Оптичні властивості некристалічних напівпровідникових халькогенідів

Некристалічні напівпровідникові халькогеніди застосовуються в системах реєстрації, збереження й обробки оптичної інформації. При взаємодії світла з ними в них відбуваються фотостимульовані перетворення, які приводять до зміни показника заломлення.

Рубрика Физика и энергетика
Вид курсовая работа
Язык украинский
Дата добавления 17.12.2008
Размер файла 410,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Методика експерименту. Для одержання градієнтних плівок на основі склоподібних Ge40S60 з різними модифікаторами використовувався метод термічного випаровування у вакуумі (3?10-5 Тор) [8]. Формування градієнтної структури проводилось шляхом одночасного випаровування матричного складу в стаціонарному режимі і хімічного елементу-модифікатора. Динаміка числа атомів модифікатора при дії неоднорідного джерела атомного потоку забезпечувала його прогнозований розподіл по товщині осадженої плівки. Контроль хімічного і кількісного складу одержаних градієнтних плівок проводився методом масспектрометрії пост-іонізованих нейтральних частинок [9].

Одержані градієнтні структури <Ge40S60 :X> (Х-Bi, Pb, Te) є аморфними, мають високу механічну і хімічну стабільність тільки для обмеженої концентрації елементів-модифікаторів. Обмеженість концентрації елемента-модифікатора в склоподібній матриці Ge40S60 пояснюється як особливостями мікронеоднорідної структури, здатністю до можливого відхилення складу від стехіометрії Ge40S60, так і високою спорідненістю та енергетичною вигідністю реакції взаємодії модифікатора і халькогена. До певної концентрації введений модифікатор тільки впроваджується в матрицю Ge40S60, насичуючи свої валентні зв'язки. Модифікатор взаємодіє, в основному, з дефектами структури шару, утворюючи різні її фрагменти. В залежності від типу вихідного матеріалу, відбувається формування аморфної структури, що впливає на оптичні параметри. При надлишковому вмісті модифікатора відбувається утворення нових структурних одиниць, що сприяє кристалізації шару [9]. Дослідження краю власного поглинання проводили в спектральному діапазоні 0,33 ? 1,10 мкм на спектрофотометрі СФ-46 [10]. Коефіцієнт поглинання визначався по величині коефіцієнтів відбивання і пропускання з урахуванням багаторазового відбивання в шарі:

де d - товщина зразка, T - коефіцієнт пропускання, R1, R2, R3 - коефіцієнти відбиванн відповідно підкладка-повітря, плівка-повітря, підкладка-плівка, n1 - показник заломлення скла, n2 - показник заломлення матеріалу.

Еліпсометричні дослідження завжди пов'язані з розв'язуванням прямої або оберненої задач еліпсометрії. У прямій задачі еліпсометрії розраховуються вимірювані еліпсометричні кути для обраної моделі структури з відомими оптичними властивостями та геометричними розмірами. Обернена задача використовує виміряні за допомогою еліпсометра кути ? та Ш для знаходження невідомих оптичних параметрів системи, що досліджуються. Оскільки рівняння для прямої задачі є нелінійними і трансцендентними, в більшості випадків не можна аналітичним шляхом одержати обернені рівняння. Розв'язання основного рівняння еліпсометрії проводиться чисельними методами за допомогою комп'ютера. Багатокутові еліпсометричні вимірювання здійснювалися за нульовою методикою на базі еліпсометра ЛЭФ-3М-1 з робочою довжиною хвилі л = 632,8 нм у діапазоні кутів падіння світла ? = 45-80° [9].

На мал.14 представлений край власного поглинання структур на основі склоподібного Ge40S60 з різними модифікаторами [11]. Для досліджуваних структур спостерігається нелінійна концентраційна залежність, що супроводжується зменшенням ширини оптичної щілини зі збільшенням вмісту модифікатора, яка пояснюється зміною хімічного складу. При дослідженні плівок з вмістом концентрації більше гранично допустимої (для Pb>10 ат.%, Bi>15 ат.%, Те>30 ат.%) спостерігався сильно затягнутий край поглинання та мале пропускання, що говорить про велику кількість домішкових центрів і можливість релеєвського розсіювання світла.

