Логические законы

Понятие логического закона как основы человеческого мышления. Закон противоречия и закон исключенного третьего, их характеристика. Силлогистика (теория категорического силлогизма). Логические законы как тавтологии. Классическая и неклассическая логика.

Рубрика Философия
Вид реферат
Язык русский
Дата добавления 07.08.2017
Размер файла 83,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Американский писатель М. Рейнолдс использовал идею бесконечных альтернативных миров в фантастическом рассказе «Компания «Последняя возможность». Герой этого рассказа захотел избавиться от своей жены. За соответствующую плату специализировавшаяся на таких делах компания выполнила его пожелание, причем способом, исключавшим какое бы то ни было преследование со стороны закона. Она перенесла героя в тот мир из бесконечного множества миров, в котором не было не только его жены, но и самих следов ее существования. В том числе и в его памяти. Само собой разумеется, жена по-прежнему существовала в бесконечном ряду других миров, поэтому закону придраться было не к чему.

Автор этого рассказа ни слова не говорит о том, как удавалось компании «Последняя возможность» перебрасывать своих клиентов из одного возможного мира в другой. Пожалуй, это вообще не допускает сколько- нибудь правдоподобного объяснения, даже в фантастическом рассказе.

Ведь возможные миры -- это только мыслимые миры, они подобны тем вариантам вероятного и не очень вероятного хода событий, которые мы нередко перебираем в своем уме, отыскивая тот единственный из них, который произойдет на самом деле. Или, в духе Лейбница, это все те же варианты жизни человека и мира, которые пронеслись перед мысленным взором бога, прежде чем он остановил свой выбор на наилучшем из них и сделал его существующим. Множество возможных миров -- это просто бесконечное множество мыслимых возможностей, из которых только одна способна реализоваться в действительности.

Широко используемые в современной логике «семантики возможных миров» опираются на идею множества таких миров. Эти семантики являются стандартным средством для раскрытия значения модальных понятий, и в частности понятия логической необходимости.

Истинное утверждение правильно описывает положение дел в действительном мире. В другом возможном мире это же утверждение может оказаться ложным. В нашем мире снег бел и металлы расширяются при нагревании. В каких-то мирах этого нет, и утверждения «Снег бел» и «Металлы расширяются при нагревании» являются ложными. Об этих утверждениях, истинных в действительном мире и способных быть ложными в каком-то из возможных миров, говорят, что они случайно истинны: они обязаны своей истинностью своеобразному устройству отдельного мира.

Есть, однако, утверждения, истинные не только в реальном, но и во всех возможных мирах вообще. Они представляют собой необходимые истины: нет такого мира, в котором они не выполнялись бы и сопоставлением с которым их удалось бы опровергнуть. Например, как бы ни был устроен произвольно взятый мир, в нем либо идет дождь, либо дождя нет. В этом мире не может быть также ситуации, когда в одно и то же время и в одном и том же месте дождь идет и вместе с тем не идет. Это означает, что утверждения «Дождь идет либо не идет» и «Неверно, что дождь идет и не идет», являющиеся частными случаями уже рассматривавшихся законов исключенного третьего и противоречия, представляют собой необходимые истины.

Научные законы принадлежат к случайным истинам, поскольку относятся только к реальному миру. Они верны для любых его пространственно-временных областей. Но их универсальность не простирается на иные возможные миры, где они могут оказываться ложными. Истины же логики, ее законы являются необходимыми истинами, справедливыми во всех мирах, включая, разумеется, и действительный. К необходимым истинам этого же рода нередко относят и законы математики.

Теория возможных миров -- даже в этом упрощенном и схематичном ее изложении -- является хорошим средством для прояснения смысла логической необходимости.

Один из принципов логики говорит, что если утверждение логически необходимо, то оно истинно. В терминах возможных миров это положение перефразируется так: если утверждение истинно в каждом из миров, оно истинно и в действительном мире. Очевидно, что это так, поскольку последний является одним из возможных миров.

Сходным образом обосновываются и другие положения, касающиеся свойств логической необходимости и раскрывающие ее содержание.

7. Классическая и неклассическая логика

Не успела в начале ХХ в. классическая математическая логика сложиться и окрепнуть, как началась энергичная ее критика. Эта критика велась с разных направлений. Результатом ее явилось возникновение целого ряда новых разделов современной логики, составивших в совокупности неклассическую логику. В ряде случаев оказалось, что реализованные при этом идеи активно обсуждались еще в античной и средневековой логике, но были основательно забыты в Новое время.

Несмотря на свои очевидные недостатки, классическая логика высказываний и логика предикатов остаются тем не менее ядром современной логики, сохраняющим свою теоретическую и практическую значимость. Явившись тем образцом, от которого отталкивались разнообразные неклассические системы, классическая логика, как правило, оказывается в определенном смысле предельным и притом наиболее простым случаем последних. Многие из них могут быть представлены как расширения классической логики, обогащающие ее выразительные средства.

