Волновой генетический код
Пересмотр модели генетического кода. Экспериментальные подтверждения существования волновых генов. Экспериментальные доказательства солитонообразования на информационных биополимерах "in vitro". Запись ИК-лазерного сигнала.
Рубрика | Физика и энергетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 08.02.2003 |
Размер файла | 210,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Первые соображения по этому поводу были предложены нами ранее [25,30]. В том числе обсуждалась идея о создании лазерной системы на Фрёлиховских модах [3]. Сложность доказательства правильности всех этих мыслей состоит в том, что большинство генетических структур, содержащих в своем составе ароматические и гетероциклические кольца, “прозрачны” для характерного спектрального диапазона l @ 350-400нм. Трудность также и в том, что если использовать мощную оптическую накачку, то это, учитывая “хрупкость” биоструктур, неизбежно приведёт к их разрушению.
В настоящей главе для реализации некоторых из обсуждавшихся положений проведено исследование in vitro спектров двухфотонно-возбуждаемой люминесценции (ДВЛ) геле-жидкокристаллических препаратов нуклеогистона, являющегося суммарной фракцией хромосом, в которой преобладают гистоновые белки, и ДНК (стандартные высокополимерные препараты фирмы “Sigma”). Для существенного увеличечения интенсивности ДВЛ генетических структур нами предложен способ активации люминесценции за счет введения в состав исследуемых образцов активаторов (доноров) ДВЛ-определенных (близких по спектру оптического поглощения ДНК и нуклеогистону) органических молекул. Такие молекулы характеризуются большой интенсивностью спектров излучения, которые располагаются в области собственного оптического поглощения ДНК и нуклеогистона. В качестве активатора мы использовали кристаллический препарат димедрола, структура которого включает пару бензольных колец. Для димедрола это обеспечивает интенсивный спектр ДВЛ, имеющий вид широкой асимметричной полосы в диапазне 280 - 350нм.
Для фотонной накачки исследуемых препаратов мы применяли лазер на парах меди. Этот лазер работает в стандартном импульсно-периодическом режиме с частотой следования импульсов 10кГц, со средней мощностью Вт, пиковой мощностью 10Вт, длинами волн генерации l = 510,8нм и 578,2нм (зеленая и желтая линии), длительностью импульсов нс. Лазерное излучение направляли на исследуемый образец в виде сфокусированного пятна размером мм. Применение такого лазера как инициатора ДВЛ оказалось весьма эффективным при изучении электронно-колебательных спектров белков, ДНК, нуклеогистона и их компонентов (пурины, пиримидины, аминокислоты [19,30]). Регистрирующая аппаратура включала: фильтр для выделения лазерных линий с l =510,8 и 578,2 нм, фильтр для выделения излучений люминесценции в УФ и фиолетовом диапазонах (с подавлением лазерного излучения), монохроматор (тип МДР-2) для сканирования спектра в широком интервале (от УФ до видимой области), двухкоординатный самописец для регистрации спектров, измеритель для контроля опорного сигнала и определения эффективности наблюдаемого сигнала. Для подавления тепловых шумов применяли строб-импульс длительностью 25-30нс, синхронизированный с импульсом возбуждения. Регистрацию вторичного импульса излучения проводили с ФЭУ-130. Исследования спектров ДВЛ геле-жидкокристаллического препарата ДНК в смеси с димедролом (ДНК-ДЛ) и нуклеогистона с димедролом (НГ-ДЛ) показали, что амплитуда ДВЛ спектра ДНК-ДЛ лишь на порядок меньше таковой спектра ДВЛ чистого димедрола. Это обеспечивает существенное увеличение интенсивности ДВЛ смеси ДНК-ДЛ по сравнению с чистым препаратом ДНК в форме жесткого геля [19]. На этом же спектре обнаруживается ряд дополнительных особенностей изучаемых смесей. Оказалось, что квантовый выход ДВЛ для смеси НГ-ДЛ ниже, чем для смеси ДНК-ДЛ. Другая характерная черта - разгорание или тушение ДВЛ во времени. Для НГ-ДЛ наблюдается нарастание ДВЛ во времени. Обратный эффект наблюдается в случае ДНК-ДЛ. Представляет интерес присутствие вибронной структуры в спектрах ДВЛ в виде отдельных перекрывающихся полос в области 310-370 нм, особенно для ДНК-ДЛ. Такая структура близка к ранее наблюдавшимся спектрам ДВЛ для нуклеозид-трифосфатов [19].
Механизм резкого увеличения квантового выхода ДВЛ нуклеогистона и ДНК при наличии донор-активатора (димедрола) может быть объяснен быстрой квазирезонансной передачей энергии от возбужденных молекул димедрола к исследуемым геноструктурам. Наблюдаемая при этом тонкая многополосчатая структура ДВЛ спектров коррелирует с характером вибронных полос для ряда ароматических и гетероциклических соединений, включая чистые нуклеозид-трифосфаты и ДНК [19]. Возникновение такого рода дискретизации спектров можно трактовать переходом электронов биомакромолекул с электронного терма S1 на возбужденные колебательные уровни основного состояния S0. В связи с этим может быть реализована инверсная заселенность на переходах при достаточном заселении терма .
Проведем оценки необходимой интенсивности лазерного излучения для создания инверсии (суперфлуоресценции) в условиях проведенных опытов.
Условия инверсии записываются следующим образом:
, (1)
где - плотность рабочих молекул в состоянии , - плотность молекул в состоянии , и - соответствующие статистические веса квантовых уровней.
Плотность заселенности оценивается из соотношения
, (2)
где - скорость заселения уровня , - скорость его распада за счет излучательного процесса и (или) безызлучательных процессов.
Для величины имеем оценку:
(3)
где W и - энергия и длительность лазерного импульса, - эффективный объем среды, в котором реализуется двухфотонное поглощение (S - площадь поперечного сечения сфокусированного светового пучка, падающего на исследуемый образец,- эффективная длина проникновения излучения в образец),- плотность биомакромолекул (ДНК или нуклеогистона).
С учетом соотношений (1) - (3) условие для cоздания инверсной заселённости суперфлуоресценции записывается в виде
.
Используя характерные данные
(длянм) = Дж,
t @ 10нс,, ,
получаем оценку ,
что близко к использованным значениям интенсивности в наших экспериментах.
Проведенные экспериментальные исследования и их теоретические оценки дают основание достаточно уверенно предполагать, что при используемых режимах двухфотонного возбуждения с использованием активатора-димедрола в геноструктурах in vitro реализуется усиление люминесценции, т.е. излучение ДНК и нуклеогистона носит характер суперфлуоресценции.
