Разработка сценария обучающей программы
Понятие об обучающих программах. Их достоинства, недостатки и проблемы подходов к проектированию. Рекомендации по применению психологических теорий усвоения. Элементы управления в сценариях обучающих программ. Технология создания мультимедиа курса.
Рубрика | Педагогика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 17.01.2011 |
Размер файла | 227,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Эргономические требования способствуют усилению эффективности обучения, активизации процессов восприятия информации и должны обязательно учитываться преподавателем при подготовке текстов для электронных учебников.(5)
6.3.3 Подготовка статических иллюстраций
Необходимость включения в электронные средства учебного назначения статических иллюстраций связана, прежде всего, с их методической ценностью. Использование наглядных материалов в процессе обучения способствует повышению уровня восприятия, формированию устойчивых ассоциативных зрительных образов, развитию творческих способностей обучаемых.
Статические иллюстрации - рисунки, схемы, карты, репродукции, фотографии и т.п., сопровождающие текстовый материал, даже в их "классическом" понимании могут существенно облегчить восприятие учебной информации.
Компьютерные технологии позволяют усилить эффекты использования наглядных материалов в учебном процессе. Так, в отличие от книги, где иллюстрации должны присутствовать всегда одновременно с текстом, в компьютерной версии они могут вызываться по мере необходимости с помощью соответствующих элементов пользовательского интерфейса.
Следует заметить, что качество электронных иллюстраций во много раз превосходит качество книжных иллюстраций. Кроме того, компьютерная иллюстрация, как и компьютерный текст, может быть сделана интерактивной.
Поэтому автор электронного курса испытывает гораздо меньше ограничений в изобразительных средствах.
При подборе иллюстративного материала важно соблюдать стилевое единство видеоряда (особенно если используются материалы из разнородных источников) и избегать раздражающей пестроты.
Не менее важно обеспечить и высокое качество иллюстраций. Компьютерные технологии обработки изображений позволяют существенно улучшить качество исходного материала.(5)
6.3.4 Создание мультимедиа
Для того чтобы обеспечить максимальный эффект обучения, необходимо учебную информацию представлять в различных формах. Этому способствует использование разнообразных мультимедиа приложений. Мультимедиа - это объединение нескольких средств представления информации в одной системе. Обычно под мультимедиа подразумевается объединение в компьютерной системе таких средств представления информации, как текст, звук, графика, мультипликация, видеоизображения и пространственное моделирование. Такое объединение средств обеспечивает качественно новый уровень восприятия информации: человек не просто пассивно созерцает, а активно участвует в происходящем. Программы с использованием средств мультимедиа многомодальны, т.е. они одновременно воздействуют на несколько органов чувств и поэтому вызывают повышенный интерес и внимание у аудитории.
Содержание мультимедиа приложений продумывается автором еще на этапе создания педагогического сценария и конкретизируется при разработке технологического сценария. Если текст и статическая графика - традиционные средства представления учебной информации, имеющие многовековую историю, то опыт использования мультимедиа исчисляется годами, что усложняет для преподавателя подготовку материалов к электронному изданию. При подготовке мультимедиа курсов могут быть использованы следующие типы мультимедиа приложений.
Анимация - динамичная графика, основанная на применении различных динамических визуальных эффектов (движущиеся картинки, выделение цветом, шрифтом отдельных элементов схем/таблиц и т.п.). Анимацию удобно использовать для моделирования опытов, для демонстрации работы органов речи при произнесении звуков изучаемого иностранного языка, для иллюстрации движения финансовых потоков на предприятии, при изучении различных динамических процессов.