По мірі збагачення шарів модифікатором (Bi, Pb,Те), край поглинання зміщується в довгохвильову область спектру, зменшується різкість наростання поглинання градієнтної плівки з енергією падаючого світла, що характеризує збільшення степені розупорядкування одержаної структури. В таблиці 1 представлені значення ширини оптичної щілини в залежності від типу модифікатора. Видно, що при однаковій концентрації модифікатора найбільша зміна ширини оптичної щілини відносно матриці Ge40S40 відбувається при введені вісмуту, а найменша при введені свинцю (мал.15).

ВИСНОВОК

В даній курсовій роботі оглянуто основну літературу на тему “Оптичні властивості некристалічних напівпровідникових халькогенідів”.

Було зазначено, що за рахунок цікавих оптичних властивостей набули широкого практичного використання. Вони використовуються в пристроях для запису та обробки інформації. При взаємодії світла з ХСН у ньому відбуваються фотостимульовані перетворення, які приводять до зміни показника заломлення та показника поглинання, тобто ХСН регіструє інформацію, яку несе світловий промінь. Ця інформація може зберігатися на протязі довгого проміжку часу (10-12 років). Процес стирання інформації відбувається при нагріванні ХСН до температури розм'якшення, після чого його можна застосовувати для запису нової інформації. Щільність запису оптичної інформації може досягати 1010 біт на 10x10 см2, або при голографічному записі- 108-105 біт на см3. Для підвищення чутливості регіструючих середовищ використовують композиції ХСН-термопластик, або як їх називають, фототермопластичні носії (ФТПН) інформації, які являють собою композицію з провідного електрода нанесеного на лавсанову підкладку, шарів ХСН і термопластика. ХСН використовують як фотоматеріал для обробки інформації і інше. Цілком зрозуміло, шо найперспективнішими матеріалами в цій прикладній області є композиції, в яких ступінь змін при дії зовнішніх чиників (квантів електромагнітного і корпускулярного випромінювання, електричного і мчгнітних полів, температурних полів і ін.) є максимальною. ХСН використовуються в фотокопіювальних установках - ксерографії, відкриття ефекту перемикання сприяло використанню аморфних матеріалів у обчислюваній техніці. Сприяє більш широкому використанню аморфних напівпровідників створення гібридних структур, аморфні кристалічні гетеропереходи. Гібридні переходи характеризуються меншою, порівняно з кристалічною, щільністю дислокацій, що забезпечує майже ідеальну вольтамперну характеристику.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

1.Несеребряные фотографические процессы /Под ред. А.Л. Картужанского . - Л.: Химия, 1984. С. 376.

2.Микаэлян А.Н., Палагушкин А.Н., Прокопенко С.А. // Доклады РАН. 2002.№ 5. С. 621.

3.Andrei Andriesh, Valeriu Bivol, Okan Ersoy et al. // SPIE Proceeding V. 5581.P. 531-545.

4. Свойства светочувствительных материалов и их применение в голографии / Отв. ред. В.А. Барачевский. Л.: Наука, 1987. С. 100-105.

5.Семак Д.Г., В.М. Різак. Фізика нерівноважних явищ у напівпровідниках (Спецпрактикум).- Ужгород: Вид-во Ужгородського державного університету, 1998. - 183 с.

6.Борец А.Н., Химинец В.В., Туряница И.Д., Кикинеши А.А., Семак Д.Г. Сложные стеклообразные халькогениды. - Львов: Вища школа, 1987.

7. Мотт Н.,Дэвис Э. Электронные процессы в некристаллических веществах: В 2-ох томах. - М.: Мир, 1982.

8.Н.В. Юркович, А.В. Лада, В.Ю. Лоя, И.М. Миголинец, С.С. Крафчик, О.И. Пагулич. Особенности получения неоднородных структур Ge2S3+Al (Bi, Pb, Te) заданным распределением компонент // Сборник докладов 14-го Международного симпозиума «Тонкие пленки в оптике и электронике», Харьков, ННЦ ХФТИ, сс. 138-139 (2002).

9.Н.В. Юркович. Моделювання та фізичні властивості модифікованих структур на основі склоподібних халькогенідів германію. Автореферат дис. канд. фіз.-мат. н., Ужгород, 16 с (2004).