Не исключено, что в биосистеме роль димедролоподобных веществ в качестве активаторов могут выполнять эндогенные соединения, прямо или косвенно взаимодействующие с ДНК и хромосомами (стероидные гормоны, углеводы, нуклеозид -моно, -ди и -трифосфаты, некоторые витамины (например, рибофлавин), ароматические и гетероциклические аминокислоты, катехол- и индолалкиламины, некоторые антибиотики, наркотические вещества (например, эндогенные морфины - метаболиты этанола и пептиды-эндорфины), алкалоиды, токсины, ко-факторы ферментов, гем-содержащие белки и другие многочисленные органические соединения, содержащие бензольные и гетероциклические компоненты.
Неясны условия реализации инверсной электронной заселенности геноструктур in vivo, близкие тем, которые использовались нами в режимах ДВЛ. Такие условия могут создаваться в биосистемах, например, за счет фотон-фононных взаимодействий в ДНК в рамках теории Дике.
Однако, это относится к чисто физическим механизмам. Что касается физико-биохимических процессов, приводящих к лазерной накачке ДНК и хромосом in vivo, то в качестве таковых можно предсказать наличие в биосистемах мощных АТФ-азных систем, поставляющих энергию для перевода генетических структур в биокогерентные состояния (аналогичные тем, что как частный случай изложены в настоящей главе).
ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ СОЗДАНИЯ БИОЛАЗЕРА НА ФРЕЛИХОВКИХ МОДАХ [3]
В данной главе обсуждается и аналитически рассматривается возможность создания перевозбужденного состояния основной (выделен-ной) коллективной Фрелиховской моды за счет когерентного резо-нансного взаимодействия электромагнитного (амплитудно-модулиро-ванного) излучения с Фрелиховским осциллятором. В рамках по-нятий лазерной физики речь идет о создании инверсной заселенности между квантовыми уровнями выделенной колебательной моды и, в итоге, о реализации “in vitro-in vivo” суперфлуоресценции и лазерной генерации с использованием в качестве рабочих тел молекул ДНК, РНК, белков, а также таких надмолекулярных структур, как рибосомы, полирибосомы и хромосомы.
Подчеркнем, что в отличие от Фрелиховского подхода, в котором подразумевается квазинеравновесное состояние (колебательная температура выделенной моды превосходит таковую “тепловой бани” Tvib>Teq>0, т.е. колебания квазиравновесны), в данной работе оценены условия, при которых система рассматриваемых биосубстратов инвертирована (Tvib<0), что прямо связано с созданием инверсной населенности.
Итак, Фрелиховская мода моделируется двухуровневой квантовой системой (уровень 1 - основное состояние, 2 - верхнее), возбуждаемой резонансным амплитудно-модулированным электрическим полем
E ( t) =E og(t)сosw t , (1)
где E o - амплитуда напряженности поля, g(t) - модуляционный фактор, w =w 21 (w 21 - частота перехода 2® 1).
Процесс возбуждения колебаний моды описывается уравнением Больцмана для матрицы плотности:
, (2)
где оператор гамильтона в дипольном приближении имеет вид:
где Ho=w 21 - гамильтониан изолированной двухуровневой системы, оператору соответствует матрица с элементами 11=12=21=0, 22=1, - оператор прекции индуцированного дипольного момента осциллятора на направление поля, - равновесная матрица плотности,- феноменологически введенное время релаксации (для диагональных элементов =T1, для недиагональных - T2).
Уравнению Больцмана (2) эквивалентна следующая система уравнений для элементов матрицы плотности (ik; i,k=1,2):
i(11+(11-1)/T1)= E(t)(2112 - 1221),
i(12+12/T2)= - 2112- E(t)12(22 - 11) , (3)
i(21+21/T2)= +2121+E(t)21(22 - 11)
с учетом уровня нормировки
22+11=1 (4)
Нетрудно показать, что система (3) может сводиться к уравнению (при выкладках вторыми гармониками ~ exp(2i21t) пренебрегалось): 22+22+
22 (0) = 22 = 0, (5)
где =Eo21/ - частота Раби. Заметим, что амплитудная модуляция поля приводит не только к модуляциям частоы Раби, но и к модуляции “коэффициента трения” осциллятора.
Ниже рассматривается случай T1=T2=T. Можно показать, что уравнение (5) допускает точное решение для произвольной функции g(t):
(6)
G(t)=
(t')dt' (7)
Рассмотрим случай периодической модуляции амплитуды напряженности поля
g(t)=cost . (8)
Если период модуляции T=2/ короче времени релаксации (T<<T), то для времени T<<t<<T усреднение (6) за период T дает:
<22>=1/2 (9)
и, соответственно, (4):
<11>=1/2,
где - функция Бесселя нулевого порядка, так что для разности населенностей уровней 2 и 1 имеем
=. (10)
Из (10) четко следует, что в диапазонах параметра , где k=1,2,.. и - корни функции Бесселя, вероятность заселения уровня 2 превосходит таковую для уровня 1. Другими словами, мы имеем перевозбужденное инвертированное состояние осциллятора, что является необходимым условием для создания условий лазерной генерации (). Ситуация здесь аналогична процессу раскачивания маятника с пульсирующей точкой подвеса (маятник Капицы, классическое рассмотрение).
Для больших времен, t>>T, функция G(t), входящая в соотношение (6), имеет вид:
G(t)=P(t)cos+ Q(t)sin,
P(t)=
Q(t)=2, (11)
где J - функция Бесселя соответствующего порядка.
Из (11) следует важный вывод: когерентный механизм взаимодействия Фрелиховских мод с резонансным амплитудно-модулированным полем обусловливает незатухающие колебания диагональных элементов матрицы плотности для времен t, превосходящих времена релаксации системы, причем частоты пульсаций кратны частоте амплитудной модуляции .
Усредняя (11) за период T, получаем
<G(t)>= , (12)
где x=- функции Бесселя мнимого порядка (i - мнимая единица). В частном случае, когда период модуляции Tкороче времени релаксации T, x <<1,
<>=1/2, <>=1/2, (13)
так что
<> - <>= - . (14)
В данном случае эффект инверсии не реализуется.
Рассмотрим случай, когда закон модуляции задается соотношением
g(t)=1+. (15)
По аналогии с предыдущим для функции G(t), входящей в соотношение (6), можно получить (T.
G(t)=. (16)
Из (16) видно, что спектр пульсаций диагональных матричных элементов и включает, кроме частоты Раби, “стоксовые” и “антистоксовые” комбинационные частоты . Допустим для определенных n выполнено условие , т.е.
(17)
тогда, как следует из (16), постоянная составляющая для вероятностей и сдвигается. Динамическому состоянию равновесия при этом соответствуют величины:
<>=1/2, <>=1/2, (18)
так что
Эффект инверсии ( реализуется при условии
. (19)
Если параметр глубины модуляции лежит в диапазонах, где значения функции Бесселя отрицательны, то реализуется режим перевозбуждения системы (информационных биомакромолекул и надмолекулярных структур).
