курс лекций Основы дифференциальной геометрии
Понятие метрического и топологического пространства. Расстояние между множествами. Диаметр множества. Непрерывные отображения. Гомеоморфизм. Вектор-функция скалярного аргумента. Понятия пути и кривой. Гладкая и регулярная кривая, замена параметра.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Математика |
Вид | курс лекций |
Язык | русский |
Дата добавления | 02.06.2013 |
Размер файла | 134,0 K |
Подобные документы
Теорема о промежуточных значениях; точка отрезка, в которой функция обращается в ноль. Первая и вторая теоремы Вейерштрасса. Теорема Кантора, равномерно-непрерывная функция на промежутке. Функционалы непрерывные на компакте метрического пространства.
задача [141,7 K], добавлен 28.12.2009Понятие и способы образования плоских и кривых линий. Примеры пересечения алгебраической кривой линии. Поверхность в геометрии. Аргументы вектор-функции. Уравнения семейства линий. Способ построения касательной и нормали в произвольной точке лемнискаты.
контрольная работа [329,5 K], добавлен 19.12.2014Интеграл по кривой, заданной уравнением y=y(x). Вычисление криволинейного интеграла. Кривая от точки А к В при изменении параметра. Непрерывные функции со своими производными. Отрезок параболы, заключенный между точками. Решение разными методами.
презентация [44,4 K], добавлен 17.09.2013Наделение множества метрикой, основные аксиомы метрического пространства. Равномерная метрика, нормы элементов и линейное пространство. Фундаментальная последовательность элементов линейного нормированного пространства. Понятие банахова пространства.
реферат [375,9 K], добавлен 04.12.2011Градусная и радианная мера угла. Функция как соотношение между двумя числовыми множествами, размерность числового множества. Понятие множества значений некоторого угла. Элементарные тригонометрические функции произвольного угла: синус, косинус, тангенс.
реферат [239,9 K], добавлен 19.08.2009Основные задачи, решаемые методом координат. Действия над матрицами. Понятие минора и алгебраического дополнения. Собственные векторы и собственные значения линейного оператора. Действия с множествами. Геометрический смысл дифференциала функции.
учебное пособие [1,1 M], добавлен 22.03.2012Регулярная кривая и ее отдельные точки. Касательная к кривой и соприкасающаяся плоскость. Эволюта и эвольвента плоской кривой. Кривые на плоскости, заданные уравнением в неявной форме. Примеры точки возврата; понятие асимптоты и полярных координат.
курсовая работа [936,1 K], добавлен 21.08.2013Характеристика интегралов, зависящих от параметра, значение их регулярности. Анализ интеграла коши на кривой и на области. Особенности аналитических свойств интегральных преобразований. Формула Коши: описание, вывод, аналитическая функция, следствия.
курсовая работа [284,2 K], добавлен 27.03.2011Предпосылки развития алгебры множеств. Основы силлогистики и соотношение между множествами. Применение и типы жергонновых отношений. Понятие пустого множества и универсума. Построение диаграмм Эйлера и обоснование законов транзитивности и контрапозиции.
контрольная работа [369,0 K], добавлен 03.09.2010Множество как ключевой объект математики, теории множеств и логики. Операции над множествами, числовые последовательности. Множества действительных чисел. Бесконечно малые и большие функции. Непрерывность функции в точке. Свойства непрерывных функций.
лекция [540,0 K], добавлен 25.03.2012