Історія навчання фізики

Роль історизму і шляхи його використання в навчанні фізики. Елементи історизму як засіб обґрунтування нових знань. Відкриття законів вільного падіння, динаміки Ньютона, закону всесвітнього тяжіння, збереження кількості руху. Формування поняття сили.

Рубрика Физика и энергетика
Вид дипломная работа
Язык украинский
Дата добавления 12.02.2009
Размер файла 3,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Не дивлячись на те, що Галілей досконало володів загальноприйнятою латинською мовою, його основні роботи написані на рідній італійській мові. Праці Галілея відрізнялися живою, образною мовою і вражали противників влучною та гострою іронією.

В останні роки життя Галілей тяжко хворів, в 1637 р. він осліп. Ала до кінця своїх днів великий мислитель не залишав наукових досліджень. За твердженням Вівіані, Галілей в 1641р. повідомив своїм учням і сину про винайдення маятникового годинника. На жаль, ні син, ні учні не продовжили роботу над цим винаходом. Появою сучасного годинника ми зобов'язані знаменитому голландському фізику Гюйгенсу

Г.Галілей помер 8 січня 1642р. Крім сина та невістки, а також трьох учнів - Кастеллі, Вівіані та Торрічеллі, біля смертного ложе великого перетворювача фізики невідступно знаходилися два представники інквізиції. Навіть після смерті Галілея церква продовжувала переслідувати його. Прах Галілея не дозволили помістити в сімейному склепі. З великими труднощами вдалося отримати дозвіл поховати його в годинникарні біля сусідньої церкви. Лише в 1737р., тобто через 95 років після смерті було виконано останнє бажання Галілея: його останки були перевезені у Флоренцію.

Могила Г. Галілея знаходиться поряд з могилами двох інших великих синів Італії - Мікеланджело і Данте.

Галілей відкинув старогрецьку класифікацію механічних рухів. Він вперше ввів поняття рівномірного та рівноприскореного рухів і почав дослідження механічного руху шляхом вимірювання відстаней та часу руху. Досліди Галілея з рівноприскореним рухом тіла по нахиленій площині і сьогодні повторюються у всіх школах світу.

Особливу увагу Галілей приділив експериментальному дослідженню вільного падіння тіл. Всьому світу відомі його досліди на Пізанській башті. Як засвідчував Вівіані, Галілей кидав з башти одночасно півфунтову кулю і сто фунтову бомбу. Наперекір думці Аристотеля, вони досягали поверхні землі майже одночасно: бомба випередила кулю лише на кілька дюймів. Цю різницю Галілей пояснив наявністю опору повітря. Таке пояснення було принципово новим. Справа в тому, що з часів Стародавньої Греції утвердилось таке уявлення про механізм переміщення тіл: рухаючись, тіло залишає за собою пустоту; природа ж боїться пустоти ( існував помилковий принцип побоювання пустоти). Повітря прямує в пустоту і штовхає тіло. Таким чином, вважалось, що повітря не сповільнює, а, навпаки, прискорює рух тіла.

Далі Галілей відкинув ще одну багатовікову помилку. Вважалось, якщо рух не підтримується якою-небудь дією, то він повинен припинитися, навіть якщо не існує перешкод. Галілей вперше сформулював закон інерції. Він стверджував: якщо на тіло діє сила, то результат її дії не залежить від того знаходиться тіло у спокої чи рухається. У випадку вільного падіння на тіло постійно діє сила тяжіння і результати цієї дії неперервно сумуються, бо відповідно до закону інерції, викликана одноразово дія зберігається. Це уявлення є основою його логічної побудови, яка привела до законів вільного падіння.

Галілей визначив прискорення вільного падіння з великою похибкою. В “Діалозі” він стверджує, що куля падала з висоти 60 метрів протягом 5 секунд. Це відповідає значенню g майже в 2 рази меншого, ніж істинне.

Галілей, звичайно, не міг точно визначити g, оскільки не мав секундоміра. Пісочні, водяні годинники або винайдений ним годинник з маятником не сприяли точному відліку часу. Прискорення вільного падіння було достатньо точно визначене лише в 1660р. Гюйгенсом.

Розповідаючи про роботи Галілея, важливо пояснити учням суть методу, яким він користувався при встановленні законів природи. Спочатку він провів логічну побудову, з якої витікали закони вільного падіння. Але результати логічної побудови потрібно перевірити дослідом. Лише спів падання теорії з дослідом приводить до ствердження справедливості закону. Для цього потрібно вимірювати. У Галілея гармонічно перепліталася потужність теоретичного мислення з експериментальним мистецтвом. Як перевірити закони вільного падіння, якщо рух дуже швидкий і немає пристроїв для вимірювання малих проміжків часу?

Галілей зменшує швидкість падіння застосуванням похилої площини. В дошці було зроблено жолоб, висланий для зменшення тертя пергаментом. По жолобу пускалась відполірована латунна куля. Для точного виміру часу руху Галілей придумав наступне. В дні великої посудини з водою робився отвір, через який витікав тонкий струмінь. Він направлявся в маленьку посудину, яка заздалегідь зважувалася. Проміжок часу вимірювали по приросту ваги посудини! Пускаючи кулю з половини, четверті і т.д. довжини похилої площини, Галілей встановив, що пройдені шляхи відносились як квадрати часу руху.

Повторення цих дослідів Галілея може слугувати предметом корисної роботи на шкільному фізичному гуртку.

2.3. До історії законів динаміки Ньютона

Три закони динаміки, що склали фундамент класичної механіки були сформульовані англійським фізиком Ісааком Ньютоном (1643 - 1727) (див. Додаток 9) в книзі “Математичні початки натуральної філософії” (див. Додаток 7).

І.Ньютон народився 4 січня 1643р. в м. Вулсторт в сімї небагатого фермера. В 12 років його віддали в школу. Спочатку він не відрізнявся успіхами в навчанні, але потім дуже зацікавився математикою. Коли через рік занять внаслідок матеріальної скрути взяли додому, щоб привчити до господарства, Ньютон виявив таку байдужість і нездібність до подібного роду занять, що в 1660 р. його знову повернули до школи. В 1661р. його прийняли в один з коледжів Кембріджського університету. В коледжі Ньютон був незадоволений офіційними навчальними підручниками, які здавались йому дуже тривіальними. Він починає самостійно вивчати “Геометрію” Декарта, “Арифметику нескінченного” Уолліса та “Оптику” Кеплера.

В 1665р. він отримує степінь бакалавра, а потім магістра. В 1669р. займає фізико-математичну кафедру в Кембріджському університеті. В ці ж роки Ньютон починає свої наукові дослідження. Період 60-80-х р. р. був найбільш плідним в діяльності вченого. До того часу відносяться його фундаментальні відкриття в області математики, механіки та оптики ( 1666р. - відкрив явище дисперсії, відбиваючий телескоп; 1675р. - відкрив явище, яке носить назву “кільця Ньютона”, був близьким до відкриття поляризації, одним з перших висловив думку про механічну природу тепла, дав теорію фігури Землі, правильно вказавши, що вона повинна бути стиснута біля полюсів...).