Таким образом, высказана идея принципиальной возможности создания биолазеров на Фрелиховских модах in vitro, а также инициации таких процессов в живой клетке в дополнение (или коррекции) к известным естественным лазероподобным процессам в биосистемах. Показано, что в определенных условиях - в случае когерентного (резо-нансного) взаимодействия амплитудно-модулированного внешнего электромагнитного излучения с Фрелиховской модой - система информационных биоструктур может существовать в перевозбужденном состоянии, что является необходимой предпосылкой для создания знаконесущих биолазеров.
Необходимо отметить,что описанный выше механизм формирования биолазеров на основе молекул ДНК позволяет подойти к попытке реализации еще одной фундаментальной гипотезы Фрелиха о возможности перекачки энергии kТ внутриклеточной жидкости в энергию электрических колебаний в молекуле ДНК. В соответствии с этой гипотезой стохастические тепловые колебания kТ раствора могут резонансно взаимодействовать (в определенном интервале частот) с колебательными модами молекулы ДНК, и благодаря тому, что как молекула ДНК, так и молекулы белков представляют собой распределенные нелинейные колебательные структуры, часть энергии может группироваться в низкочастотных модах этих молекул. Иными словами, молекула ДНК в растворе может частично преобразовывать энергию колебаний kТ в энергию собственных мод. Заметим, что даже в рамках предложенного квазили-нейного подхода проблема перекачки тепловой энергии раствора может быть сведена к механизму затухания квантового осциллятора, который был предложен А.Пиппардом. C учетом этого в уравнение Шредингера вводится комплексный потенциал, интерпретирующий передачу энергии осциллятора большому числу мод расширяющегося сферического резонатора. Если размеры этого резонатора конечны, как в случае с живой клеткой, то возникнет резонансный обмен энергии между модами kТ раствора и электрическими модами молекулы ДНК. Эти рассуждения также говорят в пользу того, что и в водно-жидкокристаллическом электролите клеточно-тканевого пространства биосистемы генетические молекулы могут функционировать как биолазеры.
Надо указать на существенное обстоятельство относительно принципиальной возможности реализации возбуждения Фрелиховских мод “in vitro” по биохимическому пути, а именно за счет энергии гидролиза АТФ и других нуклеозид-трифосфатов, а также за счет других макроэргических соединений живой клетки. В данном случае мы будем искусственно повторять то, что эволюционно и (или) иным путем дано биосистемам как основная информационная и, может быть, энергетическая фигура. Эта часть наших исследований ставит определенные нравственные и этические проблемы применения биолазеров.
АНТЕННАЯ МОДЕЛЬ ФИЗИКО-МАТЕМАТИЧЕСКИЙ ФОРМАЛИЗМ [16]
Как уже неоднократно отмечалось, функционирование ряда биологических макромолекул (в частности, ферментов) и других биологических соединений во многом определяется процессами, происходящими в активных центрах, окруженных биополимерными цепочками, имеющими знаковую топологию. Исходя из такого представления о структуре информационных биомакромолекул, естественно предположить, что их взаимодействие с физическими полями внешних по отношению к биосистеме и внутренних (организменных) излучений приводит к возбуждению дипольно-активных колебаний мономеров, формирующих указанную цепочку, а те, в свою очередь, индуцируют колебания в активном центре. Иными словами, такая система будет работать как своеобразная антенна. Эти возбужденные колебания способны привести к переходу биомакромолекулы в другое конформационное (топологическое, знаковое) состояние.
Подобная концепция в принципиальном плане адекватна целому ряду функционально высокозначимых биомакромолекул, например, хлорофилла, гемоглобина, миоглобина и т. д. Эти макромолекулы объединяются двумя структурными качествами: 1) в их геометрическом центре расположен ион (в случае хлорофилла - ион магния, в случае гемоглобина - ион железа); 2) около иона симметрично расположены 4 пиррольных кольца (псевдоплоская структура).
Другими типами биополимеров, соответствующих антенной модели, могут быть cравнительно простые циклы типа валиномицина (переносчик ионов калия) и сложные надмолекулярные структуры хромосом, ДНК которых содержит высокоорганизованные ассоциаты таких металлов, как магний, кальций, никель, кобальт, медь, железо, цинк и др. При этом роль их неясна и сводится исследователями, в основном, к нейтрализации ОН-групп остатков фосфорной кислоты полинуклеотида. Представляется, что функции металлов в ДНК и РНК существенно более широкие и реализуются по линии знакового и (или) энергетического взаимодействия с эндогенными и экзогенными по отношению к биосистеме физическими полями. То же относится и к белкам, не содержащим порфириновый центр, но специфическим образом связывающим металлы. Например, таковыми можно считать сайт-специфические белки с доменами типа “цинковых пальцев”, участвующими в регуляции генов, подчас очень далеко отстоящих от этих управляющих белков. Атомы металлов ДНК и белков могут резонансно взаимодействовать по электромагнитным каналам в рамках понятий антенной модели. Еще раз обозначим понятие антенной модели.
Внешняя энергия (в частности, связанная с резонансным взаимодействием крайне высокочастотных электромагнитных излучений с белками) поступает на периферию, т. е. на ансамбль субъединиц (не обязательно идентичных по структуре). В результате активной “беседы”, предопределенной биохимическими связями, между периферийными акцепторами (получившими закодированную энергию) и центром-ассоциатом (в данном случае ионом металла гемсодержащих белков), последний получает энергию (информацию), что и вызывает биологическое действие. Степень реакционной способности биомакромолекул существенно зависит от уровня возбуждения центральных субъединиц. Рассмотрим в деталях потенциальные механизмы волновых взаимодействий физических полей и активных центров информационных биомакромолекул в рамках предлагаемой нами антенной модели.
В качестве простейшей модели для иллюстрации антенного эффекта рассмотрим двумерную замкнутую (циклическую) цепочку мономеров. В центре цикла расположен активный центр, связанный с мономерами цепочки диполь-дипольным взаимодействием.
Обозначим координатные смещения мономеров через , а смещение активного центра через . Для потенциальной функции имеем:
(1)
Первые два члена в (1) соответствуют колебаниям мономеров (второй член учитывает ангармонизм); последние два члена отвечают за связи между мономерами, Остальные члены отвечают за связи между мономерами и активным центром.
Уравнения движения запишем в виде:
(2)
где - внешняя монохроматическая сила, действующая только на мономеры, - коэффициент затухания, введенный феноменологически (простоты ради принят одинаковым и для мономеров, и для активного центра).
С учетом (1), система уравнений (2) приобретает вид:
(3)
(4)
Введем общую координату для ансамбля мономеров
. (5)
тогда система уравнений (4) в линейном приближении приобретает вид:
(6)
где:
- число мономеров.
С учетом (5) имеем (7.1)
(7.2)
Из (7.2) следует (8)
Подстановка (8) в (7.1) дает
.
(9)
Соответствующее характеристическое уравнение имеет вид (после подстановки в однородное уравнение):
(10)
Обозначив имеем
так что
(11)
В дальнейшем предполагается выполнение неравенств:
(12)
Первое условие соответствует случаю слабой связи между мономерами и активным центром, второе - малому затуханию мономерных осцилляторов.
