 + у2 будет наименьшей. Уравнение х + у = 1 определяет на координатной плоскости прямую (рис. 33). Рассмотрим окружность S с центром в начале координат, которая касается этой прямой (точка А). Если точка М(х, у) прямой l отлична от А, то она лежит вне окружности S и поэтому | ОМ| больше радиуса r этой окружности, т. е. . Если же М = А, то сумма х2 + у2 равна r, т.е. именно для точки А эта сумма принимает наименьшее значение. Точка А имеет координаты х = у = 1/2; это и есть решение поставленной алгебраической задачи при (n = 2).

Рис. 34

Пусть n = 3. Уравнение x + y + z =1 определяет в пространстве плоскость L. Рассмотрим сферу S c центром в начале координат, касающуюся этой плоскости в некоторой точке А (рис. 34). Для любой точки , отличной от А, её расстояние от точки О больше радиуса r сферы S, и поэтому , при М = А имеем .

Таким образом, именно для точки А сумма принимает наименьшее значение. Точка А имеет равные координаты: x = y = z (поскольку при повороте пространства, переставляющем оси координат: , и плоскость L и сфера S переходят в себя, а поэтому их общая точка остаётся неподвижной). А так как x + y + z =1, то точка А имеет координаты x = y = z = 1/3; это и есть решение поставленной задачи (для n=3).

Рассмотрим произвольное n; рассуждения будем вести в n-мерном пространстве, точками которого являются последовательности (х1, х2, …, хn), состоящие из n действительных чисел. Уравнение определяет в этом пространстве «плоскость» L, имеющую размерность n - 1 (гиперплоскость в n-мерном пространстве). Рассмотрим сферу S с центром в начале координат О, касающуюся гиперплоскости L в некоторой точке А. Все точки гиперплоскости L, кроме А, лежат вне сферы S, т. е. находятся от начала координат О на расстоянии, равном r. Следовательно, сумма принимает наименьшее значение по сравнению со всеми другими точками гиперплоскости L. Заметим теперь, что все координаты точки А равны между собой: (поскольку поворот пространства, переставляющий оси координат: , и плоскость L и сфера S переходят в себя, а поэтому их общая точка остаётся неподвижной), откуда . Итак, при сумма квадратов принимает наименьшее значение для .

Пример 2. На три завода З1, З2, З3 (рис. 35) нужно завести сырьё одинакового вида, которое хранится на двух складах С1, С2 в соответствии с данными, указанными в таблице.

Наличие сырья

Потребность в сырье

С1

С2

З1

З2

З3

20 т

25 т

10 т

15 т

20 т

Требуется найти наиболее выгодный вариант перевозок, т. е. вариант, для которого общее количество тонно-километров будет наименьшим.

Решение. Обозначим через х и у количество сырья, которое нужно вывести со склада С1 соответственно на заводы З1, З2. Тогда со второго склада нужно довезти на эти заводы 10 - х и 15 - у тонн сырья. Так как общее количество имеющегося на складах сырья совпадает с потребностью заводов, т. е. всё сырьё должно быть вывезено со складов на заводы, то после обеспечения заводов З1 и З2 оставшееся на складах сырьё полностью вывозится на завод З3, т. е. со склада С1 на завод З3 вывозится 20 - х - у, а со склада С2 25 - (10 - х) - (15 - у) = х + у тонн.

Рис. 35

Учитывая расстояния (рис. 35), находим общее число тонно-километров:

5х + 7у + 10(20 - х - у) + 3(10 - х) - (15 - у) + 6(х + у) = 290 - 2х - у.

Заметим теперь, что все величины, выражающие количество перевозимого по разным дорогам сырья, неотрицательны:

.

Каждое из этих неравенств определяет в системе координат х, у полуплоскость, а система всех неравенств определяет пересечение этих полуплоскостей, т. е. выпуклый многоугольник Q (рис. 36). Заметим, что последнее неравенство можно отбросить: оно является следствием первых двух.

Рис. 36

Таким образом, задача о нахождении наиболее выгодного варианта перевозок сводится математически к нахождению точки М(х, у) многоугольника Q, в который функция 290 - 2х - у достигает наименьшего значения. Вместо этой функции можно рассматривать функцию - 2х - у.

Действительно, если будет найдено наименьшее значение функции - 2х - у на многоугольнике Q, то прибавив к этому значению 290, получим наименьшее значение функции 290 - 2х - у. На рисунке 37 показано, что наименьшее значение линейной функции, рассматриваемой на многоугольнике Q, достигается в вершине С. Иначе говоря, наиболее выгодный вариант перевозок соответствует точке С(10; 10), т. е. х = 10, у = 10. Общее количество тонно-километров для этих значений х, у равно 290 - 2·10 - 10 = 260. Видно, геометрическая модель позволила полностью решить поставленную задачу.