Аудиоприложение - аудиозапись, чаще всего представляющая собой небольшие монологические комментарии преподавателя к некоторым схемам, таблицам, иллюстрациям и т.д. При этом схемы и таблицы могут быть снабжены эффектом анимации (элемент схемы/таблицы, о котором говорит преподаватель, выделяется во время прослушивания текста). Аудиоприложения также могут использоваться для введения в курс иностранного языка элементов аудирования, представлять обучающемуся образцы произношения, давать возможность прослушивать учебные диалоги и тексты. Авторские аудиокомментарии позволяют придать материалу эмоциональную окраску, а иногда (если это педагогически обоснованно) и продублировать текст, подчеркивая его важность. Эффективным средством представления учебной информации может служить и слайд-шоу - видеоряд с синхронным звуковым сопровождением. Видеолекция - видеозапись лекции, читаемой автором курса. Методически целесообразным считается запись небольшой по объему лекции (не более 20 минут), тематика которой позволяет обучающимся познакомиться с курсом и его автором (вводная видеолекция), с наиболее сложными проблемами курса (тематическая видеолекция). Видеолекция активизирует "личностный" фактор в обучении, вводя образ преподавателя в арсенал учебных средств.(5)
6.4 Тестирование ЭУК
На этапе тестирования проверяется правильность работы ЭУК и исправляются обнаруженные ошибки и неточности функционирования курса. Можно выделить два аспекта тестирования: педагогический и технический (Sukhorukov, 2007). Технический аспект связан с проверкой работы программных модулей, созданных при разработке курса. Такая проверка аналогична тестированию любых программных продуктов и здесь не рассматривается. Педагогический аспект тестирования предусматривает проверку правильности функционирования ЭУК в соответствии с разработанными сценариями. При тестировании ЭУК надо проверить последовательность и правильность:
- выдаваемого обучаемому учебного материала (ИОО) и заданий (ЗОО) для проверки его усвоения, учитывая, что учебный материал и задания могут быть представлены в различной форме (текст, графика, мультимедиа и др.);
- комментариев, выводимых обучаемому в зависимости от результата выполнения задания или ответа на вопрос;
- перехода к следующему объекту обучения (ИОО или ЗОО);
- вычисления набранных обучаемым баллов и выставления оценки и т.д.
Обычно эту работу выполняет автор ЭУК, проверяя различные сценарии диалога обучаемого с ЭУК. Иногда в тестировании участвует и преподаватель, который будет использовать курс. В некоторых системах для педагогического тестирования учебного курса предусмотрен специальный класс пользователей - эксперт (WebCT, ?).
Для адаптивных курсов, особенно при автоматической генерации сценария в процессе работы обучаемого с ЭУК, число вариантов прохождения курса достаточно велико, и проверка всех возможных путей прохождения курса требует очень много времени. Поэтому целесообразно автоматизировать этот процесс, используя, например, управляемый данными метод тестирования (Sukhorukov, 2007), который позволяет автоматически проверить все возможные пути прохождения курса. В этом случае правильность ИОО и ЗОО проверяется автором ЭУК, а сценарии работы с курсом - с использованием методов автоматического тестирования.
Таким образом, результатом данного этапа является готовый к использованию ЭУК.(4)
Заключение
Создание обучающих программ -- творческий процесс, требующий не только логического мышления, но и интуиции. Этот процесс еще изучен недостаточно и не может быть описан с помощью жестких нормативов-предписаний.
Много опасностей и ловушек подстерегает разработчиков обучающих программ. Для педагогов самая большая опасность -- механический перенос особенностей обучения в классе (группе) на компьютерное обучение, стремление как можно более точно скопировать работу педагога. Хотелось бы отметить, что механический перенос в принципе недопустим по следующим причинам:
Даже самый опытный педагог, мастер своего дела, далеко не всегда сможет описать свою деятельность и тем более объяснить каждое свое решение (многие решения принимаются педагогом интуитивно, они не полностью осознаются, и на вопрос, почему принято именно такое, а не иное решение в большинстве случаев отвечают: так подсказал опыт, это известно из практики и т.д.).
Групповое, классное обучение, опыт которого приобретает педагог, не является адекватной моделью компьютерного обучения, которое обладает многими особенностями индивидуального обучения, существенно отличаются от группового.
Компьютер не только накладывает определенные ограничения на реализацию учебного процесса, он раскрывает новые возможности в управлении учебной деятельностью. Это происходит прежде всего за счет неограниченных возможностей в предъявлении материала, применения разнообразных учебных задач, построения модели обучаемого путем накопления и переработки больших массивов данных, относящихся к учащемуся, неограниченного запаса знаний, относящихся к данной предметной области, и т.п.
Кроме того следует иметь в виду, что разработка обучающих программ -- это качественно иная, в сравнении с практической, деятельность педагога. Можно уметь решить задачу, но не уметь составить алгоритм. А ведь при разработке обучающей программы необходимо составить алгоритм работы компьютера, который отнюдь не копирует, а моделирует деятельность педагога и даже те же самые функции реализует иными способами.