Для собственных значений имеем
, (13)
где введены коллективные частоты:
(14)
Нас интересуют вынужденные колебания (внешняя сила ):
. (15)
Подстановка (15) в (9) и приравнивание соответствующих коэффициентов при и дают систему алгебраических уравнений:
где:
В результате получаем
где
После несложных, но громоздких преобразований для вынужденных колебаний активного центра получаем:
. (16)
Из (16) видно, что наибольшая амплитуда вынужденных колебаний активного центра достигается в условиях коллективного резонанса: либо , либо .
В любом из этих случаев для амплитуды вынужденных колебаний имеем:
(17)
Из (17) следует, что наибольший эффект резонансной раскачки активного центра достигается при большем числе периферийных субъединиц “антенны”, при более высоком значении коэффициента связи активного центра с мономерами, при наименьшем коэффициенте затухания и при наименьшем дисбалансе коллективных мод.
Нетрудно определить и “хореографию” (динамику вынужденных колебаний) отдельных мономерных единиц. В соответствии с (6) уравнение для k -го мономера запишем в виде:
(18)
Вводя коллективные координаты
и применяя метод линейной алгебры, получаем для вынужденных колебаний мономеров:
,
(19)
где:
- определяется из (16)
Таким образом, в рамках антенной модели наибольший эффект воздействия внешнего монохроматического поля ре-ализуется в условиях коллективного резонанса:
.
Повторяя рассуждения раздела 2, можно сделать также следующие выводы:
1) При реализации амплитудной модуляции внешнего сигнала имеют место дополнительные возможности резонансного воздействия на биомакромолекулы на частотах:
2) Учет нелинейности при квадратичной связи для монохроматического сигнала привносит дополнительный резонанс на второй гармонике
3) Учет нелинейности при амплитудной модуляции определяет еще ряд резонансных возможностей:
Таким образом, при действии резонансного электромагнитного поля на биомакромолекулы с активным центром, содержащим атомы металлов, существенную роль играют коллективные волновые эффекты. В этом случае свойства самого излучения предопределяют широкие возможности регуляторного влияния на динамику биомакромолекул в целом и, следовательно, на биопроцессы, в которых они принимают участие, тем самым прямо или косвенно реализуя управляющие и (или) дезорганизующие сигналы.
КОНВЕРСИЯ ЭПИГЕНОСИГНАЛОВ В ЭЛЕКТРОМАГНИТНЫХ СОЛИТОННЫХ СТРУКТУРАХ, ИХ ТРАНСПОЗИЦИЯ В ГЕНОМ БИОСИСТЕМ-АКЦЕПТОРОВ
Детально методы и эксперименты по дистантной трансляции и биологической активности электромагнитных солитонов, синтезированных на основе явления возврата Ферми-Паста-Улама (ФПУ) и промодулированных эпигеносигналами, приведены в работе автора [25]. Здесь же отметим принципиальные позиции, разграничивающие прежние представления о работе генов как чисто вещественных образований и наших представлений о знаковых волновых излучениях (“волновых генах”) хромосомного континуума.
Реальные и достоверные эксперименты в области волновой генетики первым начал проводить Дзян Каньджэн. Итоговые работы его известны [Дзян Каньджэн. 1993. Биоэлектромагнитное поле - материальный носитель биогенетической информации. Аура-Z. № 3. с.42-54. Патент №1828665 “Способ изменения наследственных признаков биологического объекта и устройство для направленной передачи биологической информации”. заявка № 3434801. приоритет изобретения 30.12.1981г., зарегистрировано 13.10.1992г.]. Прибор Дзян Каньджэна, дистантно (десятки сантиметров) передающий “волновые гены” от донора к реципиенту, использует собственные излучения биосистем-доноров, причем, как считает автор, только в СВЧ-дипазоне электромагнитных полей. Авторское теоретическое обоснование эффектов, полученных с помощью этой аппаратуры, откровенно слабо, а точнее, просто неверно. Однако результаты убедительны. Это “волновые” гибриды пшеницы и кукурузы, земляного ореха и подсолнуха, огурца и дыни, утки и курицы, козы и кролика. Полученные гибридами признаки передаются по наследству. Блестящий эмпирик Дзян Каньджэн оказался неспособным понять тонкие механизмы открытых им эффектов, но это нисколько не умаляет значимость результатов, суть которых в доказательстве реальности “волновых генов”.
Вслед за этими исследованиями мы, уже своими методами, подтвердили принципиальную возможность дистантной трансляции и акцепции эпигенетических управляющих сигналов in vitro-in vivo в форме особого вида электромагнитного поля. Это еще раз подтвердило идеи А.Г. Гурвича, А.А. Любищева и В.Н. Беклемишева, но на современном уровне. Стало ясно, что “волновые гены” могут существовать, в частности, как одна из форм явления возврата ФПУ, что хорошо коррелирует с нашими данными по ФПУ-возврату на уровне нелинейной динамики ДНК in vitro. Именно это фундаментальное явление и легло в основу конструкции генератора ФПУ, приближенно моделирующего знаковые электродинамику и акустику ДНК in vivo и потому способного “считывать” и ретранслировать управляющие метаболизмом биосистем солитонные структуры с хромосомного континуума биосистем-доноров и резонансно вводить их в геном биосистем-акцепторов.
В связи с принципильной важностью феномена моделирования ФПУ-процессов в геноме высших биосистем при помощи особых радиоэлектронных устройств (ФПУ-генераторов) имеет смысл остановиться несколько подробнее на феномене ФПУ-возврата. Это явление было обнаружено в 1949 г. как результат компьютерного исследования динамики колебаний в цепочках нелинейно связанных осцилляторов. Оказалось, что против всякого ожидания энергия первоначального возмущения крайних осцилляторов в таких цепочках не термолизовалась, а распределившись по высшим гармоникам, затем вновь собиралась в спектр первоначального возмущения. При увеличении числа осцилляторов в цепочке картина возврата энергии неизменно сохранялась. Эта проблема получила название возврат Ферма-Паста-Улама по именам Э.Ферми, Д.Паста и З.Улама, которые первыми исследовали эту задачу. В дальнейшем возврат ФПУ был экспериментально обнаружен в длинных электрических линиях с нелинейными элементами в плазме, а также в динамике волн на глубокой воде. Замечательным свойством возврата ФПУ оказалось наличие “памяти” в его спектре к начальным условиям его активных мод.
Результаты исследований в области изучения возврата ФПУ позволили теоретически рассмотреть молекулу ДНК в виде электрического резонатора ФПУ. В этой модели динамика волны плотности электронов, распространяющейся вдоль сахаро-фосфатных цепей молекулы ДНК, рассматривалась в рамках нелинейного уравнения Шредингера в форме, предложенной Юэном и Лэйком для описания динамики солитонных волн на глубокой воде. При этом осцилляции плотности электронов в структурах нуклеотидов понимали как возмущающие точечные источники, расположенные на одинаковых расстояниях вдоль сахаро-фосфатных цепочек ДНК, интерпретируемых как длинная электрическая линия.