Великі заслуги Ньютона перед людством були визнані вже його сучасниками. В 1672р. Ньютона вибрали членом Лондонської королівської спілки, а з 1703р. і до кінця життя був незмінним її президентом. Крім того він був іноземним членом Паризької Академії наук ( з 1699р.).

Після політичного заколоту 1688р. в Англії Ньютона обрали членом парламенту від університету і займав він цю посаду протягом року.

В 1696р. його призначили хранителем Монетного двору в Лондоні і віддавав багато сил і часу цій роботі.

З наукових досліджень Ньютона в цей останній період його життя слід відзначити захоплення теплофізикою, зокрема відкриття закону охолодження тіл (1705р.). В основному ж він займався виданням раніше написаних раніше творів.

Ньютон помер 31 березня 1727р. в Кенсінгтоні ( зараз частина Лондона) і був похований у Вест мінському абатстві - пантеоні великих людей Англії.

І.Ньютон своїми працями завершив важливий період в історії розвитку сучасного природознавства, розпочатий Галілеєм, - період створення класичної механіки. Він відкрив основні закони механічної взаємодії тіл не лише на Землі, але і в оточуючому нас Всесвіті і тим самим заложив основи небесної механіки. Виключно великим вкладом в науку стали оптичні відкриття Ньютона, який одним з перших почав дослідження в області фізичної оптики. Нарешті, завдяки геніальним математичним відкриттям Ньютона і Лейбніца, фізика була озброєна таким міцним апаратом дослідження, як диференціальне та інтегральне числення.

Авторитет Ньютона як вченого і за життя, і після його смерті був величезним. В математиці виникла школа Ньютона. В фізиці - механіці, оптиці і ін. Її областях - більше століття панував напрямок, відомий як ньютонівський.

Сам Ньютон говорив про свої відкриття: ”Якщо я бачив далі, ніж інші, то тому, що стояв на плечах гігантів”. Дійсно, великі відкриття Ньютона були підготовлені діяльністю ряду видатних вчених.

Ньютон не надавав своїм відкриттям великого значення всеохоплюючих, все пояснюючих законів. Вважаючи процес пізнання нескінченним, він говорив незадовго до своєї смерті: “ Не знаю, чим я можу здаватися світу, але сам собі я здаюся лише хлопчиком, який грається на березі моря, розважається тим, що іноді відшукує камінець більш яскравий, кольоровий, ніж звичайно, або красиву черепашку, в той час, коли великий океан істини розстеляється переді мною недослідженим.”

В формулюваннях Ньютона закони динаміки, чи, як їх називав сам автор, аксіоми руху виглядають так:

Перший закон.

Всяке тіло упирається в збереженні стану спокою або незмінного по напряму руху, поки і оскільки прикладені сили не змінять цей стан.

В цьому законі відображена важлива властивість тіл - інертність: поки на тіло не діють зовнішні сили, воно рухається весь час в одному і тому ж напрямі з незмінною (сталою) швидкістю.

Цей закон пов'язаний із законом незалежності дії сил, який був сформульований до Ньютона Галілеєм. Якщо на тіло, що рухається під дією деякої сили, подіє нова сила, то новий рух буде складатися з попереднього та з того руху, який отримало б тіло під дією нової сили, перебуваючи в стані спокою.

Поєднання законів Ньютона і Галілея важливе для розуміння суті того, що ми називаємо інертністю. Адже в оточуючому світі на тіла завжди діють зовнішні сили. Реальна лише ситуація, при якій сили зрівноважені. Інертність проявляється в тому, що якби тіло рухалося в якому-небудь напрямку зі швидкістю , і нова сила надає йому швидкість в іншому напрямку, то новий рух буде відбуватися зі швидкістю .

Якщо з'явиться ще одна сила, яка надасть йому швидкість , то вона просто додається до суми, не змінюючи попередніх величин. Це один з виразів загального принципу суперпозиції, який стосується і сил, і результатів їх дій.

Другий закон.

Зміна кількості руху пропорційна прикладеній рушійній силі і відбувається в тому ж напрямі, в якому ця сила діє.

В математичній формі цей закон виражається так: . Ньютон в цьому законі розглядає добуток маси на прискорення як особливу механічну величину - кількість руху (імпульс) і ефект дії сили оцінює саме за зміною цієї величини.

С.І.Вавилов у книзі “Ісак Ньютон” показав, що в такій формі другий закон може застосовуватися і в релятивістській динаміці. Лише в окремому випадку, коли маса тіла не залежить від швидкості і не змінюється з часом, ми можемо записати і, поділивши обидві частини рівності на, перейти до окремої власної форми закону: .

Ньютонівська форма другого закону динаміки застосовна і на практиці. Наприклад, всі механічні ефекти в гідро- та аеродинаміці оцінюються саме за зміною кількості руху. Під час виведення основного рівняння молекулярно-кінетичної теорії в основу покладають закон в ньютонівській формі.

В цьому одне з виражень дивовижної прозорливості Ньютона, яку підкреслював С.І.Вавилов. Ньютонівська форма другого закону має один особливо важливий дидактичний аспект. Написавши закон у вигляді , ми приходимо до простого трактування важкого поняття сили. Можна стверджувати, що сила - причина зміни кількості руху тіла і пов'язана завжди із взаємодією тіла, що рухається, з іншими тілами при зіткненні чи на відстані. Сила є мірою цієї взаємодії.

Далі відкривається зв'язок першого і другого законів динаміки і встановлюється міра тієї властивості, яку ми називаємо інерцією. Із другого закону в ньютонівській формі випливає, що при , , тобто ми приходимо до першого закону. Змінити стан руху тіла при даній масі тим важче, чим більший його імпульс. Цьому є багато життєвих ілюстрацій.

Загальність формулювання другого закону динаміки підкреслюється ще одним фактом. У зв'язку з розвитком ракетної техніки виникла проблема вирішення задач, пов'язаних з рухом тіл змінної маси. Власна форма закону не давала навіть поставити задачу.

Вперше почав вирішення проблем механіки тіл змінної маси професор Петербурзького політехнічного інституту Іван Всеволодович Мещерський (1859 - 1935). Він виходив саме з ньютонівської форми закону , де .

Третій закон.

Дії завжди є рівна і протилежна протидія, інакше взаємодії тіл одне на інше між собою рівні і напрямлені в протилежні сторони.

Цей закон погано розуміли з часів його появи в “Началах”. Особливо важким був його додаток у випадку взаємодії тіл на відстані.

Пояснюючи закон в листах до друзів і відповідях опонентам, Ньютон підкреслював необхідність спільного розгляду з І та ІІ законами. В листі до редактора “Начал” Р.Котсу він писав: “ Якби деяке тіло могло притягувати інше, розташоване поблизу нього, але не притягувалося саме з такою ж силою з цим останнім, то тіло притягуючи менш сильно, погнало б інше перед собою ( відповідно до ІІ закону), і обидва вони б почали рухатись з прискоренням до нескінченності, що протирічить І закону.”