К тому же разработка обучающих программ требует более глубоких знаний не только в определенной предметной области, но и знаний об учебном процессе и учащихся. Мировой опыт убедительно показывает, что даже опытные практические работники, прошедшие специальную подготовку, нередко составляют весьма бледные обучающие программы, которые дают результаты значительно хуже, чем традиционное обучение.
Справедливости ради стоит отметить, что далеко не все обучающие программы, составленные специалистами в области обучения, оказались эффективными. Многие из них настолько скучные и неинтересные, что от них отказались как преподаватели, так и студенты.
Составление обучающих программ -- это наука и искусство. Оно требует и глубоких знаний, и педагогического таланта.
Список литературы
1. http://www.ito.su/2001/ito/II/II-4-7.html
Технология разработки и использования электронных учебников. Калинин Илья Александрович (МГПУ г.Москва)
2. http://www.btek.ru/dir/doc/nbp.ppt
Электронные учебные материалы. Нормативная база. Принципы и требования. Янголова Наталия Геннадьевна
3. http://agafonovamv.boom.ru/mv.html
Обзор и классификация обучающих программ. Агафонова М.В.
4. http://ifets.ieee.org/russian/depository/v11_i1/html/9.htm
Технология разработки адаптивных электронных учебных курсов для компьютерных систем обучения. Л.В. Зайцева (Рижский Технический Университет, Рига, Латвия)
5. http://www.ict.edu.ru/ft/003622/4.html
Мультимедиа курсы: методология и технология разработки. Вымятин В.М., Демкин В.П., Можаев Г.В., Руденко Т.В., 2003 Томский Государственный университет.
6. Задачник по теории линейных электрических цепей. Шебес М.Р. Каблукова М.В. Высш. Школа 1990
7. ru.wikipedia.org/wiki/Метод_Крамера
Свободная энциклопедия : методы решения систем линейных уравнений
8. http://sci.informika.ru/text/inftech/edu/design/index.html#Content
Соловов А.В. Проектирование компьютерных систем учебного назначения: Учебное пособие. Самара: СГАУ, 1995. 138с.
Разработка сценария обучающего курса
Цель курса
Способствовать приобретению знаний о методах расчета параметров линейных электрических цепей постоянного тока.
Выработать умения решения задач на расчет параметров линейных электрических цепей постоянного тока.
Задачи курса
1. Тип пособия - адаптивный
2. Перечень понятий темы
Узел, ветвь, источник тока, источник эдс, сопротивление, проводимость, контур, закон Ома, законы Кирхгофа, метод узловых потенциалов, метод контурных токов, узловой потенциал, контурный ток.(представление информации графическое, аналитическое, текстовое)
3. Степень изложения информации - подробная, ввиду того, что попытаемся разработать сценарий для адаптивного курса информацию будем разбивать на блоки.
4. Курс предназначен для использования при обучении студентов проф.тех. училищ и студентов младших курсов ВУЗов теоретическим основам электротехники.
5. Примерное количество заданий 3-9 , в зависимости от уровня подготовки обучаемых.
6. Количество заданий для контроля усвоения материала 3-10, также в зависимости от уровня подготовки обучаемых.
Разработка модели темы
Из существующих типов структуры курса выбираем комбинированный, так как он является наиболее оптимальным для адаптивных курсов.
Объекты обучения, входящие в модель темы.
ИОО - Информационный объект обучения
ИООп - Информационный объект обучения (пример)
ЗОО - Задачный объект обучения
КОО - Контрольный объект обучения
Обозначения …ОО.Х.У - объект обучения с номером Х и сложностью У
ИОО1
Общие сведения
Источник тока, источник ЭДС, сопротивление, проводимость, узел, ветвь, контур.
ИОО2
Законы
Закон Ома для участка цепи
Законы Кирхгофа
ИОО3
Алгоритм расчета линейных электрических цепей постоянного тока по законам Кирхгофа.
ИОО4
Алгоритм расчета линейных электрических цепей постоянного тока методом контурных токов.
ИОО5
Алгоритм расчета линейных электрических цепей постоянного тока методом узловых потенциалов
ИОО6
Решение систем линейных уравнений при помощи матриц
ИООп1
Пример на первый закон Кирхгофа
ИООп2
Пример на второй закон Кирхгофа
ИООп3
Пример расчета по законам Кирхгофа
ИООп4
Пример на второй закон Кирхгофа для метода контурных токов
ИООп5
Пример на нахождение токов в ветвях схемы по рассчитанным контурным токам.