Рис. 37

В рассмотренной задаче все объёмы перевозок со складов на заводы удалось выразить через две переменные х, у. Это позволило дать геометрическую интерпретацию получившейся системы неравенств на координатной плоскости. Допустим, однако, что при тех же двух складах число заводов равно четырём с потребностью в сырье соответственно 8, 10, 12 и 15 т. Тогда нужно будет ввести три переменные x, y, z, обозначающие количество сырья, вывозимого со склада С1 на первые три завода. Если задать расстояния со складов до заводов, то можно будет составить выражение для общего числа тонно-километров. Можно написать и неравенства, выражающие неотрицательность количества сырья, вывозимого со складов на заводы. Теперь эти неравенства будут зависеть от трёх переменных x, y, z. Каждое из этих неравенств задаёт полупространство, а система всех неравенств определяет пересечение полупространств, т. е. выпуклый многогранник в трёхмерном пространстве.

Таким образом, для четырёх заводов задача о перевозке сырья будет математически формулироваться как задача о наименьшем значении линейной функции на трёхмерном выпуклом многограннике.

Для двух складов и пяти заводов (при сохранении того условия, что всё сырьё должно быть вывезено полностью) потребуются уже четыре переменные, обозначающие количество сырья, вывозимого со склада С1 на первые четыре завода. Теперь мы будем иметь неравенства с четырьмя переменными, и для получения геометрической интерпретации потребуется четырёхмерное пространство, а при большем числе складов и заводов - пространство ещё большей размерности.

§ 11. Пространство-время классической механики

Аналогия между пространством и временем была известна ещё древним грекам. Аристотель включал время в число непрерывных величин наряду с линиями, поверхностями и телами. Однако впервые рассматривал время как координату наряду с пространственными координатами Галилей.

Время систематически рассматривалось в качестве координаты в теоретической механике.

Будем характеризовать положение материальной точки в пространстве в данный момент времени пространственными координатами хi ( i = 1, 2, 3) и временной координатой t. В классической механике Галилея-Ньютона переход от исходной системы координат хi, t к другой системе, движущейся относительно неё прямолинейно и равномерно определяется формулами

где - координаты вектора движения первой системы по отношению ко второй. Формулы показывают, что если при переходе от одной системы координат к другой системе, движущейся по отношению к ней, пространственные координаты во второй системе выражаются не только через пространственные координаты в первой системе, но и через временную координату в этой системе, то временные координаты во второй системе могут отличаться от временных координат в первой системе только изменением начала отсчёта, т. е. время в механике Галилея-Ньютона абсолютно.

Механика Галилея-Ньютона хорошо согласуется с практикой при малых скоростях, но при больших скоростях, сравнимых со скоростью света, эта механика заметно расходится с практикой; согласно механике Галилея-Ньютона, если скорость света по отношению к некоторой системе координат равна с, то по отношению к системе координат, движущейся в том же или обратном направлении со скоростью v, эта скорость соответственно должна быть равна c - v или c + v. Но, как показывает эксперимент, скорость света одна и та же по отношению ко всем системам координат, движущихся друг относительно друга прямолинейно и равномерно. Если скорость v, во много раз меньше скорости с, скорости c - v и c + v практически неотличимы от скорости с, но в случае, когда скорость v сравнима со скоростью с, отличие скорости света от скоростей c - v и c + v легко заметить.

§ 12. Пространство-время специальной теории относительности

Для того чтобы выполнялось условие постоянства скорости света для всех систем координат, движущихся равномерно и прямолинейно друг относительно друга, достаточно, чтобы для всех таких систем прямоугольных координат выполнялось соотношение

то есть

(12. 1)

Это условие не может быть выполнено в механике Галилея-Ньютона, где координата не может зависеть от координаты . Для того чтобы удовлетворить этому условию, следует отказаться от понятия об абсолютном времени и принять, что пространство и время - не изолированные друг от друга формы существования материи, а две стороны существования одной и той же формы.

Этому условию удовлетворяет механика специальной теории относительности Энштейна, дающая при скоростях, сравнимых со скоростью света, значительно большее согласие с практикой, чем механика Галилея-Ньютона. Если мы обозначим произведение ct, имеющее размерность длины через х4, то, согласно специальной теории относительности, при переходе от одной системы координат к другой такой системе, движущейся относительно неё равномерно и прямолинейно, координаты хi (i = 1, 2, 3, 4) преобразуются по закону

(12. 2)

причём

(12. 3)

где , .

Формула (12.2) совпадает с формулой преобразования прямоугольных координат обычного n - пространства при n = 4, но формула (12. 3) отличается от соответственного условия в 4-пространстве, в котором .