Якщо в цьому міркуванні вказаними тілами будуть Земля і Місяць або Земля і Сонце, то неважко бачити, що невиконання законів динаміки призведе до руйнування Сонячної системи.

Від сили тяжіння Ньютон переходить до магнітної сили. Він описує дослід, який він придумав і відтворив. В двох стичних посудинах з водою плавають пробки. На одну з них кладуть полосовий магніт, на іншу - рівної маси залізну пластинку. Якщо б тільки притягував залізо, - міркував Ньютон, то пробка з магнітом залишилась би на місці, а залізна пластина поплила до нього. Однак дослід показав, що обидві пробки з вантажами пливуть назустріч одна одній, і, якщо маси їх рівні, то сили притягання надають їм однакових прискорень.

Цей дослід Ньютона і його міркування про взаємодію, на жаль, забуті. Їх слід було б широко використовувати в шкільному курсі.

С.І.Вавилов писав: “ На стінах фізичних аудиторій вищих навчальних закладів справедливо висять відомі “ Аксіоми або закони руху “ Ньютона поряд з періодичною системою елементів. Ці закони зовсім не історична пам'ятка або прикраса аудиторії; це фундамент того, що повинен засвоїти студент в області фізики, схема розв'язку всіх фізичних і механічних задач в наш час.

Добре відомо, що нова фізика в теорії відносності і квантовій механіці пішла по дорозі, що не була передбачена класикою Ньютона. Змінилися фізичні уявлення про простір, час, масу, дію... Але фізична революція не знищила ньютонівську механіку, вона лише надбудувала, перетворивши закони Ньютона із загальних в граничні, справедливі для порівняно невеликих швидкостей і великих об'ємів. І для нас, жителів земної кулі , ці невеликі швидкості і великі об'єми найбільш звичні і нормальні, вони визначають нашу практику і техніку.”

2.4. До історії закону всесвітнього тяжіння

Закон всесвітнього тяжіння - універсальний закон. Йому підкоряються всі без виключення об'єкти природи: притягуються, хоч і слабо, електрони і ін. елементарні частинки; аналіз руху всіх тіл на Землі потребує врахування цього закону; планети Сонячної системи притягуються до Сонця і одна до іншої; зоряні скупчення пояснюються притяганням. Тяжіння діє навіть на світло. Саме завдяки цьому закону нам точно відомо на десятки років вперед настання сонячних і місячних затемнень і появу на небі комет. І якщо говорити про те, кому ми зобов'язані тим, що людина нині з успіхом освоює космос, то в довгому ланцюжку імен одним з перших повинно стояти ім'я Ньютона. Адже розрахунки траєкторії будь-якого штучного космічного об'єкта обов'язково спирається на використання закону тяжіння. Як же вдалося Ньютону встановити, що всі об'єкти природи без виключення притягаються одне до одного і визначити, від чого ця сила залежить?

Думку про тяжіння планет до Сонця і Місяця висловлював австрійський вчений Кеплер, який відкрив три закони руху планет. Після того, як Галілей встановив, що за відсутності дій тіло буде рухатись рівномірно і прямолінійно, припущення про те, що нерівномірний рух по криволінійним траєкторіям обумовлений дією якихось сил, ставали все більш реальними. Про притягання планет до Сонця говорило багато вчених: Бореллі, Гук, Галілей і ін.

Поступово виникло уявлення, що притягання зменшується з відстанню. Вже Кеплер висловлював цю думку, вважаючи, що тяжіння слабшає подібно освітленості при збільшенні відстані від джерела. Гук висунув гіпотезу про те, що тяжіння підкоряється закону оберненого квадрату, і повідомив про це в листі Ньютону (1680р.), вказуючи, що в нього самого немає часу на обґрунтування цієї ідеї.

Отже, на поч.80-х р. р. ідея про існування притягання планет до Сонця “літала в повітрі”, але потрібен був талант Ньютона, щоб вона отримала розвиток і переконливе доведення.

В 1680р. на небі з'явилася комета, яка рухалася до Сонця. Через два місяці виявили, як вважали, другу комету, яка рухалася від Сонця. Виникло припущення, що це одна і та ж комета, яка рухається по дуже витягнутому еліпсу. Е.Галлей намагався обчислити її траєкторію, виходячи із закону оберненого квадрату, але не міг перебороти математичні труднощі і звернувся за допомогою до Ньютона. Але виявилося, що Ньютон вирішив подібну задачу ще в 1665р. Галлей наполягав на необхідності публікації роботи Ньютона по тяжінню. Ньютон з великою неохотою вкінці кінців дає згоду. В 1686р. виходить праця Ньютона, яка заложила основу всієї класичної механіки, - відомі “ Математичні начала натуральної філософії”. Однією з важливих проблем, що вирішувалася в цій праці і була проблема тяжіння.

В дуже спрощеному вигляді теорія тяжіння Ньютона зводиться до наступного.

Прискорення двох планет, що рухаються навколо Сонця по коловим орбітам з радіусами та будуть: ; .

Так як , то .

Але за ІІІ законом Кеплера , тому .

Відповідно до основного закону динаміки , отже, сили, які діють на планети будуть обернено пропорційні квадратам радіусів орбіт, тобто

.

Далі Ньютон припустив, що природа сили, яка втримує планети на орбітах, тотожна з природою притягання тіл до Землі, і довів це. Суть його міркувань в наступному.

Коли тіла віддалені від центра Землі на відстань, рівну радіусу Землі , то , притягуючись до Землі, вони набувають прискорення . Якщо сила тяжіння Землі з віддаленням зменшується за законом оберненого квадрата, то на відстані, рівній відстані від Землі до Місяця , тіло набуло б, притягуючись до Землі, прискорення меншого, ніж . Так як , то прискорення тіла, віддаленого на таку відстань, буде:

.

Земне тіло на таку відстань помістити важко. Але в цьому і немає потреби: адже Місяць, притягуючись до Землі і рухаючись навколо неї по орбіті, близькій до колової, набуває під дією притягання до Землі доцентрове прискорення .

Ньютон отримав, що . І таким чином довів, що сила тяжіння має ту ж природу, що і сила тяжіння планет до Сонця.

Далі Ньютон робить узагальнення, стверджуючи, що тяжіння носить всесвітній характер.

А чи не дуже великим був розмах цього узагальнення? Чому ми впевнені в універсальності цього закону?

Щоб відповісти на ці питання, звернемося до методу Ньютона.

Закон тяжіння Ньютон вивів із обмеженого кола даних спостережень. Його справедливість для більш широкого кола можна вважати доведеною лише тоді, коли, виходячи з його універсальності, отримати для ряду явищ наслідки, і ці наслідки будуть відповідати дослідним даним. В цьому суть метода Ньютона - на основі даних досліду знайти узагальнююче ствердження ( принцип “начала”) і надавши йому математичної форми вивести з нього ряд наслідків, перевірка яких і буде перевіркою твердження.