Неклассическая логика представляет собой совокупность достаточно разнородных логических теорий, возникших в известной оппозиции к классической логике и являющихся во многом не только критикой последней и попыткой ее усовершенствования, но также ее дополнением и дальнейшим развитием идей, лежащих в основе современной логики.

В 1908 г. голландский математик Л. Брауэр подверг сомнению неограниченную применимость в математических рассуждениях классических законов исключенного третьего, (снятия) двойного отрицания, косвенного доказательства. Одним из результатов анализа таких рассуждений явилось возникновение интуиционистской логики, сформулированной в 1930 г. учеником Брауэра А. Г ейтингом и не содержащей указанных законов.

Еще в 1912 г. американский логик К. И. Льюис обратил внимание на так называемые «парадоксы импликации», характерные для формального аналога условного высказывания в классической логике -- материальной импликации. В дальнейшем Льюис разработал первую неклассическую теорию логического следования, в основе которой лежало понятие строгой импликации, определявшееся в терминах логической невозможности.

К настоящему времени предложен целый ряд теорий, претендующих на более адекватное, чем даваемое классической логикой описание логического следования и условной связи. Наибольшую известность из них получила релевантная логика, развитая А. Р. Андерсоном и Н. Д. Белнапом.

На рубеже 20-х гг. Льюисом и Я. Лукасевичем были построены первые модальные логики, рассматривающие понятия необходимости, возможности, случайности и т. п. Тем самым в современной логике была возрождена тема модальностей, которой активно занимались еще Аристотель и средневековые логики.

В 20-е гг. начали складываться также многозначная логика, предполагающая, что утверждения являются не только истинными или ложными, но могут иметь и другие истинностные значения; деонтическая логика, изучающая логические связи нормативных высказываний; логика абсолютных оценок, исследующая логическую структуру и логические связи оценочных высказываний; вероятностная логика, попытавшаяся, но безуспешно, использовать теорию вероятностей для анализа индуктивных рассуждений, и др.

Все эти новые разделы не были непосредственно связаны с математикой, в сферу логического исследования вовлекались уже естественные, социальные и гуманитарные науки.

В дальнейшем сложились и нашли интересное применение логика времени, описывающая логические связи высказываний, у которых временной параметр включается в логическую форму; паранепротиворечивая логика, не позволяющая выводить из противоречий все, что угодно; эпистемическая логика, изучающая понятия «опровержимо», «неразрешимо», «доказуемо», «убежден», «сомневается» и т. п.; логика предпочтений, имеющая дело с высказываниями, содержащими понятия «лучше», «хуже», «равноценно»; логика абсолютных оценок, описывающая логические связи высказываний с абсолютными оценочными понятиями «хорошо», «плохо» и «безразлично»; логика изменения, говорящая об изменении и становлении; логика причинности, изучающая логические связи утверждений о причинности, и др.

Экстенсивный рост логики не завершился и сейчас.

Размещено на Allbest.ru


Подобные документы

  • Математическое выражение закона тождества (определенности мышления). Логические ошибки в результате его нарушения. Описание закона логического непротиворечия. Закон исключенного третьего. Четвертый базовый логический закон – закон достаточного основания.

    реферат [28,7 K], добавлен 02.07.2013

  • Закон тождества, (не) противоречия, исключенного третьего, достаточного основания. Формы познания. Понятие как форма мышления. Структура и виды понятия. Логические отношения между сравнимыми понятиями. Логические операции с понятиями. Классификация.

    реферат [16,7 K], добавлен 22.02.2009

  • Логические законы как основа человеческого мышления. Толкования законов тождества, противоречия, исключительного третьего и достаточного основания. Несовместимость истины и лжи. Установление связей между противоречащими друг другу высказываниями.

    контрольная работа [30,1 K], добавлен 05.04.2015

  • Структура формальной логики и ее практическое значение. Основные формально-логические законы тождества, противоречия, исключенного третьего, достаточного основания. Формы и элементы мышления, без которых невозможно ни обыденное, ни научное мышление.

    реферат [32,5 K], добавлен 19.09.2010

  • Основные принципы и законы правильного мышления. Нарушение закона исключения третьего. Логическая характеристика понятий по объему и содержанию. Установление отношений между понятиями с помощью кругов Эйлера. Логические основы теории аргументации.

    контрольная работа [38,7 K], добавлен 10.07.2013

  • Метафизика Аристотеля, учение о четырех первоначалах. Логические идеи философа. Закон исключенного противоречия. Закон исключенного третьего. Этические, социальные и политические идеи Аристотеля. Два типа хозяйства: "экономика" и "хрематистика".

    реферат [24,8 K], добавлен 22.07.2015

  • Специфика логики как науки, ее содержание и специфические признаки, место в системе наук. Сущность основных законов мышления, их особенности. Законы формальной логики: исключенного третьего, достаточного основания, вытекающие из них главные требования.

    контрольная работа [41,1 K], добавлен 27.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.