контрольная работа  Математика мыльных пузырей

Сферическая форма пузыря, получаемая за счёт поверхностного натяжения. Открытие способа соединения двух мыльных пузырей так, чтобы суммарная площадь поверхности с площадью перегородки была наименьшей. Простейшие математические задачи с мыльными пузырями.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

 .d8888b.   .d8888b.   .d8888b.  8888888888  .d8888b.  
d88P  Y88b d88P  Y88b d88P  Y88b       d88P d88P  Y88b 
Y88b. d88P 888        888             d88P  888    888 
 "Y88888"  888d888b.  888d888b.      d88P   888    888 
.d8P""Y8b. 888P "Y88b 888P "Y88b  88888888  888    888 
888    888 888    888 888    888   d88P     888    888 
Y88b  d88P Y88b  d88P Y88b  d88P  d88P      Y88b  d88P 
 "Y8888P"   "Y8888P"   "Y8888P"  d88P        "Y8888P"  
                                                       
                                                       
                                                       

Введите число, изображенное выше:

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 01.01.2014
Размер файла 1,2 M

Подобные документы

  • Зависимость строения пленки и поверхностного натяжения. Решение задачи Плато для сложного контура. Принцип минимума энергии. Теория многогранников. Особенности строения контуров и натяжения мыльных пленок. Изучение строения мыльной пены в геометрии.

    презентация [6,6 M], добавлен 24.04.2016

  • Из всех прямоугольников с площадью 9 дм2 найдите тот, у которого периметр наименьший.Вычислить площадь фигуры, ограниченной линиями (сделав рисунок). Вычислить площадь фигуры, ограниченной линиями.

    задача [20,9 K], добавлен 11.01.2004

  • Математика как наука о числах, скалярных величинах и простых геометрических фигурах. Математические модели, отражающие объективные свойства и связи. Основные понятия математики, ее язык. Аксиоматический метод, математические структуры, функции и графики.

    реферат [58,1 K], добавлен 26.07.2010

  • Краткий обзор развития геометрии. Призма. Площадь поверхности призмы. Призма и пирамида. Пирамида и площадь ее поверхности. Измерение объемов. О пирамиде и ее объеме. О призме и параллелепипеде. Симметрия в пространстве.

    реферат [19,7 K], добавлен 08.05.2003

  • Египетские пирамиды как одно из семи чудес света. Пирамиды Хеопса, Хефрена и Микерина в Эль-Гизе. Геометрическая форма строений. Апофема и свойства правильной пирамиды. Сущность понятия "тетраэдр". Площадь полной и боковой поверхности, объем, теорема.

    презентация [3,1 M], добавлен 12.12.2013

  • Основные свойства, прямой и наклонный виды призмы. Площадь поверхности призмы и площадь ее боковой поверхности: доказательство теоремы. Сечение призмы плоскостью. Свойства правильной призмы, особенности ее сечения и симметрия. Оси и плоскости симметрии.

    презентация [147,7 K], добавлен 20.12.2010

  • Линейная алгебра. Комплексные числа. Деление отрезка в данном отношении. Площадь треугольника и многоугольника. Сферические и цилиндрические поверхности. Замечательные и вычислительные пределы. Производства и дифференциал. Построение графика функций.

    методичка [2,4 M], добавлен 19.06.2015

  • Понятие и определение пирамиды. Отрезки, соединяющие вершину пирамиды с вершинами основания. Площадь боковой поверхности, основания и полной поверхности пирамиды. Свойства произвольных, усеченных и правильных пирамид. Определение высоты боковой грани.

    презентация [726,8 K], добавлен 05.04.2012

  • Примеры изучение дробных и многозначных чисел путем ребусов и головоломок. Основные принципы получения трехзначных чисел, путем шестикратного сложения. Математические задачи, направленные на развитие логического мышления и быстрого усваивания материала.

    презентация [195,1 K], добавлен 04.02.2011

  • Математика Древнего и Средневекового Китая. Правило двух ложных положений. Системы линейных уравнений со многими неизвестными. Начальные этапы развития тригонометрии. Создание позиционной десятичной нумерации. Арифметика натуральных чисел и дробей.

    дипломная работа [593,1 K], добавлен 22.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.