Минуло кілька століть з часу створення механіки Ньютона. Заслуга цього вченого не лише в тому, що він винайшов нові закони природи, але і в тому, що він ввів нові методи її вивчення. Суть методу принципів виражена в таких словах Ньютона: ”Виведення двох чи трьох загальних начал руху з явищ і після цього викласти, яким чином властивості і дії всіх речей випливають з цих начал, було б дуже важливим кроком в філософії.”

За Ньютоном сила притягання обернено пропорційна квадрату відстані і визначається ще й масами взаємодіючих тіл. Звідки це випливає.

Нехай є дві порожні кулі з масами і , які взаємно притягуються. На першу діє з боку другої сила притягання ~ , а на другу - ~. Збільшимо масу другої кулі, наприклад, насипавши в неї дріб, тоді збільшиться, так як сила тяжіння пропорційна масі тіла, на яке вона діє. А за ІІІ законом Ньютона , отже, збільшиться в стільки ж разів і сила , хоча маса першої кулі і не змінилась. Отже, сила притягання пропорційна масам обох куль:

.

Одне з блискучих підтверджень закону відбувається через 120 років після смерті Ньютона. Спостереження за рухом планети Уран показали, що Уран приходив в певне місце простору то раніше, то пізніше того моменту, в який він повинен був би прийти за розрахунками, що ґрунтувалися на законі тяжіння. Дехто починає думати: чи вірний закон? Два математики - Адамс в Англії та ЛаверЧє у Франції - припустили, що ці відхилення викликані дією на Уран якоїсь іншої планети і поставили завдання - знайти, де повинна бути ця планета. Це дуже складне завдання вони вирішили незалежно один від одного і повідомили координати планети в астрономічні обсерваторії.

23.09.1847р. повідомлення ЛаверЧє потрапило в Берлін, і того ж вечора астроном Галле повернув телескоп в ту частину неба, яку вказував ЛаверЧє, і виявив там нову планету, названу потім Нептун. Це було величезним тріумфом ньютонівського закону; свідченням великої передбачуваності науки!

Аж до 1919р. до теорії тяжіння Ньютона нічого додано не було. І лише Ейнштейн зумів внести нове в проблему тяжіння, не відкинувши при цьому і ньютонівське її розуміння. Просто звузилася сфера дії закону.

Наведений історичний матеріал можна використовувати на уроках по вивченню закону всесвітнього тяжіння в 9 класі. Хоча в підручнику “Фізика - 9” викладення закону ведеться частково в історичному плані, але, на нашу думку, історія проблеми тяжіння повинна бути представлена ширше. Вона дозволяє продемонструвати велич закону, труднощі його встановлення, вводить учнів в атмосферу наукового пошуку. Згадування про закони Кеплера в 9 класі може здаватися передчасним, але воно дозволяє обґрунтувати закон оберненого квадрату, звичайно нічим немотивований. Обґрунтування наявності мас в формулі закону подано в дусі Ньютона. Звичайні посилання на те, що залежність сили тяжіння від маси випливає з ІІІ закону динаміки, нічого не роз'яснюють учням, тому експеримент із взаємодією куль, маса однієї з яких змінюється, хоча і не взятий з історії науки, але пояснює, чому в законі з'являються маси взаємодіючих тіл. Поєднання історизму з такими “неісторичними включеннями” неминуче для того, щоб полегшити учням розуміння суті справи. Історичний характер викладу дозволяє, окрім цього, ознайомити учнів з важливим методом сучасної фізики, який бере свій початок від Ньютона, - методом принципів. Найбільш доречно це зробити саме під час викладу закону всесвітнього тяжіння.

Необхідно також розповісти про відкриття планет Нептун і Плутон - факт, який демонструє важливу передбачуваність теоретичних знань та здійснює великий вплив на формування наукового світогляду школярів.

Проблемність викладу цього матеріалу забезпечується постановкою наступних питань з метою привернення уваги учнів:

Чому 20 років мовчав Ньютон? Чому пальма першості відкриття закону належить саме Ньютону? Чому закон всесвітнього тяжіння потрібно вважати універсальним? І т.д.

Засвоєння учнями логіки викладу дозволить вчителю ціленаправлено побудувати вивчення всієї теми вцілому.

2.5. До історії принципу відносності

Одним з найсильніших аргументів церкви проти системи Коперніка було наступне твердження: якби Земля дійсно рухалася, то літаючі пташки відставали від рухомої Землі, дальність пострілів на Захід і Схід були б різними, важкі тіла не падали б по вертикалі.

Ця аргументація була розбита Галілеєм. В 1632 р. вийшла його відома праця “ Діалог про дві найголовніші системи світу - Птоломея і Коперніка,” в якій він сформулював механічний принцип відносності. Галілей не мав можливості прямо виступати проти авторитету церкви. Тому формулювання відкритих ним законів природи він подавав в оригінальній формі. Ось яким було перше формулювання принципу відносності:

“ Потрібно усамітнитися з одним із друзів у сторонньому приміщенні під палубою якого-небудь корабля, запастися мухами, метеликами і іншими подібними дрібними літаючими комашками; нехай буде у вас також посудина з водою і плаваючими в ній рибками; далі підвісьте вгорі відерце, з якого вода буде крапати крапля за краплею в іншу посудину з вузькою шийкою, підставлену знизу. Поки корабель стоїть нерухомо, спостерігайте уважно, як дрібні літаючі комахи з однією і тією ж швидкістю рухаються у всі сторони приміщення; риби, як ви побачите , будуть плавати байдуже у всіх напрямках, усі падаючі краплі потраплять у підставлену посудину, і вам, кидаючи товаришу який-небудь предмет, не доведеться кидати його з більшою силою в одну сторону, ніж в іншу, якщо відстані будуть одні і ті ж; і якщо ви будете стрибати відразу обома ногами, то зробите стрибок на однакову відстань в будь-якому напрямку. Уважно спостерігайте все це, хоча у нас не виникає ніякого сумніву в тому, що, поки корабель стоїть нерухомо, все повинно відбуватися саме так. Якщо тепер ви примусите корабель рухатися з будь-якою швидкістю, то тоді ( якщо тільки рух буде рівномірним і без качки в ту і іншу сторону, у всіх названих явищах ви не виявите жодної зміни і по жодному з них ви не зможете встановити, чи рухається корабель, чи стоїть нерухомо... І причина узгодженості всіх цих явищ в тому, що рух корабля загальний для всіх предметів, які знаходяться на ньому, так як і повітрю; тому я і сказав, що ви повинні знаходитись під палубою...”

Ці міркування Галілея резюмовані так: інерціальний рух системи не впливає на механічні процеси, які в ній відбуваються. Або ще коротше: у всіх інерціальний системах механічні явища відбуваються однаково. Таким чином. Механічний принцип відносності є узагальненням дослідницьких фактів. Якщо прийняти принцип відносності, то аргументація теологів автоматично руйнується.