Поэтому в случае специальной теории относительности можно по аналогии с обычным 4-пространством определить в 4-пространстве, точки которого определяют положения материальных точек в разные моменты времени, расстояния между точками, считая за расстояние между точками М1 и М2 с координатами и квадратный корень из выражения . Определённое таким образом расстояние может быть как вещественным, так и чисто мнимым и равным нулю. В первом случае существует такая система координат, в которой точки М1 и М2 одновременны и расстояние М1М2 равно обычному расстоянию между ними в этой системе координат. Во втором случае существует такая система координат, в которой эти точки имеют одинаковые пространственные координаты и расстояние М1М2 равно произведению ic на отрезок времени между этими точками в этой системе координат. В третьем случае М1М2 = 0 и точки М1 и М2 можно соединить лучом света.

Определённое нами 4-пространство называют пространством Минковского. Преобразования (12.2) при , удовлетворяющие условиям (12. 3), называют преобразованиями Лоренца.

Этот пример показывает плодотворность понятия 4-пространства, указывает на необходимость расширения понятия евклидова n-пространства в сторону отказа от знакоопределённости квадратичной формы, выражающей скалярный квадрат вектора х в функции его координат.

§ 13. Пространство-время общей теории относительности

Описание пространства-времени с помощью псевдоевклидова 4-пространства индекса 3 в специальной теории относительности, согласующееся с практикой лучше, чем описание пространства-времени в классической механике, является только приближённым описанием пространства-времени. Следующее приближение было предложено самим Энштейном в его общей теории относительности. Согласно этой теории пространство-время является псевдоримановым 4-пространством индекса 3, кривизна в 2-мерных направлениях которого больше там, где больше плотность материи. Таким образом, не только пространство и время оказываются взаимозависимыми, но их свойства оказываются зависящими от материи, формой существования которой они являются.

Из того, что в малой области геометрия псевдоримановых пространств близка к геометрии псевдоевклидова пространства, образованного векторами в одной из точек этой области, видно, что специальная теория относительности хорошо согласуется с практикой в сравнительно небольших областях пространства-времени, а в больших областях проявляются свойства, описываемые общей теорией относительности.

Хотя с прогрессом науки мы узнаём свойства всё больших областей пространства-времени, известная нам часть вселенной остаётся ограниченной и по свойствам этой части мира мы можем судить о геометрических свойствах мирового пространства-времени в целом только в порядке грубого приближения.

Наиболее грубое приближение к картине мирового пространства-времени в целом мы получим, если предположим, что материя распределена в пространстве-времени совершенно равномерно и, следовательно, пространство-время представляет собой псевдориманово 4-пространство индекса 3 постоянной кривизны. Если мы представим себе такое пространство в виде сферы вещественного или мнимого радиуса в псевдоевклидовом 5-пространстве соответственно индекса 4 или 3, а поверхности t =const также в порядке грубого приближения представим себе сечениями этой сферы параллельными плоскостями, то с течением времени «пространственное сечение» мира уменьшается или расширяется в зависимости от положения секущей плоскости. В первом случае кривизна «пространственного сечения» - постоянная положительная, во втором случае - постоянная отрицательная.

а) б)

Рис. 38

На рис. 38 изображены трёхмерные аналоги сфер вещественного и мнимого радиуса в псевдоевклидовом 5-пространстве. Изложенная картина мира с первого взгляда кажется неправдоподобной, но она подтверждается астрономическими наблюдениями, свидетельствующими о расширении известной нам вселенной. Это подтверждение указывает на возможность того, что реальное пространство-время, является псевдоримановым пространством переменной кривизны, соответствует этой картине мира «в среднем».

Заключение

Изучение k-мерного пространства весьма полезно как для уяснения многих закономерностей геометрии обычного пространства, являющегося частным случаем k-мерного пространства при k = 3, так и для более наглядного представления многих закономерностей алгебры, геометрии и анализа, связанных с уравнениями с k неизвестными.

Соотношения k-мерной геометрии находят применение и при решении транспортных задач о составлении оптимального способа перевозки грузов и т. д.

В данной работе были рассмотрены многомерные геометрические образы в k-мерных пространствах и четырёхмерное пространство, которое наши глаза никогда не видели. Также исследовались четырёхмерные предметы пространства. На основе изложенного материала исследовали необходимость введения многомерного пространства системы, заданной k-параметрами, в которой появляются понятия k-мерной линии плоскости.

Литература

1. Александров А. Д., Нецветаева Н. Ю. Геометрия. - М.: Наука, 1990.

2. Атанасян Л. С. Геометрия. ч. 2 - М., 1987.