ИООп6
Пример расчета цепи методом контурных токов
ИООп7
Пример на первый закон Кирхгофа для метода узловых потенциалов
ИООп8
Пример на расчет токов в ветвях схемы по найденным значениям узловых потенциалов.
ИООп9
Пример на расчет схемы методом узловых потенциалов.
ЗОО1
Задача на первый закон Кирхгофа
ЗОО2
Задача на второй закон Кирхгофа
ЗОО.3.(1-3)
Задача расчета по законам Кирхгофа
ЗОО4
Задача на второй закон Кирхгофа для метода контурных токов
ЗОО5
Задача на нахождение токов в ветвях схемы по расчитанным контурным токам.
ЗОО.6.(1-3)
Задача расчета цепи методом контурных токов
ЗОО7
Задача на первый закон Кирхгофа для метода узловых потенциалов
ЗОО8
Задача на расчет токов в ветвях схемы по найденным значениям узловых потенциалов.
ЗОО.9.(1-3)
Задача на расчет схемы методом узловых потенциалов.
КОО.Х.У
Контрольное задание для определения уровня овладения навыками решения задач типа ЗОО.Х.У
Что касается определения метаданных для ОО, так здесь мы подойдем с некоторым упрощением и определим лишь сложность задачных и контрольных ОО, соответственно 1- низкий, 2 - средний, 3 - высокий уровень сложности.
Формирование сценариев учебного курса.
Уровень подготовленности |
Включаемые ИОО, ИООп |
Включаемые ЗОО |
Включаемые КОО |
|
1 - слабые |
ИОО1 ИОО2 ИОО3, ИООп(1-3) ИОО6 ИОО4, ИООп(4-6) ИОО5, ИООп(7-9) |
ЗОО(1-2) ЗОО.3.1 ЗОО(4-5) ЗОО.6.1 ЗОО(7-8) ЗОО.9.1 |
КОО(1-2) КОО.3.1 КОО(4-5) КОО.6.1 КОО(7-8) КОО.9.1 |
|
2 - средние |
ИОО1 ИОО2 ИОО3, ИООп(1-3) ИОО6 ИОО4, ИООп(4-6) ИОО5, ИООп(7-9) |
ЗОО.3.1 ЗОО.3.2 ЗОО.6.1 ЗОО.6.2 ЗОО.9.1 ЗОО.9.2 |
КОО.3.1 КОО.3.2 КОО.6.1 КОО.6.2 КОО.9.1 КОО.9.2 |
|
3 - сильные |
ИОО1 ИОО2 ИОО3, ИООп3 ИОО6 ИОО4, ИООп6 ИОО5, ИООп9 |
ЗОО.3.(1-3) ЗОО.6.(1-3) ЗОО.9.(1-3) |
КОО.3.(2-3) КОО.6.(2-3) КОО.9.(2-3) |
Таблица соответствия ОО сценариям обучающего курса.
Сценарии обучающего курса
На схеме приведены сценарии прохождения курса в зависимости от способностей обучаемого.
Информационное содержание объектов обучения данного курса.
Блок ИОО1
Источник тока
Идеализированный источник питания, который создает ток J=I ,не зависящий от сопротивления нагрузки к которой он подключен, а его ЭДС Е и внутреннее сопротивление равны бесконечности.
Источник ЭДС
Идеализированный источник питания, напряжение на зажимах которого постоянно(не зависит от тока I) и равно ЭДС Е, а внутреннее сопротивление равно нулю.
Сопротивление(электрическое)
Скалярная физическая величина, характеризующая свойства проводника и равная отношению напряжения на концах проводника к силе тока протекающего в нем.
Проводимость
Скалярная величина, характеризующая свойства проводника и обратная электрическому сопротивлению.
Узел
Точка цепи, в которой сходятся не менее 3х ветвей.
Ветвь
Участок цепи образованный последовательно соединенными элементами и заключенный между двумя узлами цепи.
Контур
Простейшая замкнутая цепь элементы которой соединены последовательно.
Независимый контур
Отдельный небольшой контур схемы в который входит хотя бы одна ветвь, не вошедшая в другие контура.
Блок ИОО2
Закон Ома для участка цепи.
На участке цепи ток определяется отношением напряжения на этом участке к сопротивлению данного участка.