10.Н.В. Юркович, І.Й. Росола, І.М. Миголинець, А.В. Лада. Вплив концентрації модифікатора на край власного поглинання структур змінного складу Ge2S3 +Bi (Pb, Te) // Фізика і хімія твердого тіла. 2(4),

сс. 669-672 (2001).

11.И.Й. Росола. Дисперсия показателя преломления в стеклах As2S3-GeS2 // УФЖ, 27(9), сс. 1410-1411 (1982).

12.S.H. Wemple. Refractive-index behaviour of amorphous semiconductors and glasses // Phys.Rev.B. 7(8), рр. 3767-3777 (1973).

13.M.R. Tubbs. A spectroscopic interpretation of crystalline iсonicity // Phys.Stat.Sol., 41(1), рр. K61-K64 (1970).

14.Н.В. Юркович, І.М. Миголинець, В.Р. Романюк, А.В. Лада, В.Ю. Лоя. Оптичні властивості неоднорідних модифікованих структур на основі склоподібного Ge2S3 // ІХ Міжнародна конференція “Фізика і технологія тонких плівок”, Івано-Франківськ, 2, С.133 (2003).


Подобные документы

  • Анізотропія кристалів та особливості показників заломлення для них. Геометрія характеристичних поверхонь, параметри еліпсоїда Френеля, виникнення поляризації та різниці фаз при проходженні світла через призми залежно від щільності енергії хвилі.

    контрольная работа [201,6 K], добавлен 04.12.2010

  • Визначення показника заломлення скла. Спостереження явища інтерференції світла. Визначення кількості витків в обмотках трансформатора. Спостереження явища інтерференції світла. Вимірювання довжини світлової хвилі за допомогою дифракційної решітки.

    лабораторная работа [384,9 K], добавлен 21.02.2009

  • Сутність оптичної нестабільності (ОП). Модель ОП системи. Механізми оптичної нелінійності в напівпровідникових матеріалах. Оптичні нестабільні пристрої. Математична модель безрезонаторної ОП шаруватих кристалів. Сутність магнітооптичної нестабільність.

    дипломная работа [2,5 M], добавлен 13.06.2010

  • Оптика – вчення про природу світла, світлових явищах і взаємодії світла з речовиною. Роль оптики в розвитку сучасної фізики. Предмет і його віддзеркалення. Явища, пов'язані з віддзеркаленням та із заломленням світла: міраж, веселка, північне сяйво.

    курсовая работа [32,1 K], добавлен 05.04.2008

  • Комбінаційне і мандельштам-бріллюенівське розсіювання світла. Властивості складних фосфорвмісних халькогенідів. Кристалічна будова, фазові діаграми, пружні властивості. Фазові переходи, пружні властивості, елементи акустики в діелектричних кристалах.

    курсовая работа [1,6 M], добавлен 25.10.2011

  • Основні властивості неупорядкованих систем (кристалічних бінарних напівпровідникових сполук). Характер взаємодії компонентів, її вплив на зонні параметри та кристалічну структуру сплавів. Електропровідність і ефект Холла. Аналіз механізмів розсіювання.

    реферат [558,1 K], добавлен 07.02.2014

  • Природа світла і закони його розповсюдження. Напрямок коливань векторів Е і Н у вільній електромагнітній хвилі. Світлові хвилі, поляризація світла. Поширення світла в ізотропному середовищі. Особливості відображення і заломлення на межі двох середовищ.

    реферат [263,9 K], добавлен 04.12.2010

  • Завдання сучасної оптоелектроніки з досліджень процесів обробки, передачі, зберігання, відтворення інформації й конструюванням відповідних функціональних систем. Оптична цифрова пам'ять. Лазерно-оптичне зчитування інформації та запис інформації.

    реферат [392,5 K], добавлен 26.03.2009

  • Класифікація напівпровідникових матеріалів: германія, селену, карбіду кремнію, окисних, склоподібних та органічних напівпровідників. Електрофізичні властивості та зонна структура напівпровідникових сплавів. Методи виробництва кремній-германієвих сплавів.

    курсовая работа [455,9 K], добавлен 17.01.2011

  • Природа і спектральний склад сонячного світла, характер його прямого та непрямого енергетичного перетворення. Типи сонячних елементів на основі напівпровідникових матеріалів. Моделювання електричних характеристик сонячного елемента на основі кремнію.

    курсовая работа [2,3 M], добавлен 17.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.