Однак потрібно було пояснити природу морських припливів та відпливів. Галілей робить тут повчальну помилку. Він спирається на слідуючи аналогію. Якщо везти в човні воду, то при будь-якому прискоренні човна вода підніметься до носу чи корми по інерції. Вода океанів на Землі подібна воді в човні. При прискоренні Землі вода також піднімається або опускається в залежності від знака прискорення. Нерівномірність руху Землі, за Галілеєм, обумовлена сумою двох рухів - добового і річного.

Як ми тепер знаємо, неінерціальність, викликана добовим обертанням Землі, дає дуже слабкі ефекти, які можуть бути зафіксовані пристроями типу маятника Фуко. Неінерціальність від річного обертання ще менш відчутна.

Питання про вплив руху системи на фізичні явища, які в ній відбуваються, загострилося в зв'язку з відкриттям англійським вченим астрономом Д. Брадлеєм явища аберації - вдавані зміщення положення зірки за якою спостерігають із Землі. Поступово фізики прийшли до необхідності експериментального обґрунтування неможливості виявити інерціальний рух системи за допомогою будь-якого фізичного експерименту: оптичного, електромагнітного, електро- чи магніто статичного і т.д.

Уявимо собі, що в “каюті корабля Галілея” були б зосереджені всі можливі фізичні пристрої. Чи можна було б поставити дослід, який би показав, що наш гігантський космічний корабель - Земля рухається відносно Сонця зі швидкістю біля 30 км/с? Адже ми визначили цю швидкість з астрономічних спостережень, спираючись на теорію Коперніка. Чи можна результат астрономічних спостережень підтвердити фізичним дослідом в “ каюті Галілея” ?

Зрозуміло, що ця думка привертала увагу багатьох експериментаторів. Інтерес загострювалася ще й тим, що існувала гіпотеза ефіру. Вважалося, що простір, який здається порожнім, заповнений тонким, невідчутним матеріальним середовищем - ефіром. Це середовище не заважає рухові планет, але воно в той же час пружне, бо його коливання передаються зі швидкістю світла і створюють оптичні і електромагнітні ефекти. Природно було б з'ясувати, цілком чи повністю захоплюється ефір рухомою Землею, чи залишається він нерухомим. Потрібен був дослід, який виявив би властивості ефіру. Не випадково всі видатні фізики ламали голову над цією проблемою. Ставилося багато дослідів, але безуспішно.

В 1880р. американський фізик Альберт Абрахам Майкельсон ( 1852 - 1931) поставив відомий експеримент зі своїм інтерферометром. Пристрій мав фантастичну чутливість: він міг фіксувати зміщення порядку мм. Теорія показала, що цей пристрій міг би виявити рух Землі крізь ефір. На основі негативних дослідів в “каюті Галілея” А.Ейнштейн узагальнив принцип відносності Галілея: ніяким фізичним дослідом неможливо виявити інерціальний рух системи. Узагальнений принцип відносності ліг в основу нової фізичної теорії - спеціальної теорії відносності Ейнштейна.

2.6. Формування поняття сили

Початок фізики ми ведемо із Стародавньої Греції. Тут і перші витоки поняття сили. У древніх сили природи - це те, що обумовлює явища природи і керує ними. Сила трактувалась як схильність тіла до певних дій, властива йому природна риса. Природа наділила цими властивостями всі тіла. Оскільки будь-яке тіло Всесвіту наділене силою, то завжди передбачуваний характер її дії, її поведінки. Тут доречною є аналогія: тіло - віз, сила - кінь. Куди піде кінь, туди буде рухатись віз. Це дуже загальний погляд, який не має фізичної конкретизації. Він зберігався до епохи Відродження.

Вперше конкретизував поняття сили Галілей: в механічному русі сила є причиною прискорення тіла. Він розумів, що всяке тіло, яке не взаємодіє з іншими тілами, повинно рухатись рівномірно і прямолінійно. Сила - дія на дане тіло якої-небудь причини, що викликає зміну швидкості тіла. Приклад - прискорення тіла під час вільного падіння. Галілей пише: ” Тяжіння є постійно діюча сила і, отже, викликає в кожний рівний інтервал часу рівне перетворення швидкості, і рух стає рівномірно прискореним.”

Французький філософ і математик Р.Декарт (1596 - 1650) - основоположник оригінального напряму в філософії і фізиці, найбільш популярний вчений XVII ст.. розвинув принципово нові уявлення.

За Декартом, Всесвіт заповнений рухомою матерією. Всі явища природи обумовлені різними формами руху матерії. Сила виникає лише при співударі тіл. Не існує ніяких сил, крім сили удару при зіткненні тіл.

Ці уявлення були зруйновані Ньютоном. В “Математичних началах натуральної філософії” він розвиває і уточнює думку Галілея. Сила, по Ньютону, - причина зміни кількості руху тіла. Другий закон динаміки в формулюванні Ньютона дає чітке механічне трактування поняття сили: сила є дія на тіло якої-небудь причини, яка викликає зміну кількості руху тіла; при цьому збільшення чи зменшення кількості руху пропорційне силі. Причиною зміни кількості руху тіла може бути поштовх, удар. Тоді сила виникає при зіткненні тіл. Однак на противагу думці Декарта, Ньютон стверджував, що сила може виникнути і втому випадку, коли тіла віддалені одне від одного. Так діють сила тяжіння, електрична сила, магнітна сила. Важливо підкреслити наступне. У Ньютона поняття сили вперше отримує кількісне означення: силу можна виміряти по зміні кількості руху. В окремому випадку, якщо маса тіла залишається незмінною, сила змінюється по прискоренню, якого набуває тіло.

Другий закон Ньютона розкриває ще одну грань поняття сили: сила може бути не лише причиною, але і наслідком зміни кількості руху. Наприклад, у випадку падіння електромагнітного випромінювання на перешкоду остання відчуває дію сили тиску. Тиск електромагнітного випромінювання є наслідком зміни імпульсу фотонів. Аналогічно тиск газу на стінки посудини є наслідком зміни імпульсів молекул газу при зіткненні зі стінками. Але це стало зрозумілим лише тепер.

В сер. XIX ст. поняття “сила” і “енергія” не розрізнялись. Закон збереження енергії спочатку формулювався, як закон збереження сили. Класична праця Гельмгольца, наприклад, в якій закон збереження енергії отримав кількісний вираз, називалась “Про збереження сили”.

Багатогранність поняття сили обумовила неоднозначність його тлумачення. В історії формування цього поняття мала місце тенденція зовсім виключити його з лексикону фізики. Так, наприклад, наприкінці XIX ст. Кірхгоф в “Лекціях по теоретичній фізиці” писав:

“Механіка, на нашу думку, повинна черпати означення понять, з якими вона оперує, з одного лише руху. Звідси випливає, що після введення системи сил замість простих сил, механіка не може дати точне визначення поняття сили.”

Генріх Герц перед смертю опублікував книгу “Принципи механіки”, в якій показав можливість побудови механіки на основі трьох понять: простору, часу та маси. Дію сил між тілами А і В на відстані Герц зводив до процесів механічного руху в середовищі, що заповнює простір між тілами. У вакуумі - це ефір, який, за Герцом, має характер суто механічної системи.