В дальнейшем эта модель была развита А. А. Березиным совместно с автором [25]. В частности, были рассмотрены электрические поля (E', E") обеих цепочек ДНК, где E' - средняя амплитуда напряженности электрического поля за один пространственный период стоячих волн в первой цепи ДНК, а E" - средняя амплитуда напряженности электрического поля за один временной период стоячих волн во второй цепи. Если принять, что колебания E' и E" генерируются молекулой ДНК в окружающее пространство, тогда вне молекулы ДНК поля E' и E" образуют сферические фронты. При этом в силу представления стоячих волн в молекуле ДНК в виде двух противоположно направленных бегущих фронтов возмущений, от источника (молекулы ДНК) будет расходиться сферическая волна E', а к источнику будет сходиться сферическая волна E", поскольку волны от молекулы излучаются в нелинейную среду - внутриклеточную жидкость. Динамика этих волн может быть описана в сферических координатах. Для E" частное решение будет выглядеть аналогично. Было получено выражение, представляющее собой интенсивность электрической волны на сфере определенной толщины вокруг молекулы ДНК, своего рода “сферическая голограмма”, существующая в электролите клеточно-тканевого пространства в сферическом слое. Предложенная модель указывает на возможность существования вокруг молекулы ДНК в составе хромосом сферических акустико-электромагнитных солитонов (бри-зеров), которые интегрально отображают структуру хромосомного континуума и могут двигаться за пределы клеточных ядер или совершать колебательные движения относительно некоего положения равновесия и которые содержат статико-динамические квазиголографические (в общем случае дифракционные) решетки с эпигенознаковой образно-семан-тической нагрузкой. Такие решетки отображают текущее и (или) относительно постоянное пространственно-временное состояние организма в каждой области многомерной структуры высших биосистем, где в данный момент находится бризер. Наличие тепловых возмущений (kT) молекулы ДНК, а также возможность существования фуранозных колец нуклеотидов в виде двух конформаций, приводят к усложнению модели и необходимости введения в нее фазовых флуктуаций электронной плотности.
Однако, учитывая, что спектр ФПУ может служить преобразователем стохастических колебаний в детерминированные, стохастическая компонента динамики колебаний электронной плотности в молекуле ДНК является, вероятно, ее атрибутом.
ГЕНЕРАТОР ПАКЕТОВ УЕДИНЕННЫХ ВОЛН (СОЛИТОНОВ) В ФОРМЕ ВОЗВРАТА ФЕРМИ-ПАСТА-УЛАМА
Данная теоретическая модель нелинейной знаковой акусто-электродинамики ДНК легла в основу создания семейства радиоэлектронных устройств - генераторов пакетов уединеных волн в форме возврата Ферми-Паста-Улама (ФПУ-генераторов), предназначенных для генерации электромагнитных волн (солитонов), обладающих характерной пространственно-временной структурой возврата ФПУ, которое выражается в периодическом переходе колебательной структуры от упорядоченного состояния к хаотическому и обратно. При этом в упорядоченном состоянии первоначальная форма волнового пакета и его пространственно-временной спектр полностью повторяются. Важной особенностью ФПУ-генераторов является пространственно-временная структура его поля, которая является относительно простой физической моделью колебательной структуры молекулы ДНК. Это свойство позволяет использовать генератор в экспериментах по исследованию собственных колебаний в препаратах ДНК и по информационному взаимодействию биологических систем, о которых говорилось выше. Первые модели таких генераторов были созданы А. А. Березиным и соавторами (1988, 1989 г. г. ), а затем в 1991г. были принципиально дополнены П. П. Гаряевым и Г. Г. Комиссаровым за счет интеграции в их схемы кодирующего акустического ввода.
Принципиальная схема генератора содержит ФПУ-резонатор в виде двух длинных линий с подключенными к ним нелинейными элементами (туннельные диоды). Напряжение смещения туннельных диодов задается стабилизаторами на транзисторах и стабилитроне. Выбор рабочей точки туннельных диодов и способ их подключения к ФПУ-резонатору обеспечивают форму и спектр колебаний генератора, которые соответствуют нормальным колебаниям одномерной решетки слабо связанных нелинейных (ангармонических) осцилляторов с периодическими граничными условиями, при которых наблюдается явление возврата ФПУ. Для модуляции поля генератора внешними акустическими сигналами может быть использован угольный микрофон. Генератор питается от двух аккумуляторов типа ЦНК 0, 45-I-У2.
С помощью ФПУ-генератора и эмбрионов-доноров удалось непермиссивно дистантно (20 см - 2, 0 м) осуществить эмбриональную индукцию нейральных и мезодермальных производных в ткани эктодермы ранней гаструлы шпорцевой лягушки. Были получены результаты и по восстановлению нативной структуры у аберрантных радиационно поврежденных хромосом пшеницы и ячменя [25,29]. Это показывает реальность существования и моделирования знаковых электромагнитных полей геноволнового уровня, управляющих стратегическим метаболизмом биосистем, их наследственностью, и подтверждает близкие результаты, полученные Дзян Каньджэном.
ЕДИНСТВО ФРАКТАЛЬНОЙ СТРУКТУРЫ ДНК-"ТЕКСТОВ" И ТЕКСТОВ НА ЕСТЕСТВЕННЫХ ЯЗЫКАХ
Существует и другая семантическая ниша знаковых процессов в наследственном аппарате высших биосистем, связанная с его квази-речевыми характеристиками, а также с генетической атрибутикой словообразований в естественных человеческих языках. Ранее получены доказательства, что развитие языков и человеческой речи подчиняется законам формальной генетики. По сути, “тексты” ДНК (квазиречь) и письменность людей, их разговор (истинная речь) выполняют одинаковые управленческие, регуляторные функции, но в разных фрактально-сцепленных масштабированиях. ДНК генетически функционирует на клеточно-тканевом уровне, а человеческая речь, как макрогенетическая структура, используется на уровне общественного суперорганизма. Нам удалось несколько отойти от предшествующей метафоричности использования понятий лингвистики применительно к ДНК, когда произвольно используют термины “слово”, “текст”, “пунктуация”, “грамматика”, интуитивно пытаясь понять иные измерения генома. Такому отходу способствовало применение теории фракталей и метода перекодировок к последовательностям ДНК и структуре текстов людей. Выяснилось, что ДНК и человеческая речь (тексты) обладают стратегически близкой фрактальной структурой в геометрическом смысле. Вероятно, это каким-то образом коррелирует с фрактальной структурой солитонного акустического и электромагнитного ФПУ-поля, генерируемого хромосомным аппаратом высших биосистем. Возможно, именно по этой причине нам удалось зарегистрировать управленческие эффекты на геномах растений, вызываемые с помощью ФПУ-трансформированной человеческой речи, которая резонансно взаимодействует с хромосомной ДНК in vivo [25,29].