Закон Ома для цепи содержащей ЭДС
Ток на участке цепи определяется как отношение суммы ЭДС и разности потенциалов на концах этого участка к сопротивлению участка.
Первый закон Кирхгофа.
Алгебраическая сумма токов, подтекающих к любому узлу, равна сумме утекающих от этого узла токов. Или же алгебраическая сумма токов в узле равна нулю.
Второй закон Кирхгофа.
Алгебраическая сумма падений напряжений в любом замкнутом контуре равна алгебраической сумме ЭДС вдоль того же контура. (В каждую из сумм соответствующие слагаемые входят со знаком плюс, если их направление совпадает с направлением обхода контура, и со знаком минус, если их направление не совпадает)
Блок ИОО3
Прежде чем приступить к составлению уравнений по законам Кирхгофа, необходимо установить, сколько независимых уравнений составляется по каждому из этих законов. Уравнения по I закону Кирхгофа, связывающие m неизвестных токов, могут быть записаны для каждого из узлов цепи. Однако использовать для совместного решения можно только n--1 уравнений, т.к. уравнение, записанное для последнего узла, окажется следствием всех предыдущих уравнений. По II закону Кирхгофа составляют число уравнений, равное числу ветвей m за вычетом числа уравнений, составленных по I закону Кирхгофа (n -- 1), т.е. p = m -- (n -- 1) = m -- n + 1, где p -- количество независимых контуров.
1. Обозначить токи ветвей и произвольно выбрать их положительное направление.
2. Произвольно выбрать опорный узел и совокупность p = m -- n + 1 независимых контуров.
3. Для всех узлов, кроме опорного, составить уравнения по I закону Кирхгофа. Таких уравнений должно быть (n -- 1).
4. Для каждого выбранного контура составить уравнения по II закону Кирхгофа. Таких уравнений должно быть p.
5. Система m уравнений Кирхгофа с m неизвестными токами решается совместно и определяются численные значения токов.
6. Если необходимо, рассчитать с помощью обобщенного закона Ома напряжения ветвей или разность потенциалов узлов.
7. Проверить правильность расчета с помощью баланса мощности.
Блок ИОО4
Метод контурных токов является одним из основных методов расчета сложных электрических цепей, которым широко пользуются на практике.
При расчете методом контурных токов полагают, что в каждом независимом контуре течет свой контурный ток. Уравнения составляют относительно контурных токов, после чего определяют токи ветвей через контурные токи.
1. Обозначить все токи ветвей и их положительное направление.
2. Произвольно выбрать совокупность p независимых контуров, нанести на схему положительное направление контурных токов, протекающих в выбранных контурах.
3. Определить собственные, общие сопротивления и контурные ЭДС и подставить их в систему уравнений вида (2.3).
4. Разрешить полученную систему уравнений относительно контурных токов, используя метод Крамера.
5. Определить токи ветвей через контурные токи по I закону Кирхгофа.
6. В случае необходимости, с помощью обобщенного закона Ома определить потенциалы узлов.
7. Проверить правильность расчетов при помощи баланса мощности
Блок ИОО5
Ток в любой ветви схемы можно найти по обобщенному закону Ома. Для того, чтобы можно было применить закон Ома, необходимо знать значение потенциалов узлов схемы. Метод расчета электрических цепей, в котором за неизвестные принимают потенциалы узлов схемы, называют методом узловых потенциалов. Число неизвестных в методе узловых потенциалов равно числу уравнений, которые необходимо составить для схемы по I закону Кирхгофа. Метод узловых потенциалов, как и метод контурных токов, -- один из основных расчетных методов. В том случае, когда п-1 < p (n -- количество узлов, p -- количество независимых контуров), данный метод более экономичен, чем метод контурных токов.
1. Обозначить все токи ветвей и их положительное направление.
2. Произвольно выбрать опорный узел (jn)и пронумеровать все остальные (n-1)-e узлы.
3. Определить собственные и общие проводимости узлов, а также узловые токи, т.е. рассчитать коэффициенты в системе уравнений.
4. Записать систему уравнений в виде -- матричная форма
Или в развернутом виде - алгебраическая форма
В этой системе каждому узлу соответствует отдельное уравнение.
5. Полученную систему уравнений решить относительно неизвестных (n -- 1) потенциалов при помощи метода Крамера.
6. С помощью обобщенного закона Ома рассчитать неизвестные токи.
7. Проверить правильность расчетов при помощи баланса мощности.