Розвиток фізики показав обмеженість таких уявлень. Сучасна фізика як до складного поняття, зміст якого неможливо внести в одне означення. Поряд з механічними силами існують електромагнітні і ядерні сили. Їх не можна зводити одну до одної. Кожний клас сил має свої особливості. Сучасна фізика виділяє клас фундаментальних сил природи - силу тяжіння, силу Лоренца, кулонівську силу. Сили тертя, пружності, поверхневого натягу, аеродинамічні сили і ін. розглядаються як складна гра фундаментальних сил.

Поряд з поняттям сили в сучасній фізиці широко використовується поняття взаємодії. Прийнята така класифікація взаємодій: гравітаційні, електромагнітні, слабкі і сильні.

Коли мова йде про силу як причину чи наслідок зміни імпульсу тіла, завжди має місце взаємодія даного тіла з ін. тілами. Електричні і магнітні сили - наслідок взаємодії заряджених тіл. Сила зовнішнього 9 сухого 0 тертя виникає під час відносного переміщення стичних тіл. Сила пружності виникає при деформаціях, а останні завжди є результатом взаємодії і т.д.

Потрібно пов'язувати, а не ототожнювати поняття сили і взаємодії. Останнє ширше, ніж поняття сили.

Хоча фізика оперує поняттям “ядерні сили”, але в цьому випадку мова йде просто про “жаргон”. Не слід уявляти, що ядерна сила надає протону або нейтрону прискорення, що ядерна сила - вектор і т.д. Говорячи про ядерні сили, фізики мають на увазі взаємодії протонів і нейтронів. Ці взаємодії різноманітні. Головне в тому, що взаємодії можуть призводити до перетворень частинок.

В курсах фізики за історичною традицією зберігаються поняття електрорушійної сили, сили струму і сили світла. Необхідно пояснити учням, що фізичним поняттям властива своєрідна інертність. Іноді сенс поняття змінюється в процесі розвитку науки, але слова залишаються. Поняття е.р.с. з'явилося в той час, коли не була відома природа електричного струму, коли електричні явища хотіли звести до механічних процесів. Тепер ми знаємо, що е.р.с. зовсім не є силою, однак по інерції це поняття залишилося в лексиконі фізики. Те ж саме можна сказати про поняття сили струму і сили світла.

2.7. До історії закону збереження кількості руху

Поняття кількості руху як спеціальної механічної величини, яка виражається добутком маси тіла на швидкість його руху, ввів Ньютон в “Математичних началах натуральної філософії”. Кількість руху пов'язували другим законом динаміки з силою, зміна кількості руху слугувала мірою сили.

З іншого боку, добуток маси на швидкість розглядався як міра руху. Закон збереження кількості руху з'явився вперше саме під час розгляду мір руху.

Перше його формулювання належить Декарту. В своїй основній праці “Початки філософії”, яка вийшла в 1644р., Декарт розвиває думку про те, що Всесвіт заповнений різними формами рухомої матерії. Першопричиною руху він вважає Бога і дає таке теологічне формулювання закону збереження: “ Бог - першопричина руху, він постійно зберігає в світі однакову його кількість.”

Декарт не дав математичного виразу закону. Він лише накреслив перший крок в наступному його формулюванні: “ Коли одна частинка матерії рухається вдвічі швидше іншої, а ця остання вдвічі по величині більша першої, то в меншій стільки ж руху, скільки і в більшій з частинок; і що на скільки рух однієї частинки сповільнюється, на стільки ж рух якої-небудь іншої зростає.”

Далі сенс закону не прояснюється, а, навпаки, заплутується. Лейбніц почав дискусію про міру руху в праці з цікавою назвою “ Коротке доведення дивовижної омани Декарта та інших в питанні про один закон природи, за яким вони передбачають, що дякуючи Господу зберігається завжди одна і таж кількість”.

Лейбніц вважає мірою руху не добуток , а добуток . Він робить перший крок до відкриття закону збереження енергії, але безнадійно заплутує питання про співвідношення законів збереження кількості руху та енергії. Ця плутанина існувала більше 100 років і заважала поясненню закону збереження.

Розвиток ньютонівської динаміки привів до з'ясування зв'язку між законами динаміки і законом збереження кількості руху.

Для одного тіла За відсутності зовнішніх сил і відразу ж випливає збереження кількості руху: const. У випадку сталої маси const ми переходимо до першого закону динаміки.

Розглядаючи замкнену систему взаємодіючих тіл, можна записати

Сумуючи праві і ліві частини і користуючись третім законом динаміки, відповідно до якого , отримуємо

Розглянутий зв'язок між законами динаміки і законом збереження кількості руху є результатом прямої логічної лінії розвитку механіки. Тут все чітко і ясно. Історично це була не пряма, а складна крива. Зрозуміло, що учнів не слід вести по цій кривій. Важливо підкреслити, що ми маємо справу не з виведенням закону збереження кількості руху, як це часто уявляють, а з вираженням внутрішнього зв'язку між законами динаміки і законами збереження.

В становленні закону збереження важливу роль відіграли його практичні додатки. Винахідники ще задовго до відкриття закону використовували його на практиці. Реактивна дія струменя води чи газу була відома ще стародавнім грекам. Однак для широкого використання реактивного руху в техніці потрібно пройти ще довгий шлях.

Основоположник космічних польотів К.Е.Ціолковський розробив принципи практичного використання реактивного руху лише в 20-х роках минулого століття, перші реактивні літаки з'явилися наприкінці Великої Вітчизняної війни, а перший штучний супутник Землі був запущений в 1957р.

Слід мати на увазі, що питання про міри руху, про зв'язки законів збереження з іншими законами природи з'ясоване лише в зв'язку з розвитком принципу теорії відносності Ейнштейна і законів симетрії.

В наш час твердо встановлено, що рух має дві міри - скалярну і векторну. Скалярна міра - енергія, векторна - імпульс. При цьому обидві міри є складовими єдиної міри - релятивістського тензора енергії-імпульса.

Заміна терміну “кількість руху” на “імпульс” має глибокий фізичний зміст. Розвиток фізики показав, що кількість руху властива не лише частинці речовини, але і частинкам електромагнітного випромінювання - фотонам. Для фотона ми не можемо написати добуток , як для шматочка речовини. Фотон кількісно визначається двома співвідношеннями та , звідси і імпульс .

2.8. До історії закону збереження енергії

На перших етапах фізики відкривали окремі наслідки закону збереження енергії, не підозрюючи про існування загального закону.

Першим наслідком був закон важеля, який можна сформулювати так: добуток сили на відстань, пройдену точкою прикладання сили, є величина стала. Це було відомо ще Архімеду. Знаючи закон збереження енергії в формі “ кількість отриманої енергії рівна витраченій роботі”, легко звести до нього закон важеля. Дійсно робота обчислюється як добуток сили на переміщення. Якщо цей добуток сталий, то збільшуючи шлях, ми можемо на стільки ж зменшити силу і навпаки.