Этот результат, осмысленный нами с позиций семиотико-волновой составляющей генетического кода, имеет существенное методологическое значение и для анализа таких суперзнаковых объектов, как тексты ДНК, и для генома в целом. Открываются принципиально новые смысловые ареалы хромосомного аппарата. Однако биологии и гено-лингвистике предстоит пройти еще большой путь, прежде чем картина знаковых рядов ДНК станет относительно ясной и понимаемой. Вводимый нами способ мышления относительно функций генома позволяет сопоставлять различные естественные последовательности ДНК и РНК с оценкой меры их сходства и различия, а также степени относительной сложности их знаковой структуры. И кроме того, что более важно, появляется метод сопоставления смысловых конструкций человеческой речи и кодирующих последовательностей ДНК. Если мы правы в своих логических и экспериментальных построениях, то в общем плане видны новые измерения в понимании мышления и сознания через их отображения в знаковых (смысловых) рядах на разных уровнях организации живой материи - на уровне человеческой речи (высшая форма сознания) и квазиречи генетических молекул (квази-сознание генома). Это хорошо соответствует математико-лингвистической модели Хомского, постулирующей общие принципы, которые лежат в основе любого языка и которые объединяются в “универсальную грамматику”. Такая “универсальная грамматика”, по Хомскому, является врожденной, т. е имеет генетические детерминанты. Это чрезвычайно важное обстоятельство, которое еще раз фокусирует мысль на супергенетическом родстве знаковых структур ДНК и речевых образований человека. В какой-то мере мы подтвердили указанное положение, показав родство фракталей ДНК и человеческой речи. Хомский, вероятно, прав в том, что глубинные синтаксические конструкции, составляющие основу языка, передаются по наследству от поколения к поколению, обеспечивая каждому индивидууму возможность овладеть языком своих предков. То, что ребенок легко учится любому языку, объясняется как раз тем, что в своей основе грамматики всех языков совпадают. Суть человеческого языка инвариантна для всех людей. Можно думать, что эта инвариантность распространяется глубже, достигая макромолекулярных смысловых (“речевых”) структур хромосом. И этому есть определенные теоретико-экспериментальные подтверждения, полученные нами [25,29] и выводящие на существенно значимые методологические подходы мягкого регуляторного вхождения в неизвестные ранее семиотические пласты генетического аппарата высших биосистем. Но в этом же заключена и грозная опасность стратегических семиотико-волновых искажений знакополевого окружения Земли. Идеи волновой (и “речевой”) генетики находятся в фазе активного становления и поэтому необходима система жестко определенных запретов определенных экспериментов в этой области знания, подобная существующей в генной инженерии, например, по клонированию высших организмов.
Независимое подтверждение правильности гипотезы существования квази-вербального или, что одно и то же, образного уровня кодовых функций ДНК (в пределе хромосомного континуума биосистемы) может дать выход из ограниченного, а иногда неверного, функционального поля триплетного генетического кода, не объясняющего ни синтез белковых “текстов”, ни то, как в геноме зашифрована пространственно-временная структура организма. Конечная цель предлагаемого анализа выделение знаковых единиц различных уровней и понимание их семантики в функциональном пространстве ДНК- белок, которое, по крайней мере для ферментов, чрезвычайно гетерогенно (активный центр, сайты узнаваний, архитектоника водородно-гидрофобных сил самоорганизации пептидной цепи). Многоязычный метаболический “разговор” между информационными биополимерами клетки и их функционирование как результат обмена знаковыми биосигналами предполагают два взаимно коррелированных уровня этого обмена - вещественный и волновой. Вещественный хорошо изучен (матричное копирование ДНК-РНК-белки, взаимодействие антиген-антитело, самосборка клеточных структур), а тесно связанный с ним волновой уровень практически не изучен официальной наукой. И ситуация здесь непроста. Электромагнитные и акустические излучения белков, нуклеиновых кислот, мембран и цитоскелета хорошо известны. Представляется, что этот уровень информационных контактов клеточно-тканевого пространства выводит метаболические процессы в полевое измерение со своей “языковой” спецификой и регуляцией.
Рассматриваемые биоинформационные потоки, сцепленные с обменом веществ и энергии, не ограничиваются делением знаковых рядов на вещество и поле, но многократно умножаются фрактальностью этих рядов. Например, в акустико-электромагнитной компоненте сигнальных функций ДНК наблюдается фрактальность солитонного поля, формально описываемого уравнениями в рамках явления возврата Ферми-Паста-Улама. Это еще более усложняет семантический анализ белково-нуклеиновых и иных информационных контактов биоструктур. Можно полагать, что в живых клетках существует иерархия вещественно-волновых знаковых структур, где условную градацию “буква (фонема) - морфема - слово - предложение...” задает фрактальность этих структур. И то, что в одном масштабе является “предложением”, в другом, более крупном, может быть лишь “словом” и т. д. Другая сложность связана с понятием “рамки считывания”. Сдвиг на одну букву (или эквивалентное этому небольшое изменение фазы, поляризации, частоты физических полей в пространстве-времени биосистемы) может полностью поменять смысл читаемого текста (воспринимаемого образа), не говоря уже о том, что сами тексты, к примеру, в одних и тех же последовательностях ДНК могут быть записаны разными языками. Более того, нет запрета на понимание “текстов” жидкокристаллических хромосомных ДНК, как читаемых в трех- или n-мерном пространстве, когда “буквы слов” выстраиваются не только в одну линию и в одном измерении, но “читаются” вдоль и поперек, вверх и вниз и так далее. В таком процессе поочередно создается и уничтожается бесконечный континуум анизотропных “нитей текстов”, идущих во всех направлениях динамичного интерфазного хромосомного континуума всего пространства биосистемы. Предлагаемая логика неизбежна, если мы хотим понять сущность феномена жизни. Сказанное не следует рассматривать как предтечу пересмотра только принятой модели триплетного генетического кода. Она, эта модель, удобна,но только как исходная позиция, когда дешифрован (неточно и не до конца) первичный уровень кодонов иРНК, уровень вещественно-матричных геносигналов, составляющих 1 - 5% от всей массы геномной ДНК. Оставшаяся большая часть ДНК, существующая в понимании большинства генетиков в качестве "мусорной", несет, вероятно, стратегическую информацию о биосистеме в форме потенциальных и действительных волновых сигналов солитонной, голографической и иной образно-знаковой, в том числе и рече-подобной структуры (подробно см. выше главу “Пересмотр модели генетического кода”).