Блок ИОО6
Метод Крамера
Метод Крамера (правило Крамера) -- способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причём для таких уравнений решение существует и единственно). Создан Габриэлем Крамером в 1751 году.
Для системы n линейных уравнений с n неизвестными (над произвольным полем) с определителем матрицы системы Д, отличным от нуля, решение записывается в виде (i-ый столбец матрицы системы заменяется столбцом свободных членов).
Пример
Система линейных уравнений:
Определители:
Решение:
Пример:
Определители:
Блок ИООп1
Пример на первый закон кирхгофа
Для узла I1+I2-I3-I4=0
А возможен и такой вариант, когда все токи оттекают от узла. -I1-I2-I3=0
Блок ИООп2
Пример на второй закон кирхгофа
В данном случае уже выбрано направление обхода контура.
Ток в данном случае будет только один. I(R1+R2)=E
А в следующем случае мы имеем два источника ЭДС, причем направление Е2 не совпадает с направлением обхода контура.
I(R1+R2)=E1-E2
Блок ИООп3
Пример на составление уравнений для схемы по законам кирхгофа
1. Выбираем положительные напрвления токов и направления обхода контуров.
2. Составляем уравнения по 1 закону кирхгофа
I1-I3-I6=0
-I1+I5-I2=0
I3+I4-I5=0
3. Составляем уравнения по второму закону кирхгофа.
I1R1+I3R3+I5R5=E1
I2R2+I4R4+I5R5=E1
-I3R3+I4R4+I6R6=E2
4. Решаем систему уравнений
5. Делаем проверку балансом мощностей.
Для этого складываем мощности на резисторах и сравниваем их с мощностями источников. Т.е.
Блок ИООп4
Метод контурных токов: уравнения, составленные по 2 закону кирхгофа
В данном случае имеем два независимых контура
abca:
abda:
Блок ИООп5
Метод контурных токов. Определение токов в ветвях по найденным контурным.
Ток
Ток
Так как направления контурных токов в этой ветви совпадают
Ток
Блок ИООп6
1. Произвольно выбираем направления контурных токов и токов ветвей.
2. Составляем уравнения на основе второго закона кирхгофа для контуров:
Контур adbna:
Контур admca:
Контур acbna:
3. Решаем систему уравнений и находим контурные токи.
4. Находим токи ветвей
5. Проводим проверку с помощью баланса мощностей.
Блок ИООп7
Метод узловых потенциалов. Пример на составление уравнений по 1 закону киргофа. Уравнения составляются в виде
Где проводимость ветвей сходящихся в узле b
проводимости ветвей, непосредственно соединяющих узел b и Х, взятая со знаком минус.
Для учета источников необходимо помнить следующее. Если ЭДС источника направлена к узлу, тогда слагаемое берется со знаком плюс, если от него, то со знаком минус.
Исходя из всего вышесказанного составим систему уравнений.
где
Блок ИООп8
Метод узловых потенциалов. Пример определения значений токов по найденным значениям потенциалов.
Применим обобщенный закон Ома для определения токов в ветвях.
В данном случае ЭДС имеет то же направление что и ток, поэтому входит в выражение со знаком плюс.
Блок ИООп9
Пример расчета параметров цепи методом узловых потенциалов.
1. Заземлям узел a, произвольно выбираем положительные направления для токов ветвей.
2. Определяем собственные и взаимные проводимости для узлов.
3. Составим систему уравнений.
Решая систему, находим потенциалы точек b и c, потенциал точки а равен нулю.
4. Определяем с помощью обобщенного закона Ома и найденных потенциалов токи ветвей.
5. Делаем проверку балансом мощностей
Блок ЗОО1
Задачи на первый закон кирхгофа
Составьте уравнения по первому закону кирхгофа для приведенных ниже узлов.
(Эталон
(Эталон
Блок ЗОО2
Задачи на применение второго закона кирхгофа.
Для приведенных контуров составьте уравнения по второму закону кирхгофа.
(Эталон
Acb
Bcd
Acd )
Блок ЗОО3
Следующий блок задачь предполагает что обучаемый будет выполнять все действия по решению задачи самостоятельно.
Блок ЗОО4
Задачи на составление уравнений по второму закону кирхгофа для метода контурных токов.
Для приведенных ниже схем составьте системы уравнений на основе второго закона кирхгофа для метода контурных токов.