Далі доцільно звернутися до наступного відкриття Галілея. Під час своїх дослідів з падінням тіл по похилій площині Галілей виявив, що швидкість, яку має тіло біля основи площини не залежить від кута її нахилу, отже, і від довжини шляху, а залежить лише від висоти, з якої падає тіло.

Це вражаюче відкриття зацікавило Галілея, і він поставив завдання дослідити, чи існує незалежність швидкості від довжини шляху для криволінійних форм шляху. З цією метою він винайшов маятник, який отримав його ім'я (див. нижче).

Наступний крок до відкриття закону збереження механічної енергії зробив Гюйгенс. Він вперше поставив завдання дослідити закони механічного руху системи тіл. Вивчення коливань складних маятників привело його до наступного висновку: “ Якщо які-небудь важкі тіла рухаються внаслідок дії на них сили тяжіння, то їх загальний центр тяжіння не може піднятися вище того рівня, на якому він знаходився на початку руху.”

Важливість цього результату була усвідомлена вченими. Німецький філософ і математик Г.Лейбніц (1646 - 1716) звернув увага на те, що із законів вільного падіння випливає пропорційність висоти, якої досягло тіло, що коливається, при незмінній масі, квадрату його швидкості. Оскільки під час коливання без тертя висота, з якої падає тіло, рівна висоті підняття, то, отже, і зберігається добуток . Лейбніц назвав цей добуток “живою силою” і розвинув думку про те, що Всесвіту властивий запас “живих сил”, який зберігається.

Звідки пішов термін “жива сила”? Безпосередній досвід показав, що сила може бути викликана тілом, що знаходиться в спокої, наприклад, стисненою пружиною, тілом, яке тисне на опору і т. д. З іншого боку, силова дія може бути створена рухомим тілом.

Природньо було в першому статичному випадку говорити просто про силу ( мертву ) , а у другому, щоб підкреслити її належність до руху, зміни, про силу живу.

Слід відмітити, що в деяких курсах теоретичної механіки до цих пір зберігається цей термін, і закон збереження механічної енергії фігурує під назвою “ теореми про живі сили”.

Збереження “живої сили” було встановлено в дослідах Гюйгенса зі співударом куль. У відомій 11-й теоремі про співудар тіл Гюйгенс писав “ При ударі двох тіл сума добутків їх мас на квадрати їх швидкостей однакова до удару і після нього.”

Особливу увагу приділили принципу збереження живих сил Йоган та Даніїл Бернуллі. В творах 1750р. Даніїл Бернуллі розглядає загальний випадок системи частинок, між якими діє сила притягання, і показує. Що незалежно від шляхів, по яким переміщаються частинки, сума їх “живих сил” залишається сталою. “ Природа, - говорить він, - ніколи не зраджує великому закону збереження “живих сил.”

Ще більш глибокі уявлення ми знаходимо в праці Й.Бернуллі “Міркування про закони передачі руху.” Він підкреслює, що “жива сила” зберігається вічно, що цей всезагальний закон природи дійсний в тому випадку, коли на перший погляд спостерігаються відхилення від нього. “ Якщо, наприклад, - пише Бернуллі, - тіла не абсолютно пружні, то здається, що при їх стисненні, яке не супроводжується поверненням до початкового стану, частина живих сил втрачається. Але ми повинні собі уявити, що стиснення відповідає згинанню пружної пружини, якій перешкоджають розігнутися, так що вона не віддає тих живих сил, які були їй надані, але зберігає їх в собі.”

Тут ясне відчуття переходу кінетичної енергії в потенціальну енергію пружної деформації і внутрішню енергію тіла. Однак до чіткого уявлення про потенціальну енергію і чіткого формулювання закону збереження механічної енергії фізиці потрібно було ще більше 100 років. Поняття потенціальної енергії в чіткій формі з'явилося в 1847р. в книзі великого німецького фізика Гельмгольца “ Про збереження сили”.

Кінетичну енергію Гельмгольц називав, як і раніше, живою силою, потенціальна енергія з'явилася під іменем “ кількості сил напруги”. Все розмаїття форм енергії Гельмгольц зводив до двох форм. Перша - узагальнена форма: кількість затраченої роботи рівна кількості отриманої енергії. Друга - власна в сучасній термінології формулюється так: сума кінетичної і потенціальної енергії в замкненій системі залишається завжди сталою.

Слід відмітити, що поняття роботи склалось раніше, ніж поняття енергії. Для вимірювання роботи еталоном була робота підняття вантажу певної маси на певну висоту. У Гельмгольца читаємо: “ Кількість роботи, яку отримуємо чи затрачаємо, може бути, як відомо, виражена як робота підняття на певну висоту h вантажу m; робота рівна mgh…Щоб піднятись вільно на висоту h, тіло повинне мати початкову швидкість ; цю ж швидкість тіло отримує під час зворотнього падіння на Землю. Таким чином, .”

Отже під час висвітлення матеріалу по даній темі потрібно звернути увагу на наступне.

1. При висвітленні зв'язку роботи та енергії природно слідувати історичному розвитку події. Спочатку формується поняття роботи, потім встановлюється, що будь-яка робота має певний енергетичний ефект: робота прискорюючої сили призводить до виникнення рівної кількості “живої сили” - кінетичної енергії, робота проти сил тяжіння чи пружності призводить до появи потенціальної енергії, робота проти сили тертя - до приросту внутрішньої енергії.

Відомий зв'язок між законами динаміки і законом збереження кількості руху.

Аналогічний зв'язок доцільно підкреслити і для закону збереження механічної енергії. У випадку прямолінійного руху тіла сталої маси ми можемо записати:

(1)

Нехай тіло прискорюється так, що швидкість зростає від до . Середня швидкість буде , зміна швидкості . Помноживши обидві частини рівності (1) на , отримаємо або , звідки .

За відсутності зовнішніх сил ми отримаємо закон збереження кінетичної енергії:

.

Закон збереження енергії має дуже складну, майже 330-річну історію. До неї потрібно звертатися декілька разів, вибираючи матеріал, що допомагає висвітленню питань, які розглядаються в даному розділі. Оскільки мова йде про механічні форми енергії, доцільно детально розглянути маятник Галілея (див рис.2.1.). Це дуже простий пристрій для демонстрації перетворення потенціальної енергії в кінетичну і знову в потенціальну. В дошку забито цвях А для підвішування вантажу В. По горизонталі в отвори С, Д,... вставляються металеві або дерев'яні штирі. Якщо вантаж відхилити і відпустити з висоти h, то де б не був вставлений штир, вантаж підніметься на ту ж висоту h.

ВИСНОВКИ

На закінчення прийнято коротко підводити підсумки і робити основні висновки, які витікають із сказаного вище. Мені б хотілося відійти від цієї традиції і просто наголосити на своїх основних замислах.