Вероятно, в прямой связи со всеми рассмотренными “аномальными” свойствами генома высших биосистем стоит феномен особого рода, требующий пристального внимания. Это проблема происхождения жизни, и в частности на Земле. Обсуждается она давно. Предположений много. Мы придерживаемся гипотезы панспермии, но не в том варианте, что на Землю были занесены некие споры-родоначальники всех жизненных форм. Вероятно, процесс естественной эволюции абиогенно возникшего “первичного бульона” из органических молекул - предшественников РНК, ДНК, белков и других существенных компонентов биосистем был сочетан с актом введения экзобиологической информации в первые нуклеиновые кислоты, она была артефактом. И эта информация была рече-подобной. “В начале было слово...”. И эти слова были фрактальны, условно начиная с дуплетно-триплетного кода ДНК-РНК, на первых этапах являющегося простейшим языком с четырех буквенной азбукой. Далее произошла трансляция в 20-буквенную азбуку белков и в более высокие языки в духе обсуждавшихся идей. Вообще гипотеза артефакта первичного языка ДНК широко обсуждается, начиная с пионерской работы В. И. Щербака, показавшего искусственность (привнесенность извне) коллективных симметрий генетического кода, вероятность эволюционного происхождения которых близка к нулю. Можно солидаризироваться с такой позицией не только по причине ее красоты и изящного способа доказательств, где в качестве реперных единиц теоретического анализа используются такие параметры, как нуклонные соотношения в аминокислотах и вырожденность генетического кода, но и потому, что она хорошо соответствует нашему мышлению. Однако, введем поправку. Поскольку на самом деле генетический код, то есть код биосинтеза белков, существенно отличается от принятого в начале 60-х г. хх века (см. выше), то и концепция артефакта кода также нуждается в уточнении. Можно предсказать в истинном (фрактальногетеромультиплетном) коде наличие и других знаковых математических образований, фрактально увеличенных по сравнению с теми, что открыл В.И. Щербак.
Развивая эту мысль и ранее выдвинутые нами идеи, скажем, что было бы наивным упрощением считать “языки” и “письменность” (“речь”) ДНК полным аналогом вербальных построений человека. Точнее будет полагать, что функции ДНК основаны прежде всего на ее метаязыке, являющимся грамматикой генома. Здесь чрезвычайно полезен анализ метаязыков А.Соломоником. Математика - тоже метаязык, он же и свод правил построения ее текстов. В отличие от обычной речи, в которой фразу с определенной мыслью можно сконструировать десятками разных способов, в математике ее вербальные (знаковые) ряды генерируются с помощью малого количества жестких правил. И они, правила, позволяют в автоматическом режиме получить предсказательный результат, как в нашем случае с антенной моделью, “предугадывающей” характер резонансных взаимодействий физических полей с информационными биомакромолекулами. На этом примере видно, как в конечном пункте математических метаязыковых (грамматически ориентированных) преобразований получается результат в форме физико-математического образа потенциального поведения важнейших компонентов биосистемы в ее полевом окружении и внутренней наполненности волновыми процессами. Хромосомы, возможно, также оперируют метаязыками для создания “идеальной” (физико-химико-математической) модели биосистемы как практически недостижимого прообраза реального организма. И такая модель будет более информативна по сравнению, например, с голографической моделью, и будет дополнять последнюю.
Если ДНК, хромосомы организмов Земли действительно являются одновременно донорами и акцепторами не только собственных волновых команд, но и неких внешних (возможно, экзобиологических) регуляторных волновых влияний, что было показано нами ранее, то новый искусственный, создаваемый людьми, электромагнитный семиотический канал вхождения в ноосферу и генофонд планеты Земля требует сверхвнимания в отношении уровня разумности и целесообразности наших, по сути неконтролируемых, супергенетических манипуляций. В этом случае мы будем входить в конкуренцию с вероятным экзобиологическим контролем. Полезно ли это и нужно ли? Сейчас ясного ответа нет. Возможно, мы вошли в бифуркационную вилку выбора стратегии эволюции человечества - или идти дальше по техногенному пути, или учиться мудрости у собственного тела, в котором сосредоточена мудрость Творца.
В качестве иллюстрации предложенного нами метода фрактального представления естественных и генетических текстов приведены матрицы плотности для текста на английском языке (руководство по программированию) и “текста” гена казеина (Cazein). Этот метод дает принципиально иную возможность количественного и качественного сравнения естественных и генотекстов. Аналогичный результат можно получить по- иному, и также новым методом, как это показано на графиках гистограмм сходства и различия для фланков и интронов большой группы генов. Таким же путем получена гистограмма сравнения естественных текстов для монографии автора “Волновой геном” и рассказов Ф.Абрамова [Неопубликованные результаты совместных исследований в соавторстве с М.Ю. Масловым (Математический институт РАН)].
Матрица плотности хаотически-игрового представления нуклеотидной последовательности (ген) в алфавите (A,T,G,C), кодирующей первичную структуру казеина (белок молока).
Рис. 11
Матрица плотности хаотически-игрового представления текста на английском языке (руководство по компьютерному программированию). Рассматривалась структура появления в тексте четырёх частей речи. Левый ближний угол соответствует слову “the”, правый ближний - слову “in”, левый дальний - “on”, правый дальний - ”of”.
Рис. 12
Сравнение фланков с интронами
Рис. 13
Сравнение монографий:Гаряев П.П. Волновой геном. М.,1994.
и Абрамов Ф. Были небыли. Рассказы. М., 1993.
Рис. 14
О ВОЗМОЖНОСТИ СОЗДАНИЯ БИОКОМПЬЮТЕРА НА ГЕНЕТИЧЕСКИХ СТРУКТУРАХ
В международном компьютерном еженедельнике “Сomputer World” (№ 5 от 3 октября 1995 г.) в рубрике “Подробности” была опубликована подборка статей, посвященная работам по созданию биокомпьютера на главной генетической молекуле - на ДНК. Томас Хоффман в статье “Болотная электроника...” описывает первые робкие попытки использования информационных биомакромолекул - некоторых белков (бактерио-родопсин, родопсин) в качестве субстратов записи-считывания информации как аналогов оптической дисковой памяти. Без сомнений, это интересное оригинальное направление, однако в данном случае ничего принципиально нового предложено не было, поскольку неважно откуда взято вещество-субстрат записи-считывания информации, на котором получают спектральные выжигания типа двоичного кода или с помощью лазеров записывают трехмерные изображения предметов в форме голограмм. Такое вещество может иметь абиогенное происхождение или, как в случае с родопсинами, извлекаться из биомембран солончаковых бактерий. В связи с этим, учитывая наши исследования, было бы логичным рассматривать молекулы ДНК как неразрывное единство Вещества и Поля также и в аспекте их участия как основной рабочей фигуры в искусственных биокомпьютерах. Это было бы полезно в развитии вычислительной техники и может привести к полной смене ее элементной базы в ряду: аналоговый-цифровой-“образный” или смысловой компьютер на ДНК.