3. Базылев В. Т. и др. Геометрия. Учеб. Пособие для студентов физ.-мат. Факультетов пед. институтов - М.: «Просвещение», 1975.

4. Вигнер Е. Непостижимая эффективность математики в естественных науках // УФН. - 1968. - Т. 94, вып. 3.

5. Гельфанд И. М., Глаголева Е. Г., Кириллов Н. А. Метод координат. Изд. 3 - М.: Наука, 1968.

6. Гордевский Д. З. Популярное введение в многомерную геометрию. - Харьков: Изд-во Харьк. ун-та, 1964.

7. Ефимов Н. В., Розендорн Э. Р. Линейная алгебра и многомерная геометрия. - М.: Наука, 1970.

8. Манин Ю. И. Новые размерности в геометрии // Успехи мат. Наук, 1984, т. 39, вып. 6.

9. Моденов Л. С. Аналитическая геометрия. - М., 1969.

10. Парнасский И. В. Многомерные пространства. - М.: Наука, 1978.

11. Понтрягин Л. С. Знакомство с высшей математикой. - Изд. 2. - М.: Наука, 1987.

12. Прохоров Ю. В. Большой энциклопедический словарь по математике. - М.: Науч. издат., 1998.

13. Розенфельд Б. А. Многомерные пространства. - М.: Наука, 1966.

14. Сазанов А. А. Четырёхмерный мир Минковского. - М.: Наука, 1988.

15. Стрингхем П. Г. Правильные фигуры в n-мерном пространстве. Под ред. Фаге, Успехи математических наук, вып. 10 - М., 1954.

16. Хлопонина Э. П. Аналитическая геометрия аффинных и евклидовых пространств: Учебное пособие, ч. 1 - Ставрополь: Изд-во СГУ, 1998.


Подобные документы

  • Теоретические основы аксиоматики Вейля. Непротиворечивость и категоричность аксиоматики Вейля, прямая, плоскость. Аксиоматика Вейля и школьная геометрия. Задачи, решаемые векторным способом. Виды задач о прямых и плоскостях, их решение и доказательство.

    дипломная работа [673,4 K], добавлен 11.12.2012

  • Изучение истории развития геометрии, анализ постулатов Евклида, аксиоматики Гильберта, обзор других систем аксиом геометрии. Характеристика неевклидовых геометрий в системе Вейля. Элементы сферической геометрии. Различные модели плоскости Лобачевского.

    дипломная работа [245,5 K], добавлен 13.02.2010

  • Общая теория топологических и векторных пространств, внутренняя логика развития; аксиоматика. Структура построения нормированного пространства; рассмотрение и развитие понятия банахова пространства как определённого типа векторных пространств с нормой.

    реферат [14,9 K], добавлен 11.01.2011

  • Понятие и характеристика линейного пространства, его главные свойства и особенности. Исследование аксиом векторного пространства. Анализ отличий и признаков векторного подпространства. Базис и формулы линейного пространств, определение его размерности.

    реферат [249,4 K], добавлен 21.01.2011

  • Понятие и признаки метрического пространства. Свойства топологических пространств. Замкнутые множества: внутренние, внешние и граничные точки. Топологические преобразования топологических пространств. Понятие и содержание двумерного многообразия.

    курсовая работа [481,4 K], добавлен 28.04.2011

  • Возникновение геометрии как науки о формах, размерах и границах частей пространства, которые в нем занимают вещественные тела. Появление геометрии в Греции к концу VII в. до н. э. Теорема Пифагора и развитие методов аналитической геометрии Гаусса.

    реферат [38,5 K], добавлен 16.01.2010

  • Исследование геометрии поверхностей четырехмерного псевдоевклидова пространства индекса один (пространства Минковского). Определение пространства Минковского, его основные особенности, типы прямых и плоскостей. Развертывающиеся и линейчатые поверхности.

    дипломная работа [1,7 M], добавлен 17.05.2010

  • Этапы развития теории описания пространства, сущность принципа относительности, сформулированного Галилеем. Геометрия Минковского как описание пространства – времени, основные понятия ее описания. Разработка практических занятий по данным темам.

    дипломная работа [354,6 K], добавлен 24.02.2010

  • Клеточные разбиения классических пространств. Важность для геометрии и топологии клеточного разбиения многообразий Грассмана. Гомотопические свойства клеточных пространств. Теорема о клеточной аппроксимации. Доказательство леммы о свободной точке.

    курсовая работа [1,4 M], добавлен 15.06.2009

  • Основные понятия и теоремы. Свойства метризуемых пространств. Примеры метризуемых и неметризуемых пространств. Метризуемое пространство хаусдорфово. Метризуемое пространство нормально. Выполняется первая аксиома счетности.

    дипломная работа [273,3 K], добавлен 08.08.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.