Хотілось би, щоб кожен вчитель відчув, як багато може дати історія фізики школярам, як вона може розвинути властиву юності допитливість розуму, як вона може допомогти вчителю пробудити в учня таке необхідне для пізнання світу хвилювання - хвилювання від спілкування з людьми науки, від колізій тих пошуків істини, які були загально поглинаючою жагою основоположників фізичної науки.

Хотілось би, щоб вчитель, забувши про тягар перевантаження, захотів розмовляти з учнями про те, як людина пізнавала природу, як думали, як шукали істину кращі представники фізичної науки, якими вони були. Звичайно, учня не запитають на екзамені про те, якою людиною був, наприклад, П.Н.Лебедєв. Але хто знає, що корисніше для учня: знати всі тонкощі постановки дослідів по вимірюванню тиску світла П.Н.Лебедєвим чи замислитись над тим, як жила, як думала, як робила ця людина?

Можливо, дізнавшись про особистості тих, ким пишається фізична наука, учень захоче краще зрозуміти ( і зуміє зрозуміти) суть науки? А можливо, дізнавшись про те, якими людьми були основоположники фізичної науки, учень зуміє зрозуміти саме життя і своє місце в ньому, зрозуміє, що є добро і зло, в чому істинні цінності життя? Адже не заради лише знань ми навчаємо учнів. Не менш, а можливо, і більш важливо сформулювати в кожній дитині кращі людські риси, які визначають образ гідної людини суспільства.

Хотілось би, щоб вчитель зрозумів, що історизм у викладанні фізики не самоціль, а засіб, який дозволяє краще пояснити школярам, що собою представляє світ природи і захоплюючий процес її поступового пізнання.

Хочеться побажати всім колегам-педагогам успіху в нелегкій праці залучення школярів до драми ідей, що розгортається на арені історичного процесу розвитку фізики. Залучення до історії науки збагачує інтелект і духовний світ наших учнів. А головну “методичну рекомендацію”, що забезпечує успіх в цій справі, можна сформулювати словами Л.Д.Ландау : “ Головне робіть все з захопленням; це дуже прикрашає життя.”

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

1. Выдающиеся физики мира. / под ред. Кузнецова Б.Г. - М.: Типография библиотеки им. В.И.Ленина, 1958. - 435с.

2. Дж. Уокер. Физический фейерверк. - М.: Мир, 1989. - 298с.

3. Дуков В.М. Исторические обзоры в курсе физики средней школы. - М.: Просвещение, 1983. - 160с.

4. Иоффе А.Ф. О физике и физиках: статьи, выступления, письма. / (вступ. статья В.Я.Френкеля, с. 10 - 25). - Л.: Наука. Ленингр. отделение, 1985. - 544с.

5. Коршак Є.В. та ін. Фізика: 9 клас. - Ірпінь: Перун, 2000. - 232с.

6. Кудрявцев П.С. История физики и техники. - М.: Учпедгиз, 1960. - 507с.

7. Лауэ М. История физики. /пер. с нем. Г.Н.Горнштейн. Под ред. И.В.Кузнецова. - М.: Гостехиздат, 1956. - 230с.

8. Мощанский В.Н., Савелова Е.В. История физики в средней школе. - М.: Просвещение, 1981. - 205с.

9. Підвищення ефективності уроків з фізики. / за ред. Бугайова О.І. - К.: Радянська школа, 1986 - 152с.

10. Подкорытов Г.А. Историзм как метод научного познания. - Л.: ЛГУ, 1967. - 204с.

11. Спасский Б.И. История физики. - М.: Моск. Ун-т , 1956. - 359с.

12. Ярошевский М.Г., Зорина Л.Я. История науки и школьное обучение. - М.: Знание, 1978. - 190с.

13. Пизанская башня //Новая генерация.-2001. - №12(38). - с.5.


Подобные документы

  • Розгляд пружньої деформації одностороннього розтягування стрижня. Поняття сили тертя. Сили тяжіння, закон всесвітнього тяжіння. Дослідження гравітаційного поля як особливого виду матерії, за допомогою якого здійснюється взаємне тяжіння тіл. Доцентрова сил

    реферат [210,1 K], добавлен 04.06.2009

  • Закон збереження імпульсу, робота сили та потужність. Кінетична та потенціальна енергія, закон збереження механічної енергії. Елементи кінематики обертового руху та його динаміка. Моменти сили, інерції, імпульсу. Поняття про гіроскопічний ефект.

    курс лекций [837,7 K], добавлен 23.01.2010

  • Види симетрії: геометрична та динамічна. Розкриття сутності, властивостей законів збереження та їх ролі у сучасній механіці. Вивчення законів збереження імпульсу, моменту кількості руху та енергії; дослідження їх зв'язку з симетрією простору і часу.

    курсовая работа [231,7 K], добавлен 24.09.2014

  • Процес навчання фізики в основній школі. Методика використання методу розмірностей на різних етапах вивчення компонентів змісту шкільного курсу фізики. Оцінка впливу методу аналізу розмірностей на розвиток когнітивних та дослідницьких здібностей учня.

    курсовая работа [349,7 K], добавлен 09.03.2017

  • Методика проведення уроків з теми «теплове розширення тіл при нагріванні» в умовах поглибленого вивчення фізики. Аналіз програми із фізики типової школи та програми профільного навчання фізики. Кристалічні та аморфні тіла. Теплове розширення тіл. План - к

    курсовая работа [384,2 K], добавлен 24.06.2008

  • Закони динаміки. Перший закон Ньютона. Інерціальні системи відліку. Маса та імпульс. Поняття сили. Другий і третій закони Ньютона. Зміна імпульсу тiла. Закон збереження імпульсу. Реактивний рух. Рух тiла зі змінною масою. Принцип відносності Галілея.

    лекция [443,3 K], добавлен 21.09.2008

  • Значення фізики як науки, філософські проблеми розвитку фізичної картини світу. Основи електродинаміки, історія формування квантової механіки. Специфіка квантово-польових уявлень про природні закономірності та причинності. Метафізика теорії відносності.

    курсовая работа [45,3 K], добавлен 12.12.2011

  • Роль фізики в розвитку техніки, житті суспільства, обороні держави і підготовці офіцерів військ зв’язку України. Наукові та методичні основи. Внесок вітчизняних вчених в розвиток фізики. Порядок вивчення фізики. Кінематика і динаміка матеріальної точки.

    курс лекций [487,9 K], добавлен 23.01.2010

  • Історія розвитку фізики. Фізика в країнах Сходу. Електричні і магнітні явища. Етапи розвитку фізики. Сучасна наука і техніка. Використання електроенергії, дослідження Всесвіту. Вплив науки на медицину. Розвиток засобів зв'язку. Дослідження морських глибин

    реферат [999,0 K], добавлен 07.10.2014

  • Магнетизм, електромагнітні коливання і хвилі. Оптика, теорія відносності. Закони відбивання і заломлення світла. Елементи атомної фізики, квантової механіки і фізики твердого тіла. Фізика ядра та елементарних часток. Радіоактивність. Ядерні реакції.

    курс лекций [515,1 K], добавлен 19.11.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.