Весной 1995 г. Леонард М. Адлеман, профессор вычислительных наук из Университета Южной Калифорнии, описал в журнале “Science” алгоритм использования ДНК для решения одной из версий “задачи коммивояжера”. Потребовалась всего неделя для получения ответа, в то время как традиционным компьютерам понадобилось бы несколько лет. При этом было использовано фундаментальное явление, свойственное молекулам ДНК - способность к так называемым комплементарным взаимоузнаваниям. Это явление заключается в том, что любые фрагменты каждой из двух цепочек ДНК находят в растворе (или в составе хромосом живой клетки) только собственные, в некотором смысле зеркальные, половинки и образуют нормальную двойную спираль. Успешность и быстрота автоматических поисков половинками ДНК друг друга как акта самоорганизации (самосборки) и обеспечили высокую скорость перебора вариантов в пределах “задачи коммивояжера”. Причины быстрых и точных взаимоузнаваний половинок ДНК до недавнего времени были неизвестны. А это необычайно важно для реального создания ДНК-компьютера, и об этом речь пойдет ниже.
Путь, который выбрал Адлеман, используя ДНК, не то чтобы неверен, скорее, он похож на попытки понять, как, например, происходит процесс мышления у Иванова, Петрова или Сидорова на основе нашего знания о том, что они любят вкусно поесть. Правильное и эффективное использование ДНК, как основного информационного элемента будущего биокомпьютера, немыслимо без понимания истинных функций генетических молекул в биосистемах. Возвращаясь к предыдущим главам, хромосомный аппарат, как система записывающая, сохраняющая, изменяющая и транслирующая информацию, может рассматриваться одновременно на уровнях вещества и достаточно хорошо изученных физических полей, которыми, как носителями генетической и общерегуляторной информации, оперирует континуум генетических молекул (ДНК,РНК). Континуум этот является основным компонентом совокупности хромосом, являющейся, по сути, биокомпьютером. Уровни вещества и поля, на которых хромосомный биокомпьютер функционирует, неразрывны и функционально дополняют друг друга. Здесь реализуются неизвестные ранее виды памяти (солитонная, голографическая, фантомная) и при этом молекулы ДНК могут работать как биолазеры и одновременно как среда записи лазерного сигнала. Кроме того, мы обнаружили, что ДНК способна излучать широкополосное сверхслабое электромагнитное поле, которое нам удалось усилить в тысячи раз. Впрочем, ДНК в этом плане является частным случаем, поскольку зафиксированное нами явление свойственно, вероятно, всем веществам [42], но хромосомы используют этот феномен, наверное, в высшей степени эффективно как один из волновых каналов информационных и (или) энергетических коммуникаций. Молекулы ДНК, как континуум любой биосистемы, способны к формированию прообразов биоструктур и организма в целом как “волновых копий” или “матриц” и сравнению построенного организма с ними как с реперами. В этом плане механизм быстрого и точного взаимоузнавания цепочек (половинок) ДНК, механизм, которым воспользовался Адлеман для решения “задачи коммивояжера”, - лишь один из способов самоорганизации биосистем. Взаимоузнавание, в частности, происходит потому, что в молекулах ДНК зарождаются особые сверхустойчивые акустико-электромагнитные волны (так называемые солитоны), некоторые разновидности которых можно трактовать в рамках открытого в 1949г. “явления возврата Ферми-Паста-Улама” (ФПУ). Такие солитоны ДНК обладают двумя связанными типами памяти - собственно памятью, свойственной явлению ФПУ-возврата, т.е. способностью помнить начальные моды возбуждений и периодически к ним “возвращаться”. Другая память ДНК-континуума в биосистеме - квази-голографическая или фрактальная. Она связана с фундаментальным свойством биосистем - восстанавливать целое из своей части. Это свойство фудаментально и хорошо известно (черенкование растений, регенерация хвоста у ящериц, регенерация целого организма из яицеклетки). Высшая форма такой памяти - ассоциативная память коры головного мозга, т. е. нейронов. Бесперспективно рассуждать о ДНК-компьютере, даже решив с помощью молекул ДНК “задачу коммивояжера”, если не учитывать новую логику в понимании знаковых, кодирующих биофункций ДНК. Другая сторона дела состоит в соотнесении этой логики с многочисленными исследованиями по нейрокомпьтерам и попытками разобраться в “компьютерной” работе мозга без понимания кодирующих функций нервного импульса.
Подобные документы
Условия существования, методы расчета и экспериментальные исследования волн в прямоугольных волноводах, их тип. Зависимость амплитуды выходного сигнала от положения детектора в случае согласованной нагрузки. Методика измерения характеристики детектора.
контрольная работа [206,0 K], добавлен 13.01.2011Принцип действия и разновидности волновых гидроэлектростанций - установок, получающих электричество из кинетической энергии морских волн. Развитие волновой энергетики в России. Схема воздействия волны на поплавковый микромодуль волновой микро ЭС.
реферат [933,0 K], добавлен 24.09.2016Значение света для жизни на Земле. Теории о развитии света. Характеристика волновых свойств света. Применение интерференции и дифракции света, представления о его природе. Фотонная молекула как новая форма материи, устройство среды ее существования.
презентация [327,1 K], добавлен 07.05.2015- История возникновения и формирования квантовой механики и квантово-механической теории твердого тела
Экспериментальные основы и роль М. Планка в возникновении квантовой теории твердого тела. Основные закономерности фотоэффекта. Теория волновой механики, вклад в развитие квантово-механической теории и квантовой статистики А. Гейзенберга, Э. Шредингера.
доклад [473,4 K], добавлен 24.09.2019 Особенности и принципы осуществления позисторного эффекта в сегнетоэлектриках. Модели Хейванга и Джонкера. Технология и основные этапы получения позисторов, сферы их практического применения, экспериментальные исследования соответствующего эффекта.
курсовая работа [2,5 M], добавлен 21.12.2015Модели атомных ядер, в которых понятие потенциала применяется и нет. Экспериментальные факты, подтверждающие зависимость ядерных сил от расстояния, спинов, относительного орбитального момента нуклонов. Различные классификации ядерных потенциалов.
дипломная работа [133,1 K], добавлен 16.08.2011Выработка энергии, накапливаемой морскими волнами на всей акватории Мирового Океана. Разработки волновых преобразователей. Устройство волновой электростанции. Поплавковые электростанции как один из видов ветровой электростанции, ее основные элементы.
презентация [240,5 K], добавлен 30.09.2016Особенности определения энергии и волновых функций 3-го и 4-го стационарных состояний электрона в потенциальной яме. Порядок вычисления вероятности обнаружения электрона в каждом из секторов ямы. Понятие и сущность оператора Гамильтона в квантовой теории.
курсовая работа [262,7 K], добавлен 03.06.2010Принципы симметрии волновых функций. Использование принципа Паули для распределения электронов в атоме. Атомные орбитали и оболочки. Периодическая система элементов Менделеева. Основные формулы физики атомов и молекул. Источники рентгеновского излучения.
реферат [922,0 K], добавлен 21.03.2014Влияние ударно-волновых и краевых эффектов на измерение проводимости продуктов детонации контактной методикой. "Деформация" восстанавливаемого распределения электропроводности в зависимости от постановки эксперимента; существование двух зон проводимости.
дипломная работа [5,1 M], добавлен 02.06.2011