Блок ЗОО5
На приведенных схемах выразите токи ветвей через контурные токи.
Блок ЗОО6
Рассчитайте токи в схемах методом контурных токов.
Блок ЗОО7
Для приведенных схем составьте уравнения по методу узловых потенциалов.
Блок ЗОО8
С помощью обобщенного закона Ома и значений узловых потенциалов определите токи ветвей.
Блок ЗОО9
Рассчитайте токи ветвей следующих схем при помощи метода узловых потенциалов
Блок КОО1
Составьте уравнения по первому закону кирхгофа для следующих узлов
Блок КОО2
Составьте уравнения по второму закону кирхгофа для схем
Блок КОО3
Рассчитайте токи ветвей при помощи законов кирхгофа
Сложность 1
Сложность 2
Сложность 3
Блок КОО4
Составьте уравнения для расчета схемы методом контурных токов.
Блок КОО5
Определите токи ветвей по найденным контурным токам.
Блок КОО6
Рассчитайте токи ветвей в приведенных ниже схемах методом контурных токов.
Сложность 1
Сложность 2
Сложность 3
Блок КОО7
Составьте систему уравнений для расчета параметров схем методом узловых потенциалов.
Блок КОО8
Определите токи ветвей при условии, что известны узловые потенциалы.
Блок КОО9
Рассчитайте токи ветвей методом узловых потенциалов.
Сложность 1
Сложность 2
Сложность 3
На этом собственно разработка модели и сценария курса закончены, следующий этап подразумевает программную реализацию курса с последующим тестированием.
Подобные документы
Понятие компьютерных обучающих программ, их основные формы, классификация, достоинства и недостатки. Наиболее часто используемые бесплатные компьютерные обучающие программы. Описание программы "Рисуем по координатам", ее применение на уроках математики.
реферат [1,1 M], добавлен 27.10.2013Особенности и реализация программированного обучения. Принципы построения и виды обучающих программ. Блочное и модульное обучение. Технология модульного обучения как направление индивидуализированного обучения. Моделирование на уроках геометрии.
курсовая работа [40,8 K], добавлен 03.06.2010Теоретические основы развития алгоритмического мышления младших школьников на уроках информатики. Основные этапы решения задач с помощью обучающих программ. Способы описания алгоритмов. Компьютерные обучающие программы в жизни младшего школьника.
курсовая работа [862,8 K], добавлен 28.05.2015Особенности обучающих программ и психолого-педагогические требования к ним. Применение программных средств для создания обучающей программы "Adobe PhotoShop 7.0", ее структура и внедрение в учебный процесс на примере лицея-интерната № 24 г. Нефтеюганска.
дипломная работа [759,9 K], добавлен 10.03.2012Проблема "интереса" детей к музыке в контексте музыкального воспитания старших дошкольников. Изучение возможностей применения компьютерных обучающих программ с целью развития интереса к музыке. Анализ современных компьютерных образовательных программ.
курсовая работа [34,7 K], добавлен 21.01.2011Основные принципы построения обучающих программ по декоративно-прикладному творчеству. Статус народного художественного творчества. Диалектико-материалистическое изучение фольклора. Возникновение педагогики народного художественного творчества.
реферат [48,2 K], добавлен 24.01.2011Программированное обучение как управляемое усвоение программированного учебного материала с помощью обучающего устройства (ЭВМ, программированного учебника, кинотренажера и др.). Основные типы обучающих программ: их сравнение, достоинства и недостатки.
реферат [148,3 K], добавлен 07.02.2011Рассмотрение роли дидактической игры в экологическом воспитании дошкольников. Методические рекомендации по проведению игр с правилами и сюжетно-ролевых в экологическом воспитании дошкольников 4-5 лет в процессе использования игровых обучающих ситуаций.
дипломная работа [441,1 K], добавлен 10.04.2014Раскрытие понятия "компьютерные программы", цели и задачи их реализации. Виды упражнений, доступных при применении компьютерных программ и обучающих дисков. Сравнительная характеристика некоторых видов программ, используемых при изучении немецкого языка.
курсовая работа [53,6 K], добавлен 27.04.2011Уровни проверки знаний учеников: устная и письменная. Педагогические функции персонального компьютера в учебном процессе. Проблемы создания и использования обучающих программ. Подходы к разработке тестов и заданий на единый государственный экзамен.
дипломная работа [95,8 K], добавлен 09.10.2012